1
|
Camerino M, Giacobino D, Tarone L, Dentini A, Martano M, Morello E, Ferraris EI, Manassero L, Iussich S, Maniscalco L, Cavallo F, Riccardo F, Buracco P. Clinical evaluation of HuDo-CSPG4 DNA electroporation as adjuvant treatment for canine oral malignant melanoma: comparison of two vaccination protocols. Vet Q 2025; 45:1-16. [PMID: 40059815 PMCID: PMC11894750 DOI: 10.1080/01652176.2025.2473717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/13/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Canine oral malignant melanoma (OMM) is an aggressive, spontaneously occurring tumor carrying a poor to guarded prognosis and relatively limited therapeutic strategies. In this landscape, chondroitin sulfate proteoglycan (CSPG)4 represents a promising immunotherapeutic target. The objective of this bi-center prospective study was to examine the clinical outcome of OMM-bearing dogs treated with surgery and adjuvant electroporation using a DNA vaccine (HuDo-CSPG4) encoding both human (Hu) and canine (Do) portions of CSPG4 through two different vaccination protocols. Dogs with stage I-III surgically resected CSPG4-positive OMM underwent HuDo-CSPG4 plasmid electroporation starting at the 3rd-4th post-operative week; electrovaccination was repeated after 2 weeks. In protocol 1, electrovaccination was then delivered monthly while in protocol 2, electrovaccination was performed monthly four additional times followed by semestral boosters. The survival rates of HuDo-CSPG4-vaccinated dogs were estimated and compared with a control group treated with surgery alone. Significantly longer overall survival times were observed in HuDo-CSPG4 vaccinated dogs as compared with non-vaccinated controls. Dogs receiving protocol 2 showed similar outcomes to those of dogs undergoing protocol 1, despite fewer vaccinations. The comparable humoral response against CSPG4 resulting from the administration of protocol 1 and 2 appears to have similar clinical relevance, highlighting protocol 2 as the optimal vaccination schedule.
Collapse
Affiliation(s)
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | - Marina Martano
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Luca Manassero
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Ruzzi F, Riccardo F, Conti L, Tarone L, Semprini MS, Bolli E, Barutello G, Quaglino E, Lollini PL, Cavallo F. Cancer vaccines: Target antigens, vaccine platforms and preclinical models. Mol Aspects Med 2025; 101:101324. [PMID: 39631227 DOI: 10.1016/j.mam.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
This review provides a comprehensive overview of the evolving landscape of cancer vaccines, highlighting their potential to revolutionize tumor prevention. Building on the success of vaccines against virus-related cancers, such as HPV- and HBV-associated cervical and liver cancers, the current challenge is to extend these achievements to the prevention of non-viral tumors and the treatment of preneoplastic or early neoplastic lesions. This review analyzes the critical aspects of preventive anti-cancer vaccination, focusing on the choice of target antigens, the development of effective vaccine platforms and technologies, and the use of various model systems for preclinical testing, from laboratory rodents to companion animals.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Federica Riccardo
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Laura Conti
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Lidia Tarone
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Elisabetta Bolli
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Giuseppina Barutello
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Elena Quaglino
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy; IRCCS Azienda Ospedaliera Universitaria di Bologna, 40138, Bologna, Italy.
| | - Federica Cavallo
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy.
| |
Collapse
|
3
|
Rinaldi V, Bongiovanni L, Crisi PE, Vignoli M, Peli RE, Masci S, Boari A, Finotello R. APAVAC Immunotherapy for the Adjuvant Treatment of a Canine Mucosal Melanoma. Vet Sci 2024; 11:628. [PMID: 39728968 DOI: 10.3390/vetsci11120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
An 11-year-old spayed female Beagle presented with tenesmus and was identified with a rectal wall mass. Diagnostic imaging (abdominal ultrasound and computed tomography) localised the mass in the right rectal wall and documented no evidence of metastatic disease. Subsequently, the dog underwent surgery for tumour excision. A histopathological diagnosis of melanoma was performed. To confirm the tumour histotype, immunohistochemistry was performed using anti-Melan A and anti-Ki67. Neoplastic cells exhibited focal Melan A immunoreactivity and widespread nuclear immunoreactivity for Ki67 with a Ki67 index of 27%. Adjuvant immunotherapy with APAVAC® was initiated. After APAVAC administration, no local or systemic acute adverse events were observed. Four pre- and post-contrast computed tomography (CT) studies were performed in an 18-month follow-up period every 4-5 months. Follow-up rectal palpation and conscious visualisation of the surgical site have also resulted in no macroscopic signs of tumour recurrence. The dog remains alive and with no clinical evidence of tumour recurrence and/or distant progression at the time of writing, therefore, surviving over 540 days from the diagnosis.
