1
|
Tian X, Ban C, Zhou D, Li H, Li J, Wang X, Lu Q. Effects of purple corn anthocyanin on slaughter performance, immune function, the caecal microbiota and the transcriptome in chickens. Poult Sci 2025; 104:105104. [PMID: 40187019 PMCID: PMC12002921 DOI: 10.1016/j.psj.2025.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Poultry are susceptible to oxidative stress, which decreases immune function and negatively affects production performance under highly intensive feeding conditions. Moreover, anthocyanins can alleviate oxidative stress and improve immune functions in chickens. This study aimed to elucidate the effects of purple corn anthocyanin extract (PCE) on slaughter performance, immune function, the caecal microbiota and the transcriptome in chickens. A total of 180 female chickens were randomly divided into two groups, with one receiving a basal diet (CON) and one receiving a treatment (PCE) supplemented with 360 mg/kg PCE according to a completely randomized design. The results indicated that the levels of plasma immunoglobulin A, immunoglobulin G, immunoglobulin M, complement 3, and complement 4 in the PCE treatment group were greater (P < 0.05) than those in the CON group. The slaughter performance and caecal short-chain fatty acid parameters did not differ (P > 0.05) between the PCE and CON groups. The inclusion of PCE significantly increased (P < 0.05) the bursa of Fabricius/live weight value compared with those of the CON. Chickens receiving PCE had significantly (P < 0.05) increased relative abundances of norank_f_Muribaculaceae, Anaerofilum, Shuttleworthia, Brachyspira, and Tuzzerella but significantly decreased (P < 0.05) relative abundances of unclassified_f__Rikenellaceae, Oscillospira, norank_f__Barnesiellaceae, norank_f__Christensenellaceae, and Candidatus_Soleaferrea. A total of 2,846 differentially expressed genes (DEGs; P < 0.05), which consisted of 1,140 upregulated genes and 1,706 downregulated genes, were identified. Among them, 201 genes were annotated to the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes database for immune-related genes. Protein-protein interaction network analysis revealed that DEGs associated with the joining chain of multimeric IgA and IgM were significantly upregulated immune-related genes, and those associated with forkhead box P1, cathelicidin 1, cathelicidin 2, and cathelicidin 3 were significantly downregulated immune-related genes in chickens. The findings demonstrated that dietary supplementation with PCE has the potential to improve plasma immunoglobulin, immune organ, caecal potentially beneficial bacteria levels and immune-related gene expressions, which can increase the immune function of chickens.
Collapse
Affiliation(s)
- Xingzhou Tian
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Chao Ban
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Di Zhou
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang, 550018, PR China
| | - Hui Li
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Jiaxuan Li
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Xu Wang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Qi Lu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
2
|
El-Fakhrany HH, Ibrahim ZA, Ashour EA, Alagawany M. The impact of in ovo injection of cluster bean peptide on hatchability, growth performance, carcass characteristics, digestive enzymes, and blood indices of broiler chickens. BMC Vet Res 2025; 21:200. [PMID: 40128746 PMCID: PMC11934734 DOI: 10.1186/s12917-025-04636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
The administration of bioactive short peptides through in ovo feeding can improve the overall health and performance of broiler chickens for the poultry industry. Additionally, bioactive peptides possess biological features that have the potential to be beneficial in preventing many metabolic illnesses; hence, the ingestion of these peptides holds the potential to be advantageous for human health. In light of this, the current work aimed to study the impacts of in ovo feeding during the late stages of embryonic development with cluster bean peptide (CBP) on the hatchability, productive performance, lipid profile, liver and kidney functions, immunological response, and antioxidant status of broilers. Six hundred and forty-eight (648) fertilized Ross 308 broiler breeder eggs were used in this study. To remove infertile eggs and dead embryos, the eggs were manually candled on 7 and 17 day of incubation (DOI). On the 18.5th DOI, the eggs were separated into four treatment groups (156 eggs/each), and the first group did not receive any treatment and represented the negative control (NC). Meanwhile, the other treatment groups were injected into the amnion membrane. The second group was only subjected to needle penetration and represented the positive control (PC). The third group was denoted by the letter T1 and received an injection of 1 mg CBP/egg. The fourth group was denoted by the letter T2 and received an injection of 2 mg CBP/egg. In ovo feeding by CBP exhibited significant improvements in the body weight of newly hatched chicks, particularly at the 2 mg CBP level. The administration with CBP did not significantly affect the carcass characteristics of 28-day-old broilers. In ovo-administrated groups with CBP, higher plasma concentrations of total protein and its fractions were observed at hatch and on day 28 of age. In ovo treatment with CBP, blood lipid profile parameters significantly improved at hatch and 28 days of age. Liver and kidney function parameters were improved in response to the in ovo administration with CBP in newly hatched chicks and on day 28 of age. Blood levels of glutathione (GSH) and superoxide dismutase (SOD) were considerably higher in the in ovo-administered groups with CBP; while levels of malondialdehyde (MDA) were significantly reduced due to CBP administration. The activity of digestive enzymes in blood plasma was decreased in newly hatched chicks but increased in 28-day-old broilers in response to in ovo administration with CBP. There was an improvement in the immunological response of hatched chicks from groups injected with CBP, particularly the T2 group (2 mg CBP), as evidenced by increased IgM and IgG levels. The findings presented here indicate that the in ovo administration with CBP, specifically at a dosage of 2 mg, improved growth performance and immune and antioxidant functions.
Collapse
Affiliation(s)
- Hussein H El-Fakhrany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
- Alwadi Farms Poultry Company, El Sheikh Zayed, B1 Capital Business Park, Giza, Egypt
| | - Zenat A Ibrahim
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
3
|
Mak PHW, Yin X, Clairmont L, Bean-Hodgins L, Kiarie EG, Tang J, Lepp D, Diarra MS. Cecal microbiome in broiler chicken related to antimicrobial feeding and bird's sex. Can J Microbiol 2025; 71:1-19. [PMID: 39993268 DOI: 10.1139/cjm-2024-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
This study investigated the cecal microbiome of broilers raised under specific antimicrobial feeding programs (AFPs). A total of 2304 day-old Ross-708 male (M, n = 1152) and female (F, n = 1152) chicks were distributed into 48 floor pens which were allocated to one of three AFPs: Conventional, raised without medically important antibiotics (RWMIA), and raised without antibiotics (RWA). At 28 (D28) and 41 (D41) days of age, cecal contents were collected for culture dependent and independent analyses. At both 28 and 41 days, Enterococcus was more abundant in RWA-raised broilers than other groups with the most abundance of this bacterium being found in female birds (P < 0.05). At D41, the most abundant Eimeria tenella counts was observed in RWA-raised broiler ceca (P < 0.05). Sex effects were observed on the abundances of four of the 248 identified antimicrobial resistance genes while abundances of 10 were modulated by AFPs (P < 0.05). Ceca of females birds showed more tssB than males, and ceca of RWMIA-raised birds contained the highest abundance of chuY genes regardless of sex. This study showed that in a specific feeding program, cecal resistome can be affected by chicken's sex contributing to understand the AMR related to the AMU.
