1
|
Donaldson MK, Zanders LA, Jose J. Functional Roles and Host Interactions of Orthoflavivirus Non-Structural Proteins During Replication. Pathogens 2025; 14:184. [PMID: 40005559 PMCID: PMC11858440 DOI: 10.3390/pathogens14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Orthoflavivirus, a genus encompassing arthropod-borne, positive-sense, single-stranded RNA viruses in the Flaviviridae family, represents clinically relevant viruses that pose significant threats to human and animal health worldwide. With warming climates and persistent urbanization, arthropod vectors and the viruses they transmit continue to widen their geographic distribution, expanding endemic zones. Flaviviruses such as dengue virus, Zika virus, West Nile virus, and tick-borne encephalitis virus cause debilitating and fatal infections globally. In 2024, the World Health Organization and the Pan American Health Organization declared the current dengue situation a Multi-Country Grade 3 Outbreak, the highest level. FDA-approved treatment options for diseases caused by flaviviruses are limited or non-existent, and vaccines are suboptimal for many flaviviruses. Understanding the molecular characteristics of the flavivirus life cycle, virus-host interactions, and resulting pathogenesis in various cells and model systems is critical for developing effective therapeutic intervention strategies. This review will focus on the virus-host interactions of mosquito- and tick-borne flaviviruses from the virus replication and assembly perspective, emphasizing the interplay between viral non-structural proteins and host pathways that are hijacked for their advantage. Highlighting interaction pathways, including innate immunity, intracellular movement, and membrane modification, emphasizes the need for rigorous and targeted antiviral research and development against these re-emerging viruses.
Collapse
Affiliation(s)
- Meghan K. Donaldson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Levi A. Zanders
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Graham ME, Merrick C, Akiyama BM, Szucs MJ, Leach S, Kieft JS, Beckham JD. Zika virus dumbbell-1 structure is critical for sfRNA presence and cytopathic effect during infection. mBio 2023; 14:e0110823. [PMID: 37417764 PMCID: PMC10470596 DOI: 10.1128/mbio.01108-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
All flaviviruses contain conserved RNA structures in the 3' untranslated region (3' UTR) that are important for flavivirus RNA replication, translation, and pathogenesis. Flaviviruses like Zika virus (ZIKV) contain multiple conserved RNA structures in the viral 3' UTR, including the structure known as dumbbell-1 (DB-1). Previous research has shown that the DB-1 structure is important for flavivirus positive-strand genome replication, but the functional role of the flavivirus DB-1 structure and the mechanism by which it contributes to viral pathogenesis are not known. Using the recently solved flavivirus DB RNA structural data, we designed two DB-1 mutant ZIKV infectious clones, termed ZIKV-TL.PK and ZIKV-p.2.5', which disrupt DB-1 tertiary folding. We found that viral positive-strand genome replication of both ZIKV DB-1 mutant clones is similar to wild-type (WT) ZIKV, but ZIKV DB-1 mutants exhibit significantly decreased cytopathic effect due to reduced caspase-3 activation. We next show that ZIKV DB-1 mutants exhibit decreased levels of sfRNA species compared to ZIKV-WT during infection. However, ZIKV DB-1 mutant 3' UTRs exhibit unchanged sfRNA biogenesis following XRN1 degradation in vitro. We also found that ZIKV DB-1 mutant virus (ZIKV-p.2.5') exhibited enhanced sensitivity to type I interferon treatment, and both ZIKV-DB-1 mutants exhibit reduced morbidity and mortality due to tissue-specific attenuated viral replication in brain tissue of interferon type I/II receptor knockout mice. We propose that the flavivirus DB-1 RNA structure maintains sfRNA levels during infection despite maintained sfRNA biogenesis, and these results indicate that ZIKV DB-dependent maintenance of sfRNA levels support caspase-3-dependent, cytopathic effect, type I interferon resistance, and viral pathogenesis in mammalian cells and in a ZIKV murine model of disease. IMPORTANCE The group of viruses termed flaviviruses cause important disease throughout the world and include dengue virus, Zika virus, Japanese encephalitis virus, and many more. All of these flaviviruses have highly conserved RNA structures in the untranslated regions of the virus genome. One of the shared RNA structures, termed the dumbbell region, is not well studied, but mutations in this region are important for vaccine development. In this study, we made structure-informed targeted mutations in the Zika virus dumbbell region and studied the effect on the virus. We found that Zika virus dumbbell mutants are significantly weakened or attenuated due to a decreased ability to produce non-coding RNA that is needed to support infection, support virus-induced cell death, and support escape from the host immune system. These data show that targeted mutations in the flavivirus dumbbell RNA structure may be an important approach to develop future vaccine candidates.
