1
|
Rinaldi V, Piscitelli F, Boari A, Verde R, Crisi PE, Bisogno T. Circulating Endocannabinoids in Canine Cutaneous Mast Cell Tumor. Animals (Basel) 2024; 14:2986. [PMID: 39457916 PMCID: PMC11503820 DOI: 10.3390/ani14202986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
A cutaneous mast cell tumor (cMCT) is among the most common tumors in dogs. Endocannabinoids (eCBs) belong to the endocannabinoid system (ECS), which involves also cannabinoid receptors and an enzymatic system of biosynthesis and degradation. In this study, plasma levels of N-arachidonoylethanolamine (AEA), 2-arachidonoylglycerol (2-AG), N-palmitoylethanolamine (PEA), and N-oleoylethanolamine (OEA) were evaluated in 17 dogs with MCTs of varying histological grades and clinical stages, as well as in a control group of 11 dogs. Dogs affected by cMCT had higher plasma levels of 2-AG (p = 0.0001) and lower levels of AEA (p = 0.0012) and PEA (p = 0.0075) compared to the control group, while no differences were observed at the OEA level between healthy and cMCT dogs (p = 0.9264). The ability of eCBs to help discriminate between healthy and cMCT dogs was interrogated through the area under the ROC curve (AUC). An accuracy of 0.98 (95% confidence interval [CI], 0.94-1.02) was found for 2-AG, of 0.85 (95% CI, 0.71-0.99) for AEA, and of 0.81% for PEA (95% CI, 0.64-0.69). Values > 52.75 pmol/mL for 2-AG showed 94% sensitivity and 90% specificity in distinguishing cMCT. This is the first study to demonstrate alterations in plasmatic levels of eCBs in dogs affected by MCTs, suggesting the significance of these biomarkers in the tumorigenic process and their potential use as biomarkers in the future.
Collapse
Affiliation(s)
- Valentina Rinaldi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, 64100 Teramo, Italy; (A.B.); (P.E.C.)
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry (ICB)-CNR, 34, 80078 Pozzuoli, Italy; (F.P.); (R.V.)
| | - Andrea Boari
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, 64100 Teramo, Italy; (A.B.); (P.E.C.)
| | - Roberta Verde
- Institute of Biomolecular Chemistry (ICB)-CNR, 34, 80078 Pozzuoli, Italy; (F.P.); (R.V.)
| | - Paolo Emidio Crisi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, 64100 Teramo, Italy; (A.B.); (P.E.C.)
| | - Tiziana Bisogno
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
2
|
Rinaldi V, Boari A, Ressel L, Bongiovanni L, Crisi PE, Cabibbo E, Finotello R. Expression of cannabinoid receptors CB1 and CB2 in canine cutaneous mast cell tumours. Res Vet Sci 2022; 152:530-536. [PMID: 36179546 DOI: 10.1016/j.rvsc.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Cannabinoid receptors (CB1 and CB2) belong to endocannabinoid system (ECS), which is also composed from endocannabinoids and the enzymatic systems involved in their biosynthesis and degradation. The expression of CB1 and CB2 have been previously identified in normal canine mast cell and in atopic dermatitis. Canine cutaneous mast cell tumours (cMCTs) are among the most common cutaneous neoplasms in dogs and have a highly variable clinical behaviour. Expression of CB1-CB2 was assessed by means of immunohistochemistry in thirty-seven dogs (from 2019 to 2021) with proven histological diagnosis of cMCT. Dogs were divided in two groups according to the Kiupel's grading system: high-grade (HG) cMCT and low-grade (LG) cMCT. A semiquantitative (score 0-3) and quantitative assessment of immunoreactivity (IR) was performed for each case. Our results show that there CB1 and CB2 are highly expressed in LG- cMCT, in contrast to HG- cMCT.