Collapse
Affiliation(s)
- Philip H W Mak
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Lindsey Clairmont
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Lisa Bean-Hodgins
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Joshua Tang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| |
Collapse
|
4
|
Obianwuna UE, Chang X, Oleforuh-Okoleh VU, Onu PN, Zhang H, Qiu K, Wu S. Phytobiotics in poultry: revolutionizing broiler chicken nutrition with plant-derived gut health enhancers. J Anim Sci Biotechnol 2024; 15:169. [PMID: 39648201 PMCID: PMC11626766 DOI: 10.1186/s40104-024-01101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 12/10/2024] Open
Abstract
As the global population continues to expand, the demand for broiler chicken production to supply safe and high-quality meat is increasing. To meet this ever-growing demand, broiler chickens with enhanced growth performance are being developed, but they often face challenges related to oxidative stress, which can adversely affect gut health. Phytobiotics, which are plant-derived feed additives known for their antimicrobial, antioxidant, immune-modulating, and growth-promoting properties, have emerged as promising natural alternatives to synthetic antibiotics. This review consolidates recent advancements in the use of phytobiotics-derived products from leaves, roots, seeds, flowers, and their extracts in broiler diets reared under standard experimental conditions, without the introduction of stressors. The focus is on elucidating the key mechanisms through which phytobiotics improve gut health, including their effects on gut morphology, integrity, microflora composition, antioxidant capacity, and immune function. The review highlights the potential of phytobiotics to revolutionize broiler nutrition by acting as natural enhancers of gut health. Research findings reveal that phytobiotics significantly improve intestinal health, and boost growth performance, offering a sustainable approach to managing to gut dysfunction. These findings indicate a potential shift in how gut-health related challenges in broilers can be addressed, moving towards natural phytobiotic therapy. However, several challenges persist. Optimizing the dosage of phytobiotics, ensuring consistent performance, and overcoming the limitations related to their extraction and application are key areas requiring further investigation. The review emphasizes the importance of continued research to refine phytobiotic formulations, explore synergistic effects, and incorporate advanced technologies such as AI-driven methods and precision nutrition to tailor feeding strategies more effectively. Additionally, the development of innovative delivery systems, such as nanoencapsulation, is suggested as a way to enhance the effectiveness and reliability of phytobiotics. By highlighting the potential of phytobiotics to revolutionize broiler nutrition, this review supports the poultry industry's shift towards antibiotic-free and sustainable dietary solutions, offering new perspectives on the future of broiler chicken production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Patience N Onu
- Department of Animal Science, Ebonyi State University, Abakiliki, Ebonyi State, Nigeria
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Madkour M, Abdel-Fattah SA, Ali SI, Ali NGM, Shourrap M, Hosny M, Elolimy AA. Impact of in ovo feeding of grape pomace extract on the growth performance, antioxidant status, and immune response of hatched broilers. Poult Sci 2024; 103:103914. [PMID: 38905757 PMCID: PMC11246045 DOI: 10.1016/j.psj.2024.103914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/23/2024] Open
Abstract
Delivering natural antioxidants via in ovo feeding holds promise for enhancing the antioxidant status and performance of chickens. Therefore, The objective of this study was to evaluate the impacts of in ovo feeding during early embryonic development using grape pomace extract as a natural antioxidant on hatchability, productive performance, immune response, and antioxidant status in broilers. A total of 900 fertile broiler eggs from the Arbor Acres strain were utilized. Each egg was individually weighed, with egg weights ranging from 61.88 ± 3 g. On the 17.5th d of incubation (DOI), the fertile eggs were divided into 6 groups. The first treatment group was untreated and designated as the control (C). The second group was the sham group (Sh), receiving a simulated injection. The third group, designated as the vehicle group (V), was injected with 100 µl of dimethyl sulfoxide (DMSO). The fourth group received an injection of 100 µL of grape pomace dissolved in DMSO at a concentration of 2 mg (T2). Similarly, the fifth and sixth groups were injected with 100 µL of grape pomace dissolved in DMSO at concentrations of 4 mg and 6 mg, (T4), (T6) respectively. Subsequently, all groups were raised under uniform conditions in terms of management, environment, and nutrition till 5 wk of age. The grape pomace extract (GPE), obtained is rich in total phenolic content (16.07 mg/g), total flavonoid content (7.42 mg/g), and total anthocyanin (8.37 mg/g). Grape pomace extract has exhibited significant antioxidant properties as evidenced by its effectiveness in DPPH scavenging and reducing power assays. Significant improvements in body weight at hatch were observed with in ovo feeding of grape pomace extract, particularly at the 4 mg level, surpassing the effectiveness of the 2 mg and 6 mg grape pomace levels, and this enhancement in body weight continued until the age of 5 wk. GPE injection also led to a significant reduction in cholesterol levels, with the lowest levels recorded for the T4 group. Plasma total Antioxidant Capacity (TAC) levels were significantly elevated in groups treated with T4, T6, and T2 compared to the control group. Conversely, the control group showed a significant increase (P < 0.01) in plasma malondialdehyde (MDA) levels. The immune response of hatched chicks from grape pomace extract-injected groups, especially the T4 group, exhibited improvement through increased IgM and IgG. These findings demonstrate that in ovo feeding of GPE, particularly at a dosage of 4 mg, enhances growth performance, immune response, and antioxidant status in hatched chicks. Thus, administering natural antioxidants, such as grape pomace extract, to developing broiler embryos via in ovo feeding could serve as a valuable strategy for enhancing the subsequent post-hatch productive performance, as well as bolstering the antioxidant and immunological status of broiler chicks.
