1
|
Grüschow S, Steketee PC, Paxton E, Matthews KR, Morrison LJ, White MF, Grey F. Cas10 based 7SL-sRNA diagnostic for the detection of active trypanosomosis. PLoS Negl Trop Dis 2025; 19:e0012937. [PMID: 40096045 PMCID: PMC12051490 DOI: 10.1371/journal.pntd.0012937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/02/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Animal Trypanosomosis (AT) is a significant disease affecting cattle across sub-Saharan Africa, Latin America, and Asia, posing a major threat to economic productivity and animal welfare. The absence of reliable diagnostic tests has led to an over-reliance on widespread pre-emptive drug treatments, which not only compromise animal health but also heighten the risk of drug resistance. The chronic nature of AT, characterized by cyclical low or undetectable parasite levels, and the necessity for field-applicable tests that can distinguish between active infection and prior exposure, present considerable challenges in developing effective diagnostics. In previous work, we identified a parasite-specific small RNA, 7SL-sRNA, which is detectable in the serum of infected cattle, even during the chronic stages of infection. However, existing methods for detecting sRNA require specialized equipment, making them unsuitable for field use. In this study, we have developed both a fluorescence-based and a lateral flow diagnostic test utilizing Cas10 technology for the detection of 7SL-sRNA from Trypanosoma congolense and Trypanosoma brucei. The fluorescence assay detects 10 - 100 fM T. congolense 7SL-sRNA and 1 pM T. brucei 7SL-sRNA, and the lateral flow assay showed a limit of detection of 1 - 10 pM for both species. Either assay can effectively identify active infections in cattle, including during chronic phases (with positive signals observed up to the experimental end point, 63 days post infection). This also highlights the effective use of Cas10 for small RNA detection, paving the way for a cost-effective, user-friendly, and field-deployable diagnostic test for AT, while establishing Cas10 technology for the detection of small RNAs in general.
Collapse
Affiliation(s)
- Sabine Grüschow
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Pieter C. Steketee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Edith Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Keith R. Matthews
- Institute of Immunology and Infection, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Malcolm F. White
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Finn Grey
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
N'Djetchi MK, Camara O, Koffi M, Camara M, Kaba D, Kaboré J, Tall A, Rotureau B, Glover L, Traoré MB, Koné M, Coulibaly B, Adingra GP, Soumah A, Gassama M, Camara AD, Compaoré CFA, Camara A, Boiro S, Anton EP, Bessell P, Van Reet N, Bucheton B, Jamonneau V, Bart JM, Solano P, Biéler S, Lejon V. Specificity of serological screening tests and reference laboratory tests to diagnose gambiense human African trypanosomiasis: a prospective clinical performance study. Infect Dis Poverty 2024; 13:53. [PMID: 38978124 PMCID: PMC11229219 DOI: 10.1186/s40249-024-01220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Serological screening tests play a crucial role to diagnose gambiense human African trypanosomiasis (gHAT). Presently, they preselect individuals for microscopic confirmation, but in future "screen and treat" strategies they will identify individuals for treatment. Variability in reported specificities, the development of new rapid diagnostic tests (RDT) and the hypothesis that malaria infection may decrease RDT specificity led us to evaluate the specificity of 5 gHAT screening tests. METHODS During active screening, venous blood samples from 1095 individuals from Côte d'Ivoire and Guinea were tested consecutively with commercial (CATT, HAT Sero-K-SeT, Abbott Bioline HAT 2.0) and prototype (DCN HAT RDT, HAT Sero-K-SeT 2.0) gHAT screening tests and with a malaria RDT. Individuals with ≥ 1 positive gHAT screening test underwent microscopy and further immunological (trypanolysis with T.b. gambiense LiTat 1.3, 1.5 and 1.6; indirect ELISA/T.b. gambiense; T.b. gambiense inhibition ELISA with T.b. gambiense LiTat 1.3 and 1.5 VSG) and molecular reference laboratory tests (PCR TBRN3, 18S and TgsGP; SHERLOCK 18S Tids, 7SL Zoon, and TgsGP; Trypanozoon S2-RT-qPCR 18S2, 177T, GPI-PLC and TgsGP in multiplex; RT-qPCR DT8, DT9 and TgsGP in multiplex). Microscopic trypanosome detection confirmed gHAT, while other individuals were considered gHAT free. Differences in fractions between groups were assessed by Chi square and differences in specificity between 2 tests on the same individuals by McNemar. RESULTS One gHAT case was diagnosed. Overall test specificities (n = 1094) were: CATT 98.9% (95% CI: 98.1-99.4%); HAT Sero-K-SeT 86.7% (95% CI: 84.5-88.5%); Bioline HAT 2.0 82.1% (95% CI: 79.7-84.2%); DCN HAT RDT 78.2% (95% CI: 75.7-80.6%); and HAT Sero-K-SeT 2.0 78.4% (95% CI: 75.9-80.8%). In malaria positives, gHAT screening tests appeared less specific, but the difference was significant only in Guinea for Abbott Bioline HAT 2.0 (P = 0.03) and HAT Sero-K-Set 2.0 (P = 0.0006). The specificities of immunological and molecular laboratory tests in gHAT seropositives were 98.7-100% (n = 399) and 93.0-100% (n = 302), respectively. Among 44 reference laboratory test positives, only the confirmed gHAT patient and one screening test seropositive combined immunological and molecular reference laboratory test positivity. CONCLUSIONS Although a minor effect of malaria cannot be excluded, gHAT RDT specificities are far below the 95% minimal specificity stipulated by the WHO target product profile for a simple diagnostic tool to identify individuals eligible for treatment. Unless specificity is improved, an RDT-based "screen and treat" strategy would result in massive overtreatment. In view of their inconsistent results, additional comparative evaluations of the diagnostic performance of reference laboratory tests are indicated for better identifying, among screening test positives, those at increased suspicion for gHAT. TRIAL REGISTRATION The trial was retrospectively registered under NCT05466630 in clinicaltrials.gov on July 15 2022.