Collapse
Affiliation(s)
- Valentina Rinaldi
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Andrea Boari
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Lorenzo Ressel
- Department of Veterinary Anatomy Phisiology and Pathology, Institute of Infection, Veterinary and Ecological Science, Faculty of Health and life Science, University of Liverpool, Chester High Road, Neston CH64 7TE, United Kingdom
| | - Laura Bongiovanni
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Paolo Emidio Crisi
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Emanuele Cabibbo
- Clinica Veterinaria Jenner, VetPartners, Via Jenner 37, 43126 Parma, Italy
| | - Riccardo Finotello
- Department of Small Animal Clinical Science, Institute of Infection, Veterinary and Ecological Science, Faculty of Health and life Science, University of Liverpool, Chester High Road, Neston CH64 7TE, United Kingdom
| |
Collapse
|
3
|
Macronutrient Proportions and Fat Type Impact Ketogenicity and Shape the Circulating Lipidome in Dogs. Metabolites 2022; 12:metabo12070591. [PMID: 35888715 PMCID: PMC9324443 DOI: 10.3390/metabo12070591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Many physiological processes including ketogenesis are similar in dogs and humans, but there is little information available on the effect of carbohydrate restriction in dogs. Here, the ketogenicity and serum metabolic profiles of dogs were assessed after they had consumed high carbohydrate (HiCHO); high protein, low carbohydrate (PROT_LoCHO); or high fat, low carbohydrate (FAT_LoCHO) foods. Thirty-six dogs were fed HiCHO for 4 weeks, then randomized to PROT_LoCHO or FAT_LoCHO for 5 weeks. Dogs then crossed over to the other food for an additional 5 weeks. Generally, reduction of dietary carbohydrate by replacement with either protein or fat increased the energy required to maintain body weight, and fat had a greater effect. Postabsorptive energy availability derived mainly from glucose and triglycerides with HiCHO, from gluconeogenic amino acids and fatty acids with PROT_LoCHO, and from fatty acids and β-hydroxybutyrate with FAT_LoCHO. This study demonstrated that the reduction of carbohydrate in canine foods is potentially beneficial to dogs based on improvements in metabolism and supports the use of low-carbohydrate foods as safe and effective for healthy adult dogs.
Collapse
|
4
|
Hay JK, Hocker SE, Monteith G, Woods JP. Circulating Endocannabinoids in Canine Multicentric Lymphoma Patients. Front Vet Sci 2022; 9:828095. [PMID: 35242839 PMCID: PMC8887993 DOI: 10.3389/fvets.2022.828095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 12/22/2022] Open
Abstract
The endocannabinoid system is increasingly being implicated in the pathogenesis and progression of various human cancers. Specifically, increased levels of 2-arachidonoylglycerol (2-AG) and oleoythanolamide (OEA) have been demonstrated in human diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL) patients, respectively. The objectives of this paper were to compare 2-AG, OEA, N-arachidonoylethanolamine (AEA), and palmitoylethanolamide (PEA) levels between dogs with multicentric lymphoma and healthy control dogs. In addition, evaluate 2-AG, OEA, AEA, and PEA levels as biomarkers for progression free interval (PFI) and overall survival time (OST) in the dogs with lymphoma. The study consisted of 26 dogs with multicentric B cell lymphoma, 14 dogs with multicentric T cell lymphoma, and 12 healthy control dogs. Serum 2-AG, OEA, AEA, and PEA levels were measured using liquid chromatography combined with tandem mass spectrometry (LC—MS/MS) in dogs with lymphoma and in healthy dogs. OEA, AEA, and PEA levels were significantly elevated in dogs with lymphoma compared to healthy controls (p < 0.05). Total AG was significantly higher in healthy control dogs (p = 0.049). There was no significant difference between dogs with B cell and T cell lymphoma for any of the measured endocannabinoids. Elevated PEA was significantly associated with decreased PFI (p = 0.04) in dogs with lymphoma with a hazards ratio of 1.816 [95% Confidence Interval (CI): 1.020–3.232]. Overall, dogs with lymphoma have elevated levels of OEA, AEA, and PEA. PEA levels have the potential to be a prognostic biomarker.