Collapse
Affiliation(s)
- Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Sayed A Abdel-Fattah
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, 11241, Cairo, Egypt
| | - Sami I Ali
- Plant Biochemistry Department, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Nematallah G M Ali
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, 11241, Cairo, Egypt
| | - Mohamed Shourrap
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, 11241, Cairo, Egypt
| | - Mohamed Hosny
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed A Elolimy
- Animal Production Department, National Research Centre, Dokki, 12622, Giza, Egypt; Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Ali Q, Ma S, Liu B, Niu J, Liu M, Mustafa A, Li D, Wang Z, Sun H, Cui Y, Shi Y. Supplementing Ryegrass Ameliorates Commercial Diet-Induced Gut Microbial Dysbiosis-Associated Spleen Dysfunctions by Gut-Microbiota-Spleen Axis. Nutrients 2024; 16:747. [PMID: 38474875 DOI: 10.3390/nu16050747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The type and composition of food strongly affect the variation and enrichment of the gut microbiota. The gut-microbiota-spleen axis has been developed, incorporating the spleen's function and maturation. However, how short-chain fatty-acid-producing gut microbiota can be considered to recover spleen function, particularly in spleens damaged by changed gut microbiota, is unknown in geese. Therefore, the gut microbial composition of the caecal chyme of geese was assessed by 16S rRNA microbial genes, and a Tax4Fun analysis identified the enrichment of KEGG orthologues involved in lipopolysaccharide production. The concentrations of LPS, reactive oxygen species, antioxidant/oxidant enzymes, and immunoglobulins were measured from serum samples and spleen tissues using ELISA kits. Quantitative reverse transcription PCR was employed to detect the Kelch-like-ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), B cell and T cell targeting markers, and anti-inflammatory/inflammatory cytokines from the spleen tissues of geese. The SCFAs were determined from the caecal chyme of geese by using gas chromatography. In this study, ryegrass-enriched gut microbiota such as Eggerthellaceae, Oscillospiraceae, Rikenellaceae, and Lachnospiraceae attenuated commercial diet-induced gut microbial alterations and spleen dysfunctions in geese. Ryegrass significantly improved the SCFAs (acetic, butyric, propionic, isovaleric, and valeric acids), AMPK pathway-activated Nrf2 redox signaling cascades, B cells (B220, CD19, and IgD), and T cells (CD3, CD4, CD8, and IL-2, with an exception of IL-17 and TGF-β) to activate anti-inflammatory cytokines (IL-4 and IL-10) and immunoglobulins (IgA, IgG, and IgM) in geese. In conclusion, ryegrass-improved reprogramming of the gut microbiota restored the spleen functions by attenuating LPS-induced oxidative stress and systemic inflammation through the gut-microbiota-spleen axis in geese.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Sen Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| | - Boshuai Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| | - Jiakuan Niu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengqi Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ahsan Mustafa
- Department of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Defeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| | - Zhichang Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| | - Hao Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| | - Yalei Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| | - Yinghua Shi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou 450001, China
| |
Collapse
|
7
|
Zhao W, Chen Y, Tian Y, Wang Y, Du J, Ye X, Lu L, Sun C. Dietary supplementation with Dendrobium officinale leaves improves growth, antioxidant status, immune function, and gut health in broilers. Front Microbiol 2023; 14:1255894. [PMID: 37789853 PMCID: PMC10544969 DOI: 10.3389/fmicb.2023.1255894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Background The Dendrobium officinale leaves (DOL) is an underutilized by-product with a large biomass, which have been shown to exhibit immunomodulatory and antioxidant functions. The purpose of this research was to investigate the effects of DOL on broiler growth performance, antioxidant status, immune function, and gut health. Methods One hundred and ninety-two 1-day-old chicks were selected and divided into 4 groups at random, 6 replicates for each group and 8 in each. Chicks were given a basal diet supplemented with different amounts of DOL: 0% (control group, NC), 1% (LD), 5% (MD), or 10% (HD). During the feeding trial (70 days), broiler body weight, feed intake, and residual feeding were recorded. On d 70, 12 broilers from each group were sampled for serum antioxidant and immune indexes measurement, intestinal morphological analysis, as well as 16S rRNA sequencing of cecal contents and short-chain fatty acid (SCFA) determination. Results In comparison to the NC group, the LD group had greater final body weight and average daily gain, and a lower feed conversion ratio (p < 0.05, d 1 to 70). However, in MD group, no significant change of growth performance occurred (p > 0.05). Furthermore, DOL supplementation significantly improved the levels of serum total antioxidant capacity, glutathione peroxidase, superoxide dismutase, and catalase, but reduced the level of malondialdehyde (p < 0.05). Higher serum immunoglobulin A (IgA) content and lower cytokine interleukin-2 (IL-2) and IL-6 contents were observed in DOL-fed broilers than in control chickens (p <0.05). Compared to the NC group, duodenal villus height (VH) and villus height-to-crypt depth (VH:CD) ratio were considerably higher in three DOL supplementation groups (p < 0.05). Further, 16S rRNA sequencing analysis revealed that DOL increased the diversity and the relative abundance of cecal bacteria, particularly helpful microbes like Faecalibacterium, Lactobacillus, and Oscillospira, which improved the production of SCFA in cecal content. According to Spearman correlation analysis, the increased butyric acid and acetic acid concentrations were positively related to serum antioxidant enzyme activities (T-AOC and GSH-Px) and immunoglobulin M (IgM) level (p < 0.05). Conclusion Overall, the current study demonstrated that supplementing the dies with DOL in appropriate doses could enhance growth performance, antioxidant capacity, and immune response, as well as gut health by promoting intestinal integrity and modulating the cecal microbiota in broilers. Our research may serve as a preliminary foundation for the future development and application of DOL as feed additive in broiler chicken diets.