Collapse
Affiliation(s)
- Monica E. Graham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Camille Merrick
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Benjamin M. Akiyama
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew J. Szucs
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sarah Leach
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jeffery S. Kieft
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. David Beckham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
4
|
Mao L, He Y, Wu Z, Wang X, Guo J, Zhang S, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Mao S, Wu Y, Zhang S, Huang J, Ou X, Gao Q, Sun D, Cheng A, Chen S. Stem-Loop I of the Tembusu Virus 3'-Untranslated Region Is Responsible for Viral Host-Specific Adaptation and the Pathogenicity of the Virus in Mice. Microbiol Spectr 2022; 10:e0244922. [PMID: 36214697 PMCID: PMC9602528 DOI: 10.1128/spectrum.02449-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/17/2022] [Indexed: 01/04/2023] Open
Abstract
Tembusu virus (TMUV), an avian mosquito-borne flavivirus, was first identified from Culex tritaeniorhynchus in 1955. To validate the effects of the 3'-untranslated region (3'UTR) in viral host-specific adaptation, we generated a set of chimeric viruses using CQW1 (duck strain) and MM 1775 (mosquito strain) as backbones with heterogeneous 3'UTRs. Compared with rMM 1775, rMM-CQ3'UTR (recombinant MM 1775 virus carrying the 3'UTR of CQW1) exhibited enhanced proliferation in vitro, with peak titers increasing by 5-fold in duck embryonic fibroblast (DEF) cells or 12-fold in baby hamster kidney (BHK-21) cells; however, the neurovirulence of rMM-CQ3'UTR was attenuated in 14-day-old Kunming mice via intracranial injection, with slower weight loss, lower mortality, and reduced viral loads. In contrast, rCQ-MM3'UTR showed similar growth kinetics in vitro and neurovirulence in mice compared with those of rCQW1. Then, the Stem-loop I (SLI) structure, which showed the highest variation within the 3'UTR between CQW1 and MM 1775, was further chosen for making chimeric viruses. The peak titers of rMM-CQ3'UTRSLI displayed a 15- or 4-fold increase in vitro, and the neurovirulence in mice was attenuated, compared with that of rMM 1775; rCQ-MM3'UTRSLI displayed comparable multiplication ability in vitro but was significantly attenuated in mice, in contrast with rCQW1. In conclusion, we demonstrated that the TMUV SLI structure of the 3'UTR was responsible for viral host-specific adaptation of the mosquito-derived strain in DEF and BHK-21 cells and regulated viral pathogenicity in 14-day-old mice, providing a new understanding of the functions of TMUV 3'UTR in viral host switching and the pathogenicity changes in mice. IMPORTANCE Mosquito-borne flaviviruses (MBFVs) constitute a large number of mosquito-transmitted viruses. The 3'-untranslated region (3'UTR) of MBFV has been suggested to be relevant to viral host-specific adaptation. However, the evolutionary strategies for host-specific fitness among MBFV are different, and the virulence-related structures within the 3'UTR are largely unknown. Here, using Tembusu virus (TMUV), an avian MBFV as models, we observed that the duck-derived SLI of the 3'UTR significantly enhanced the proliferation ability of mosquito-derived TMUV in baby hamster kidney (BHK-21) and duck embryonic fibroblast (DEF) cells, suggesting that the SLI structure was crucial for viral host-specific adaptation of mosquito-derived TMUVs in mammalian and avian cells. In addition, all SLI mutant viruses exhibited reduced viral pathogenicity in mice, indicating that SLI structure was a key factor for the pathogenicity in mice. This study provides a new insight into the functions of the MBFV 3'UTR in viral host switching and pathogenicity changes in mice.
Collapse
Affiliation(s)
- Li Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiaqi Guo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Senzhao Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Mao ZQ, Minakawa N, Moi ML. Novel Antiviral Efficacy of Hedyotis diffusa and Artemisia capillaris Extracts against Dengue Virus, Japanese Encephalitis Virus, and Zika Virus Infection and Immunoregulatory Cytokine Signatures. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192589. [PMID: 36235456 PMCID: PMC9571899 DOI: 10.3390/plants11192589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 05/25/2023]
Abstract
Currently, there are no specific therapeutics for flavivirus infections, including dengue virus (DENV) and Zika virus (ZIKV). In this study, we evaluated extracts from the plants Hedyotis diffusa (HD) and Artemisia capillaris (AC) to determine the antiviral activity against DENV, ZIKV, and Japanese encephalitis virus (JEV). HD and AC demonstrated inhibitory activity against JEV, ZIKV, and DENV replication and reduced viral RNA levels in a dose-responsive manner, with non-cytotoxic concentration ranging from 0.1 to 10 mg/mL. HD and AC had low cytotoxicity to Vero cells, with CC50 values of 33.7 ± 1.6 and 30.3 ± 1.7 mg/mL (mean ± SD), respectively. The anti-flavivirus activity of HD and AC was also consistent in human cell lines, including human glioblastoma (T98G), human chronic myeloid leukemia (K562), and human embryonic kidney (HEK-293T) cells. Viral-infected, HD-treated cells demonstrated downregulation of cytokines including CCR1, CCL26, CCL15, CCL5, IL21, and IL17C. In contrast, CCR1, CCL26, and AIMP1 were elevated following AC treatment in viral-infected cells. Overall, HD and AC plant extracts demonstrated flavivirus replication inhibitory activity, and together with immunoregulatory cytokine signatures, these results suggest that HD and AC possess bioactive compounds that may further be refined as promising candidates for clinical applications.
Collapse
Affiliation(s)
- Zhan Qiu Mao
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Noboru Minakawa
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Meng Ling Moi
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|