Collapse
Affiliation(s)
- Valentina Rinaldi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Laura Bongiovanni
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Department of Biomolecular Sciences, Faculty of Veterinary Medicine, Utrecth University, 3584 CS Utrecht, The Netherlands
| | - Paolo Emidio Crisi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Massimo Vignoli
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Renato Ennio Peli
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Stefano Masci
- Clinica Veterinaria Colli Innamorati, via Colli Innamorati 21, 65125 Pescara, Italy
| | - Andrea Boari
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Riccardo Finotello
- Ospedale Veterinario I Portoni Rossi, Anicura Italy Holding, via Roma 51, 40069 Zola Predosa, Italy
| |
Collapse
|
4
|
Brachelente C, Torrigiani F, Porcellato I, Drigo M, Brescia M, Treggiari E, Ferro S, Zappulli V, Sforna M. Tumor Immune Microenvironment and Its Clinicopathological and Prognostic Associations in Canine Splenic Hemangiosarcoma. Animals (Basel) 2024; 14:1224. [PMID: 38672372 PMCID: PMC11047608 DOI: 10.3390/ani14081224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor cells can induce important cellular and molecular modifications in the tissue or host where they grow. The idea that the host and tumor interact with each other has led to the concept of a tumor microenvironment, composed of immune cells, stromal cells, blood vessels, and extracellular matrix, representing a unique environment participating and, in some cases, promoting cancer progression. The study of the tumor immune microenvironment, particularly focusing on the role of tumor-infiltrating lymphocytes (TILs), is highly relevant in oncology due to the prognostic and therapeutic significance of TILs in various tumors and their identification as targets for therapeutic intervention. Canine splenic hemangiosarcoma (HSA) is a common tumor; however, its immune microenvironment remains poorly understood. This retrospective study aimed to characterize the histological and immunohistochemical features of 56 cases of canine splenic HSA, focusing particularly on tumor-infiltrating lymphocytes (TILs). We assessed the correlations between the lymphocytic response, the macroscopic and histological characteristics of the tumor, and the survival data. Our study demonstrated that FoxP3 distribution was associated with tumor-related death and survival, while the CD20 count was associated with metastasis. This study provides an in-depth characterization of the tumor immune microenvironment in canine splenic HSA and describes potential prognostic factors.
Collapse
Affiliation(s)
- Chiara Brachelente
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.B.); (M.B.); (M.S.)
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy; (F.T.); (S.F.); (V.Z.)
| | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.B.); (M.B.); (M.S.)
| | - Michele Drigo
- Department of Animal Medicine, Production and Health, University of Padua, AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy;
| | - Martina Brescia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.B.); (M.B.); (M.S.)
| | - Elisabetta Treggiari
- Clinica Veterinaria Croce Blu, via San Giovanni Bosco 27/C, 15121 Alessandria, Italy;
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy; (F.T.); (S.F.); (V.Z.)
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy; (F.T.); (S.F.); (V.Z.)
| | - Monica Sforna
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.B.); (M.B.); (M.S.)
| |
Collapse
|
5
|
Pimenta J, Prada J, Pires I, Cotovio M. Cyclooxygenase-2 (COX-2) Expression in Equine Melanocytic Tumors. Vet Sci 2024; 11:77. [PMID: 38393095 PMCID: PMC10891553 DOI: 10.3390/vetsci11020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Equine melanocytic tumors are common and have an unusual benign behavior with low invasiveness and metastatic rates. However, tumoral mass growth is usually a concern that can have life-threatening consequences. COX-2 is related to oncogenesis, promoting neoplastic cell proliferation, invasion, and metastasis. The aim of this study was to evaluate the immunohistochemical expression of COX-2 in equine melanocytic tumors. Through extension and intensity of labeling, 39 melanocytomas and 38 melanomas were evaluated. Of the malignant tumors, 13.2% were negative and 63.2% presented a low COX-2 expression. Only 6 malignant tumors presented >50% of labeled cells, 18 malignant and 8 benign had an expression between 21 and 50%, 8 malignant and 3 benign tumors had an expression between 6 and 20%, 1 malignant tumor had an expression between 1 and 5%, and 5 malignant and 28 benign tumors had no expression. Malignant tumors showed higher COX-2 expression than did benign tumors, with statistically significant differences. The low levels of COX-2 may be one of the molecular reasons for the presence of expansive mass growth instead of the invasive pattern of other species, which is related to high COX-2 levels.