Collapse
Affiliation(s)
- Wanqiu Zhao
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Yunzhu Wang
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Jianke Du
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Xuan Ye
- Zhejiang Xianju Breeding Chicken Farm, Xianju, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| |
Collapse
|
8
|
Yang C, Das Q, Rehman MA, Yin X, Shay J, Gauthier M, Lau CHF, Ross K, Diarra MS. Microbiome of Ceca from Broiler Chicken Vaccinated or Not against Coccidiosis and Fed Berry Pomaces. Microorganisms 2023; 11:1184. [PMID: 37317158 DOI: 10.3390/microorganisms11051184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
American cranberry (Vaccinium macrocarpon) and lowbush/wild blueberry (V. angustifolium) pomace are polyphenol-rich products having potentially beneficial effects in broiler chickens. This study investigated the cecal microbiome of broiler-vaccinated or non-vaccinated birds against coccidiosis. Birds in each of the two groups (vaccinated or non-vaccinated) were fed a basal non-supplemented diet (NC), a basal diet supplemented with bacitracin (BAC), American cranberry (CP), and lowbush blueberry (BP) pomace alone or in combination (CP + BP). At 21 days of age, cecal DNA samples were extracted and analyzed using both whole-metagenome shotgun sequencing and targeted-resistome sequencing approaches. Ceca from vaccinated birds showed a lower abundance of Lactobacillus and a higher abundance of Escherichia coli than non-vaccinated birds (p < 0.05). The highest and lowest abundance of L. crispatus and E. coli, respectively, were observed in birds fed CP, BP, and CP + BP compared to those from NC or BAC treatments (p < 0.05). Coccidiosis vaccination affected the abundance of virulence genes (VGs) related to adherence, flagella, iron utilization, and secretion system. Toxin-related genes were observed in vaccinated birds (p < 0.05) in general, with less prevalence in birds fed CP, BP, and CP + BP than NC and BAC (p < 0.05). More than 75 antimicrobial resistance genes (ARGs) detected by the shotgun metagenomics sequencing were impacted by vaccination. Ceca from birds fed CP, BP, and CP + BP showed the lowest (p < 0.05) abundances of ARGs related to multi-drug efflux pumps, modifying/hydrolyzing enzyme and target-mediated mutation, when compared to ceca from birds fed BAC. Targeted metagenomics showed that resistome from BP treatment was distant to other groups for antimicrobials, such as aminoglycosides (p < 0.05). Significant differences in the richness were observed between the vaccinated and non-vaccinated groups for aminoglycosides, β-lactams, lincosamides, and trimethoprim resistance genes (p < 0.05). Overall, this study demonstrated that dietary berry pomaces and coccidiosis vaccination significantly impacted cecal microbiota, virulome, resistome, and metabolic pathways in broiler chickens.
Collapse
Affiliation(s)
- Chongwu Yang
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - Quail Das
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - Muhammad A Rehman
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - Xianhua Yin
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - Julie Shay
- Ottawa Laboratory (Carling) Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1Y 4K7, Canada
| | - Martin Gauthier
- Biological Informatics Centre of Excellence, AAFC, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Calvin Ho-Fung Lau
- Ottawa Laboratory (Carling) Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1Y 4K7, Canada
| | - Kelly Ross
- Summerland Research and Development Center, AAFC, Summerland, BC V0H 1Z0, Canada
| | - Moussa S Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| |
Collapse
|
9
|
Fruci M, Kithama M, Kiarie EG, Shao S, Liu H, Topp E, Diarra MS. Effects of partial or complete replacement of soybean meal with commercial black soldier fly larvae (Hermetia illucens) meal on growth performance, cecal short chain fatty acids, and excreta metabolome of broiler chickens. Poult Sci 2023; 102:102463. [PMID: 36758368 PMCID: PMC9941379 DOI: 10.1016/j.psj.2022.102463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 01/08/2023] Open
Abstract
Black soldier fly larvae meal (BSFLM) is receiving great attention as a rich source of protein and antimicrobials for poultry. Therefore, we evaluated the effects of partially or completely replacing soybean meal (SBM) with commercial BSFLM on growth performance, tibia traits, cecal short chain fatty acid (SCFA) concentrations, and excreta metabolomes in broiler chickens (Gallus gallus domesticus). A total of 480 day-old male Ross × Ross 708 chicks were assigned to 6 diets (8 replicates/diet): a basal corn-SBM diet with in-feed bacitracin methylene disalicylate (BMD), a corn-SBM diet without BMD (0% BSFLM), and four diets in which the SBM was substituted with 12.5, 25, 50, and 100% BSFLM. Body weight (BW), feed intake (FI) and cumulative feed conversion ratio (cFCR) were monitored on days 14, 28, and 35. Cecal SCFA levels were determined on days 14, 28, and 35. Tibia traits and excreta metabolomes were determined on day (d) 35. On d14, birds fed 12.5 and 25% BSFLM had a similar BW, FI, and cFCR as birds fed BMD (P > 0.05). On d 35, birds fed 12.5% BSFLM had a similar BW, FI and cFCR as birds fed BMD or 0% BSFLM (P > 0.05). For each phase, birds fed 100% BSFLM had a lower BW, FI and higher cFCR than birds fed BMD or 0% BSFLM (P < 0.05). On d 35, BW decreased linearly, quadratically, and cubically with increasing levels of BSFLM (P < 0.01). Overall (d 0-35), BSFLM linearly, quadratically, and cubically decreased FI and quadratically and cubically increased cFCR (P < 0.01). Quadratic responses were observed for tibia fresh weight (P = 0.049) and ash content (P = 0.022). BSFLM did not impact cecal SCFAs levels. The excreta metabolome of birds fed 100% BSFLM clustered independently from all other groups and exhibited greater levels of putatively identified methionine, lysine, valine, glutamine, histidine and lower levels of arginine as compared to all diets. Taken together, substitution of SBM with ≤25% of BSFLM in the starter phase may be used as an alternative to BMD.
Collapse
Affiliation(s)
- Michael Fruci
- London Research and Development Centre, Agriculture and Agri-Food Canada, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.
| | - Munene Kithama
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada; Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Huaizhi Liu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Sosnówka-Czajka E, Skomorucha I, Obremski K, Wojtacha P. Performance and meat quality of broiler chickens fed with the addition of dried fruit pomace. Poult Sci 2023; 102:102631. [PMID: 37004287 PMCID: PMC10091109 DOI: 10.1016/j.psj.2023.102631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of the study was to evaluate the addition to feed of 3% of dried pomace from apples (AP), cherries (CH), and strawberries (ST) on the production results and meat quality of broiler chickens. Birds fed only the standard mixture for broiler chickens were the control group (CO). On d 42, a lower body weight of broiler chickens from group ST was noted compared to birds from group CO at P = 0.032. When feed conversion per 1 kg of weight gain and loss of broiler chickens was assessed, no differences between groups were shown (P ˃ 0.05). The leg muscles of AP and CH broiler chickens had less drip loss compared to the control group at P = 0.036. For other quality parameters of breast and leg muscles, no differences between groups were noted (P ˃ 0.05). It was found that the addition of dried apple and cherry pomace to the feed in the amount of 3% did not adversely affect the production results and the quality of broiler chicken meat. On the other hand, the addition to feed of dried pomace from strawberries reduced the final body weight of experimental birds. The most interesting additive turned out to be dried cherry pomace, because it improved slaughter efficiency, contributed to reducing drip loss of leg muscles, and influenced the lower level of crude fat in the breast muscles. However, further research should be carried out on the optimal concentration of CH in the diet of fattening chickens in order to achieve the most beneficial results.