Collapse
Affiliation(s)
- Jennifer K. Hay
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Samuel E. Hocker
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- *Correspondence: Samuel E. Hocker
| | - Gabrielle Monteith
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - J. Paul Woods
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Schiano Moriello A, Di Marzo V, Petrosino S. Mutual Links between the Endocannabinoidome and the Gut Microbiome, with Special Reference to Companion Animals: A Nutritional Viewpoint. Animals (Basel) 2022; 12:ani12030348. [PMID: 35158670 PMCID: PMC8833664 DOI: 10.3390/ani12030348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 12/07/2022] Open
Abstract
There is growing evidence that perturbation of the gut microbiome, known as “dysbiosis”, is associated with the pathogenesis of human and veterinary diseases that are not restricted to the gastrointestinal tract. In this regard, recent studies have demonstrated that dysbiosis is linked to the pathogenesis of central neuroinflammatory disorders, supporting the existence of the so-called microbiome-gut-brain axis. The endocannabinoid system is a recently recognized lipid signaling system and termed endocannabinoidome monitoring a variety of body responses. Accumulating evidence demonstrates that a profound link exists between the gut microbiome and the endocannabinoidome, with mutual interactions controlling intestinal homeostasis, energy metabolism and neuroinflammatory responses during physiological conditions. In the present review, we summarize the latest data on the microbiome-endocannabinoidome mutual link in health and disease, focalizing the attention on gut dysbiosis and/or altered endocannabinoidome tone that may distort the bidirectional crosstalk between these two complex systems, thus leading to gastrointestinal and metabolic diseases (e.g., idiopathic inflammation, chronic enteropathies and obesity) as well as neuroinflammatory disorders (e.g., neuropathic pain and depression). We also briefly discuss the novel possible dietary interventions based not only on probiotics and/or prebiotics, but also, and most importantly, on endocannabinoid-like modulators (e.g., palmitoylethanolamide) for intestinal health and beyond.
Collapse
Affiliation(s)
- Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy; (A.S.M.); (V.D.M.)
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy; (A.S.M.); (V.D.M.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Centre NUTRISS, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Quebéc City, QC G1V 4G5, Canada
| | - Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy; (A.S.M.); (V.D.M.)
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
- Correspondence:
| |
Collapse
|
6
|
The Fatty Acid-Based Erythrocyte Membrane Lipidome in Dogs with Chronic Enteropathy. Animals (Basel) 2021; 11:ani11092604. [PMID: 34573570 PMCID: PMC8469057 DOI: 10.3390/ani11092604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Canine chronic enteropathies (CEs) are inflammatory processes resulting from complex interplay between the mucosal immune system, intestinal microbiome, and dietary components in susceptible dogs. Fatty acids (FAs) play important roles in the regulation of physiologic and metabolic pathways and their role in inflammation seems to be dual, as they exhibit pro-inflammatory and anti-inflammatory functions. Analysis of red blood cell (RBC) membrane fatty acid profile represents a tool for assessing the quantity and quality of structural and functional molecular components. This study was aimed at comparing the FA membrane profile, determined by Gas Chromatography and relevant lipid parameter of 48 CE dogs compared with 68 healthy dogs. In CE patients, the levels of stearic (p < 0.0001), dihomo-gamma-linolenic, eicosapentaenoic (p = 0.02), and docosahexaenoic (p = 0.02) acids were significantly higher, and those of palmitic (p < 0.0001) and linoleic (p = 0.0006) acids were significantly lower. Non-responder dogs presented higher percentages of vaccenic acid (p = 0.007), compared to those of dogs that responded to diagnostic trials. These results suggest that lipidomic status may reflect the "gut health", and the non-invasive analysis of RBC membrane might have the potential to become a candidate biomarker in the evaluation of dogs affected by CE.
Collapse
|