Collapse
Affiliation(s)
- José Pimenta
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Justina Prada
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Mário Cotovio
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal
| |
Collapse
|
6
|
Pimenta J, Prada J, Pires I, Cotovio M. Programmed Cell Death-Ligand 1 (PD-L1) Immunohistochemical Expression in Equine Melanocytic Tumors. Animals (Basel) 2023; 14:48. [PMID: 38200779 PMCID: PMC10778310 DOI: 10.3390/ani14010048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Currently available treatments for equine melanocytic tumors have limitations, mainly due to mass localization and dimension, or the presence of metastases. Therefore, a search for new therapies is necessary. Programmed cell death-ligand 1 (PD-L1) is expressed by several tumors, blocking T cell-mediated elimination of the tumor cells by binding to programmed cell death protein 1 (PD-1). A novel therapeutic approach using PD-1/PD-L1 blockade in human melanoma resulted in tumor regression and prolonged tumor-free survival. This study aimed to evaluate the immunohistochemical expression of PD-L1 in equine melanocytic tumors. A total of 77 melanocytic tumors were classified as benign or malignant and evaluated by extension of labeling. A total of 59.7% of the tumors showed >50% of immunolabeled cells. Regarding malignant tumors, 24/38 tumors presented >50% of labeled cells, 13 tumors presented between 25-50% and one tumor presented <10%. Regarding benign tumors, 22/39 tumors presented >50% of labeled cells, nine tumors presented 25-50%, three tumors presented 10-25%, two tumors presented <10% and three tumors did not present expression. Our results suggest that PD-L1 blockade may be a potential target for immunotherapy in equine melanocytic tumors and that future clinical research trials into the clinical efficacy of the anti-PD-L1 antibody are necessary.
Collapse
Affiliation(s)
- José Pimenta
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Justina Prada
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Mário Cotovio
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal
| |
Collapse
|
7
|
YAMAMOTO M, FUJIWARA N. Protein phosphatase 6 regulates trametinib sensitivity, a mitogen-activated protein kinase kinase (MEK) inhibitor, by regulating MEK1/2-ERK1/2 signaling in canine melanoma cells. J Vet Med Sci 2023; 85:977-984. [PMID: 37495516 PMCID: PMC10539826 DOI: 10.1292/jvms.23-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Melanoma is a highly aggressive and metastatic cancer occurring in both humans and dogs. Canine melanoma accounts for a significant proportion of neoplastic diseases in dogs, and despite standard treatments, overall survival rates remain low. Protein phosphatase 6 (PP6), an evolutionarily conserved serine/threonine protein phosphatase, regulates various biological processes. Additionally, the loss of PP6 function reportedly leads to the development of melanoma in humans. However, there are no reports regarding the role of PP6 in canine cancer cells. We, therefore, conducted a study investigating the role of PP6 in canine melanoma by using four canine melanoma cell lines: CMec1, CMM, KMeC and LMeC. PP6 knockdown increased phosphorylation levels of mitogen-activated protein kinase kinase 1/2 (MEK1/2) and extracellular signal-regulated kinase 1/2 (ERK1/2) but not Akt. Furthermore, PP6 knockdown decreased sensitivity to trametinib, a MEK inhibitor, but did not alter sensitivity to Akt inhibitor. These findings suggest that PP6 may function as a tumor suppressor in canine melanoma and modulate the response to trametinib treatment. Understanding the role of PP6 in canine melanoma could lead to the development of more effective treatment strategies for this aggressive disease.
Collapse
Affiliation(s)
- Miu YAMAMOTO
- Laboratory of Drug Discovery and Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Nobuyuki FUJIWARA
- Laboratory of Drug Discovery and Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| |
Collapse
|
8
|
Stevenson VB, Klahn S, LeRoith T, Huckle WR. Canine melanoma: A review of diagnostics and comparative mechanisms of disease and immunotolerance in the era of the immunotherapies. Front Vet Sci 2023; 9:1046636. [PMID: 36686160 PMCID: PMC9853198 DOI: 10.3389/fvets.2022.1046636] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Melanomas in humans and dogs are highly malignant and resistant to therapy. Since the first development of immunotherapies, interest in how the immune system interacts within the tumor microenvironment and plays a role in tumor development, progression, or remission has increased. Of major importance are tumor-infiltrating lymphocytes (TILs) where distribution and cell frequencies correlate with survival and therapeutic outcomes. Additionally, efforts have been made to identify subsets of TILs populations that can contribute to a tumor-promoting or tumor-inhibiting environment, such as the case with T regulatory cells versus CD8 T cells. Furthermore, cancerous cells have the capacity to express certain inhibitory checkpoint molecules, including CTLA-4, PD-L1, PD-L2, that can suppress the immune system, a property associated with poor prognosis, a high rate of recurrence, and metastasis. Comparative oncology brings insights to comprehend the mechanisms of tumorigenesis and immunotolerance in humans and dogs, contributing to the development of new therapeutic agents that can modulate the immune response against the tumor. Therapies that target signaling pathways such as mTOR and MEK/ERK that are upregulated in cancer, or immunotherapies with different approaches such as CAR-T cells engineered for specific tumor-associated antigens, DNA vaccines using human tyrosinase or CGSP-4 antigen, anti-PD-1 or -PD-L1 monoclonal antibodies that intercept their binding inhibiting the suppression of the T cells, and lymphokine-activated killer cells are already in development for treating canine tumors. This review provides concise and recent information about diagnosis, comparative mechanisms of tumor development and progression, and the current status of immunotherapies directed toward canine melanoma.
Collapse
Affiliation(s)
- Valentina B. Stevenson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Shawna Klahn
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - William R. Huckle
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|