Collapse
|
11
|
Mak PHW, Rehman MA, Kiarie EG, Topp E, Diarra MS. Production systems and important antimicrobial resistant-pathogenic bacteria in poultry: a review. J Anim Sci Biotechnol 2022; 13:148. [PMID: 36514172 DOI: 10.1186/s40104-022-00786-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022] Open
Abstract
Economic losses and market constraints caused by bacterial diseases such as colibacillosis due to avian pathogenic Escherichia coli and necrotic enteritis due to Clostridium perfringens remain major problems for poultry producers, despite substantial efforts in prevention and control. Antibiotics have been used not only for the treatment and prevention of such diseases, but also for growth promotion. Consequently, these practices have been linked to the selection and spread of antimicrobial resistant bacteria which constitute a significant global threat to humans, animals, and the environment. To break down the antimicrobial resistance (AMR), poultry producers are restricting the antimicrobial use (AMU) while adopting the antibiotic-free (ABF) and organic production practices to satisfy consumers' demands. However, it is not well understood how ABF and organic poultry production practices influence AMR profiles in the poultry gut microbiome. Various Gram-negative (Salmonella enterica serovars, Campylobacter jejuni/coli, E. coli) and Gram-positive (Enterococcus spp., Staphylococcus spp. and C. perfringens) bacteria harboring multiple AMR determinants have been reported in poultry including organically- and ABF-raised chickens. In this review, we discussed major poultry production systems (conventional, ABF and organic) and their impacts on AMR in some potential pathogenic Gram-negative and Gram-positive bacteria which could allow identifying issues and opportunities to develop efficient and safe production practices in controlling pathogens.
Collapse
Affiliation(s)
- Philip H W Mak
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada.,Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Muhammad Attiq Rehman
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Edward Topp
- London Research and Development Center, AAFC, London, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada.
| |
Collapse
|
12
|
NMR-Based Metabolomics to Decipher the Molecular Mechanisms in the Action of Gut-Modulating Foods. Foods 2022; 11:foods11172707. [PMID: 36076892 PMCID: PMC9455659 DOI: 10.3390/foods11172707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022] Open
Abstract
Metabolomics deals with uncovering and characterizing metabolites present in a biological system, and is a leading omics discipline as it provides the nearest link to the biological phenotype. Within food and nutrition, metabolomics applied to fecal samples and bio-fluids has become an important tool to obtain insight into how food and food components may exert gut-modulating effects. This review aims to highlight how nuclear magnetic resonance (NMR)-based metabolomics in food and nutrition science may help us get beyond where we are today in understanding foods’ inherent, or added, biofunctionalities in relation to gut health.
Collapse
|
13
|
Erinle TJ, Adewole DI. Fruit pomaces-their nutrient and bioactive components, effects on growth and health of poultry species, and possible optimization techniques. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:357-377. [PMID: 35600557 PMCID: PMC9110891 DOI: 10.1016/j.aninu.2021.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
The ever-growing human population, coupled with the exigent need to meet the increasing demand for poultry meat and egg, has put the onus on poultry nutritionists and farmers to identify alternative feed ingredients that could assure the least-cost feed formulation. In addition, the public desire for non-antibiotic-treated poultry products has also necessitated the ultimate search for potent antibiotic alternatives for use in poultry production. While some identified alternatives are promising, their cost implications and technical know-how requirements may discourage their ease of adoption in poultry. The use of plants and/or their by-products, like fruit pomaces, present a pocket-friendly advantage and as a result, are gaining much interest. This is traceable to their rich phytochemical profile, nutritional composition, ready availability, and relatively cheap cost. The fruit juice and wine pressing industries generate a plethora of fruit wastes annually. Interestingly, fruit pomaces contain appreciable dietary fibre, protein, and phenolic compounds, and thus, their adoption could serve the poultry industry in dual capacities including as substitutes to antibiotics and some conventional feedstuff. Thus, there is a possibility to reduce fruit wastes produced and feed-cost in poultry farming from environmental and economical standpoints, respectively. This review seeks to provide reinforcing evidence on the applicability and impact of fruit pomaces in poultry nutrition.
Collapse
Affiliation(s)
- Taiwo J Erinle
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Deborah I Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| |
Collapse
|
14
|
Zang S, Lv LX, Liu CF, Zhang P, Li C, Wang JX. Metabolomic Investigation of Ultraviolet Ray-Inactivated White Spot Syndrome Virus-Induced Trained Immunity in Marsupenaeus japonicus. Front Immunol 2022; 13:885782. [PMID: 35693782 PMCID: PMC9178177 DOI: 10.3389/fimmu.2022.885782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Trained immunity is driven by metabolism and epigenetics in innate immune cells in mammals. The phenomenon of trained immunity has been identified in invertebrates, including shrimp, but the underlying mechanisms remain unclear. To elucidate mechanisms of trained immunity in shrimp, the metabolomic changes in hemolymph of Marsupenaeus japonicus trained by the UV-inactivated white spot syndrome virus (UV-WSSV) were analyzed using tandem gas chromatography-mass/mass spectrometry. The metabolomic profiles of shrimp trained with UV-WSSV followed WSSV infection showed significant differences comparison with the control groups, PBS injection followed WSSV infection. 16 differential metabolites in total of 154 metabolites were identified, including D-fructose-6-phosphate, D-glucose-6-phosphate, and D-fructose-6-phosphate, and metabolic pathways, glycolysis, pentose phosphate pathway, and AMPK signaling pathway were enriched in the UV-WSSV trained groups. Further study found that histone monomethylation and trimethylation at H3K4 (H3K4me1 and H3K4me3) were involved in the trained immunity. Our data suggest that the UV-WSSV induced trained immunity leads to metabolism reprogramming in the shrimp and provide insights for WSSV control in shrimp aquaculture.
Collapse
Affiliation(s)
- Shaoqing Zang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Li-Xia Lv
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Chen-Fei Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Peng Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
15
|
Application of metabolomics to decipher the role of bioactive compounds in plant and animal foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
The Effects of Magnolol Supplementation on Growth Performance, Meat Quality, Oxidative Capacity, and Intestinal Microbiota in Broilers. Poult Sci 2022; 101:101722. [PMID: 35196587 PMCID: PMC8866717 DOI: 10.1016/j.psj.2022.101722] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/22/2021] [Accepted: 12/11/2021] [Indexed: 12/25/2022] Open
|
17
|
Effect of organic acids-essential oils blend and oat fiber combination on broiler chicken growth performance, blood parameters, and intestinal health. ACTA ACUST UNITED AC 2021; 7:1039-1051. [PMID: 34738034 PMCID: PMC8546314 DOI: 10.1016/j.aninu.2021.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/20/2022]
Abstract
This study evaluated the effect of organic acids-essential oils blend with or without oat hulls (OH) on growth performance, organ weights, blood parameters, gut morphology, microbiota, and short-chain fatty acids (SCFA) in broiler chickens. Day-old broiler chickens were randomly allocated to 4 dietary treatments consisting of 1) a corn-soybean meal-wheat based diet (BAS), 2) BAS + 0.05% bacitracin methylene disalicylate (BMD), 3) BAS + protected organic acids-essential oils at 300 g/1,000 kg of feed (OE), and 4) BAS + protected organic acids-essential oils at 300 g/1,000 kg of feed + 3% OH (OEOH), in 8 replicate groups. Feeding was in starter (d 0 to 14), grower (d 14 to 24), and finisher (d 24 to 36) phases. Body weight (BW), feed intake (FI), feed conversion ratio (FCR), and mortality were determined weekly. On d 36, 8 chickens per treatment were sampled for blood biochemistry, organ weights, cecal SCFA production, and microbiota. Treatments had no effect on FI and FCR at all phases. Both OE and OEOH treatments reduced (P < 0.001) the body weight gain of birds at the starter phase. Birds fed the OEOH treatment had higher (P < 0.001) gizzard weight, while those offered the BMD diet showed a tendency (P = 0.08) to have higher cecal weight. Birds in the OEOH treatment recorded increased ileal villus height and villus height-to-crypt depth ratio, as well as reduced duodenal crypt depth, while birds in the OE treatment had increased jejunal villus height and villus height-to-crypt depth ratio. Both OEOH and OE treatments increased the number of goblet cells produced in the duodenum and jejunum. Treatments had no effect on SCFA concentrations. Birds in the OE treatment recorded the lowest concentration of blood urea (P = 0.05) and cholesterol (P < 0.05). Both OE and OEOH treatments increased (P < 0.05) the relative abundance of potentially beneficial bacteria in the genus Firmicutes_unclassified, Ruminococcus, Turicibacter, and Erysipelotrichaceae_unclassified, while reducing (P < 0.001) the relative abundance of potentially harmful Coprobacillus. Conclusively, both protected organic acids-essential oils blend and its combination with oat fibers show potential as tools to achieve antibiotics reduction in broiler production.
Collapse
|
18
|
Chen F, Zhang H, Du E, Fan Q, Zhao N, Jin F, Zhang W, Guo W, Huang S, Wei J. Supplemental magnolol or honokiol attenuates adverse effects in broilers infected with Salmonella pullorum by modulating mucosal gene expression and the gut microbiota. J Anim Sci Biotechnol 2021; 12:87. [PMID: 34365974 PMCID: PMC8351427 DOI: 10.1186/s40104-021-00611-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Salmonella pullorum is one of the most harmful pathogens to avian species. Magnolol and honokiol, natural compounds extracted from Magnolia officinalis, exerts anti-inflammatory, anti-oxidant and antibacterial activities. This study was conducted to evaluate the effects of dietary supplemental magnolol and honokiol in broilers infected with S. pullorum. A total of 360 one-day-old broilers were selected and randomly divided into four groups with six replicates: the negative control group (CTL), S. pullorum-infected group (SP), and the S. pullorum-infected group supplemented with 300 mg/kg honokiol (SPH) or magnolol (SPM). RESULTS The results showed that challenging with S. pullorum impaired growth performance in broilers, as indicated by the observed decreases in body weight (P < 0.05) and average daily gains (P < 0.05), along with increased spleen (P < 0.01) and bursa of Fabricus weights (P < 0.05), serum globulin contents, and the decreased intestine villus height and villus/crypt ratios (P < 0.05). Notably, supplemental magnolol and honokiol attenuated these adverse changes, and the effects of magnolol were better than those of honokiol. Therefore, we performed RNA-Seq in ileum tissues and 16S rRNA gene sequencing of ileum bacteria. Our analysis revealed that magnolol increased the α-diversity (observed species, Chao1, ACE, and PD whole tree) and β-diversity of the ileum bacteria (P < 0.05). In addition, magnolol supplementation increased the abundance of Lactobacillus (P < 0.01) and decreased unidentified Cyanobacteria (P < 0.05) both at d 14 and d 21. Further study confirmed that differentially expressed genes induced by magnolol and honokiol supplementation enriched in cytokine-cytokine receptor interactions, in the intestinal immune network for IgA production, and in the cell adhesion molecule pathways. CONCLUSIONS Supplemental magnolol and honokiol alleviated S. pullorum-induced impairments in growth performance, and the effect of magnolol was better than that of honokiol, which could be partially due to magnolol's ability to improve the intestinal microbial and mucosal barrier.
Collapse
Affiliation(s)
- Fang Chen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Wuhan, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Encun Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.
| | - Qiwen Fan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Na Zhao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Feng Jin
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wanzheng Guo
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaowen Huang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
19
|
Das Q, Shay J, Gauthier M, Yin X, Hasted TL, Ross K, Julien C, Yacini H, Kennes YM, Warriner K, Marcone MF, Diarra MS. Effects of Vaccination Against Coccidiosis on Gut Microbiota and Immunity in Broiler Fed Bacitracin and Berry Pomace. Front Immunol 2021; 12:621803. [PMID: 34149685 PMCID: PMC8213364 DOI: 10.3389/fimmu.2021.621803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird's performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non-vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Julie Shay
- Ottawa Laboratory (Carling) - Research and Development, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Martin Gauthier
- Biological Informatics Centre of Excellence, AAFC, Saint-Hyacinthe, QC, Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Teri-Lyn Hasted
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Kelly Ross
- Summerland Research and Development Centre, AAFC, Summerland, BC, Canada
| | - Carl Julien
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Hassina Yacini
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Yan Martel Kennes
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| |
Collapse
|
20
|
Hasted TL, Sharif S, Boerlin P, Diarra MS. Immunostimulatory Potential of Fruits and Their Extracts in Poultry. Front Immunol 2021; 12:641696. [PMID: 34079540 PMCID: PMC8165432 DOI: 10.3389/fimmu.2021.641696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
The impact of antibiotic use for growth promotion in livestock and poultry production on the rise of antimicrobial resistance (AMR) in bacteria led to the ban of this practice in the European Union in 2006 and a restriction of antimicrobial use (AMU) in animal agriculture in Canada and the United States of America. There is a high risk of infectious diseases such as necrotic enteritis due to Clostridium perfringens, and colibacillosis due to avian pathogenic Escherichia coli in antimicrobial-free broiler chickens. Thus, efficient and cost-effective methods for reducing AMU, maintaining good poultry health and reducing public health risks (food safety) are urgently needed for poultry production. Several alternative agents, including plant-derived polyphenolic compounds, have been investigated for their potential to prevent and control diseases through increasing poultry immunity. Many studies in humans reported that plant flavonoids could modulate the immune system by decreasing production of pro-inflammatory cytokines, T-cell activation, and proliferation. Fruits, especially berries, are excellent sources of flavonoids while being rich in nutrients and other functionally important molecules (vitamins and minerals). Thus, fruit byproducts or wastes could be important resources for value-added applications in poultry production. In the context of the circular economy and waste reduction, this review summarizes observed effects of fruit wastes/extracts on the general health and the immunity of poultry.
Collapse
Affiliation(s)
- Teri-Lyn Hasted
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada.,Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Moussa Sory Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
21
|
Choice of Commercial DNA Extraction Method Does Not Affect 16S Sequencing Outcomes in Cloacal Swabs. Animals (Basel) 2021; 11:ani11051372. [PMID: 34065976 PMCID: PMC8151189 DOI: 10.3390/ani11051372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The cloacal anatomy is unique because the fecal, urinary, and reproductive tracts converge into one orifice. Therefore, sampling for microbiome research can be difficult in birds, especially in agricultural production settings where it may not be feasible to sample the intestines, and cloacal swabs are often used. There is a need to evaluate laboratory methods for 16S rRNA sequencing in cloacal swab samples to ensure reproducible and trustworthy downstream results. We compared four DNA extraction methods from two commercially available magnetic-based DNA extraction kits. Mock communities and negative controls were included for each method and subjected to 16S rRNA sequencing. While extraction quality and yield differed between each extraction method, overall sequencing results were not affected, including alpha and beta diversity. Positive and negative controls are an important aspect of microbiome science and our findings lend guidance to future microbiome research in poultry. Abstract As the applications of microbiome science in agriculture expand, laboratory methods should be constantly evaluated to ensure optimization and reliability of downstream results. Most animal microbiome research uses fecal samples or rectal swabs for profiling the gut bacterial community; however, in birds, this is difficult given the unique anatomy of the cloaca where the fecal, urinary, and reproductive tracts converge into one orifice. Therefore, avian gut microbiomes are usually sampled from cloacal swabs, creating a need to evaluate sample preparation methods to optimize 16S sequencing. We compared four different DNA extraction methods from two commercially available kits on cloacal swabs from 10 adult commercial laying hens and included mock communities and negative controls, which were then subjected to 16S rRNA amplicon sequencing. Extracted DNA yield and quality, diversity analyses, and contaminants were assessed. Differences in DNA quality and quantity were observed, and all methods needed further purification for optimal sequencing, suggesting contaminants due to cloacal contents, method reagents, and/or environmental factors. However, no differences were observed in alpha or beta diversity between methods. Importantly, multiple bacterial contaminants were detected in each mock community and negative control, indicating the prevalence of laboratory and handling contamination as well as method-specific reagent contamination. We found that although the extraction methods resulted in different extraction quality and yield, overall sequencing results were not affected, and we did not identify any method that would be an inappropriate choice in extracting DNA from cloacal swabs for 16S rRNA sequencing. Overall, our results highlight the need for careful consideration of positive and negative controls in addition to DNA isolation method and lend guidance to future microbiome research in poultry.
Collapse
|
22
|
Bean-Hodgins L, Kiarie EG. Mandated restrictions on the use of medically important antibiotics in broiler chicken production in Canada: implications, emerging challenges, and opportunities for bolstering gastrointestinal function and health– A review. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2021-0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chicken Farmers of Canada has been progressively phasing out prophylactic use of antibiotics in broiler chicken production. Consequently, hatcheries, veterinarians, and nutritionists have been mandated to contend with less reliance on use of preventive antibiotics. A topical concern is the increased risk of proliferation of enteric pathogens leading to poor performance, increased mortality and compromised welfare. Moreover, the gut harbors several taxa such as Campylobacter and Salmonella capable of causing significant illnesses in humans via contaminated poultry products. This has created opportunity for research and development of dietary strategies designed to modulate gastrointestinal environment for enhanced performance and food safety. Albeit with inconsistent responses, literature data suggests that dietary strategies such as feed enzymes, probiotics/prebiotics and phytogenic feed additives can bolster gut health and function in broiler chickens. However, much of the efficacy data was generated at controlled research settings that vary significantly with the complex commercial broiler production operations due to variation in dietary, health and environmental conditions. This review will summarize implications of mandated restrictions on the preventative use of antibiotics and emerging Canadian broiler production programs to meet processor specifications. Challenges and opportunities for integrating alternative dietary strategies in commercial broiler production settings will be highlighted.
Collapse
Affiliation(s)
- Lisa Bean-Hodgins
- New-Life Mills, A division of Parrish & Heimbecker, Cambridge , Ontario, Canada
- University of Guelph, 3653, Department of Animal Biosciences, Guelph, Ontario, Canada
| | - Elijah G. Kiarie
- University of Guelph, Department of Animal Biosciences, 50 Stone Road East, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
23
|
Xu Q, Si W, Mba OI, Sienkiewicz O, Ngadi M, Ross K, Kithama M, Kiarie EG, Kennes YM, Diarra MS, Zhao X. Research Note: Effects of supplementing cranberry and blueberry pomaces on meat quality and antioxidative capacity in broilers. Poult Sci 2020; 100:100900. [PMID: 33518303 PMCID: PMC7936115 DOI: 10.1016/j.psj.2020.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
Abstract
Cranberry and blueberry pomaces are rich in antimicrobial and antioxidant compounds. They have been identified as potential antibiotic alternatives in animal feed, but their antioxidative capacity for maintaining or improving the meat quality in broilers is not well documented. This study was to determine whether cranberry and wild blueberry pomaces in diets could positively influence the broiler meat quality. A total of 3,150 broilers were randomly allotted to 10 dietary treatments with bacitracin methylene disalicylate, wild cranberry pomace (CRP) (0.5 and 1% of the basal diet), and wild blueberry pomace (BLP) (0.5 and 1% of the basal diet) alone or in combination with a mixture of feed enzymes. The results showed that supplementation with the CRP or BLP did not affect meat lightness and yellowness, while the deeper red meat (higher a∗ values) was observed in the birds receiving the diet containing 0.5% BLP against those in CRP treatments (P = 0.015). In addition, inclusion of CRP or BLP in the diet did not change meat texture and proximate composition (moisture, protein, fat, ash) irrespective of pomace concentrations. Although there were no obvious effects of CRP or BLP supplementation on meat antioxidant capacity and the incidence of myopathies (P > 0.05), the upward trend of antioxidant capacity and less severity of woody breast were observed in birds fed with 0.5% CRP. Furthermore, supplementation of 0.5 or 1.0% CRP without the enzyme resulted in higher mRNA levers of Nrf, Gpx2, and HO-1 (P < 0.05). Taken together, 0.5% CRP supplementation without the enzyme could potentially maintain meat quality and attenuate the severity of woody breast.
Collapse
Affiliation(s)
- Qi Xu
- Department of Animal Science, McGill University, Montreal, Quebec, Canada; Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Si
- Department of Animal Science, McGill University, Montreal, Quebec, Canada
| | - Ogan Iheanacho Mba
- Department of Bioresource Engineering, McGill University, Montreal, Quebec, Canada
| | | | - Michael Ngadi
- Department of Bioresource Engineering, McGill University, Montreal, Quebec, Canada
| | - Kelly Ross
- Summerland Research and Development Center, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Munene Kithama
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada; Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Yan-Martel Kennes
- Centre de Recherche en Sciences Animales de Deschambault, Deschambault, Quebec, Canada
| | - Moussa S Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Ross KA, DeLury N, Fukumoto L, Diarra MS. Dried berry pomace as a source of high value-added bioproduct: drying kinetics and bioactive quality indices. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1847144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- K. A. Ross
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| | - N. DeLury
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| | - L. Fukumoto
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| | - M. S. Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
25
|
Das Q, Tang J, Yin X, Ross K, Warriner K, Marcone MF, Diarra MS. Organic cranberry pomace and its ethanolic extractives as feed supplement in broiler: impacts on serum Ig titers, liver and bursal immunity. Poult Sci 2020; 100:517-526. [PMID: 33518104 PMCID: PMC7858021 DOI: 10.1016/j.psj.2020.09.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022] Open
Abstract
With the pressure to reduce antibiotics use in poultry production, cost-effective alternative products need to be developed to enhance the bird's immunity. The present study evaluated the efficacy of cranberry fruit by-products to modulate immunity in broiler chickens. Broiler Cobb 500 chicks were fed a control basal diet, basal diet supplemented with bacitracin (BACI, 55 ppm), cranberry pomace at 1% and 2% (CP2), or cranberry pomace ethanolic extract at 150 and 300 ppm (COH300) for 30 d. Blood sera were analyzed at days 21 and 28 of age for Ig levels by ELISA. The innate and adaptive immune-related gene expression levels in the liver and bursa of Fabricius were investigated at 21 d of age by quantitative polymerase chain reaction arrays. At day 21, the highest IgY level was found in the blood serum of the CP2-fed birds. In the liver, 13 of the 22 differentially expressed genes were downregulated across all treatments compared with the control. Expression of genes belonging to innate immunity such as caspase 1 apoptosis–related cysteine peptidase, chemokine receptor 5, interferon gamma, myeloid differentiation primary response gene 88, and Toll-like receptor 3 were significantly downregulated mainly in BACI- and COH300-fed birds. In the bursa, 5 of 9 genes associated with the innate immunity were differentially expressed. The expression of anti-inflammatory IL-10 gene was upregulated in all treatment groups in bursa compared with the control. The expression of transferrin gene was significantly upregulated in livers of birds fed COH300 and in bursa of birds fed BACI, indicating feeding practices and organ-dependant modulation of this gene in broiler. Overall results of this study showed that cranberry product feed supplementation modulated the innate immune and suppressed proinflammatory cytokines in broilers, providing a platform for future investigations to develop berry products in poultry feeding.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Guelph, Ontario Canada N1G 2W1; Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Joshua Tang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Kelly Ross
- Summerland Research and Development Centre, AAFC, Summerland, British Columbia, Canada V0H 1Z0
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9.
| |
Collapse
|
26
|
Iqbal Y, Cottrell JJ, Suleria HA, Dunshea FR. Gut Microbiota-Polyphenol Interactions in Chicken: A Review. Animals (Basel) 2020; 10:E1391. [PMID: 32796556 PMCID: PMC7460082 DOI: 10.3390/ani10081391] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract of the chicken harbors very complex and diverse microbial communities including both beneficial and harmful bacteria. However, a dynamic balance is generally maintained in such a way that beneficial bacteria predominate over harmful ones. Environmental factors can negatively affect this balance, resulting in harmful effects on the gut, declining health, and productivity. This means modulating changes in the chicken gut microbiota is an effective strategy to improve gut health and productivity. One strategy is using modified diets to favor the growth of beneficial bacteria and a key candidate are polyphenols, which have strong antioxidant potential and established health benefits. The gut microbiota-polyphenol interactions are of vital importance in their effects on the gut microbiota modulation because it affects not only the composition of gut bacteria but also improves bioavailability of polyphenols through generation of more bioactive metabolites enhancing their health effects on morphology and composition of the gut microbiota. The object of this review is to improve the understanding of polyphenol interactions with the gut microbiota and highlights their potential role in modulation of the gut microbiota of chicken.
Collapse
Affiliation(s)
- Yasir Iqbal
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Jeremy J. Cottrell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|