Collapse
Affiliation(s)
- Martial Kassi N'Djetchi
- Laboratory of Biodiversity and Ecosystem Management, Jean Lorougnon Guédé University, Daloa, Côte d'Ivoire
| | - Oumou Camara
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
| | - Mathurin Koffi
- Laboratory of Biodiversity and Ecosystem Management, Jean Lorougnon Guédé University, Daloa, Côte d'Ivoire
| | - Mamadou Camara
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
| | - Dramane Kaba
- Trypanosomosis Research Unit, Pierre Richet Institute, Bouaké, Côte d'Ivoire
| | - Jacques Kaboré
- International Research and Development Centre on Livestock in Subhumid Zones, Bobo-Dioulasso, Burkina Faso
| | - Alkali Tall
- National Program for Malaria Control, Conakry, Guinea
| | - Brice Rotureau
- Parasitology Unit, Institut Pasteur de Guinée, Conakry, Guinea
| | - Lucy Glover
- Trypanosome Molecular Biology Unit, Department of Parasites and Insect Vectors, Pasteur Institute, Paris Cité University, Paris, France
| | - Mélika Barkissa Traoré
- Laboratory of Biodiversity and Ecosystem Management, Jean Lorougnon Guédé University, Daloa, Côte d'Ivoire
| | - Minayegninrin Koné
- Laboratory of Biodiversity and Ecosystem Management, Jean Lorougnon Guédé University, Daloa, Côte d'Ivoire
| | - Bamoro Coulibaly
- Trypanosomosis Research Unit, Pierre Richet Institute, Bouaké, Côte d'Ivoire
| | - Guy Pacome Adingra
- Trypanosomosis Research Unit, Pierre Richet Institute, Bouaké, Côte d'Ivoire
| | - Aissata Soumah
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
| | - Mohamed Gassama
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
| | - Abdoulaye Dansy Camara
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
| | | | - Aïssata Camara
- Parasitology Unit, Institut Pasteur de Guinée, Conakry, Guinea
| | - Salimatou Boiro
- Parasitology Unit, Institut Pasteur de Guinée, Conakry, Guinea
| | - Elena Perez Anton
- Trypanosome Molecular Biology Unit, Department of Parasites and Insect Vectors, Pasteur Institute, Paris Cité University, Paris, France
| | | | - Nick Van Reet
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bruno Bucheton
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
- Intertryp, IRD-CIRAD-University of Montpellier, Montpellier, France
| | - Vincent Jamonneau
- Trypanosomosis Research Unit, Pierre Richet Institute, Bouaké, Côte d'Ivoire
- Intertryp, IRD-CIRAD-University of Montpellier, Montpellier, France
| | - Jean-Mathieu Bart
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
- Intertryp, IRD-CIRAD-University of Montpellier, Montpellier, France
| | - Philippe Solano
- Intertryp, IRD-CIRAD-University of Montpellier, Montpellier, France
| | - Sylvain Biéler
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - Veerle Lejon
- Intertryp, IRD-CIRAD-University of Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Saldanha I, Betson M, Vrettou C, Paxton E, Nixon J, Tennant P, Ritchie A, Matthews KR, Morrison LJ, Torr SJ, Cunningham LJ. Consistent detection of Trypanosoma brucei but not T. congolense DNA in faeces of experimentally infected cattle. Sci Rep 2024; 14:4158. [PMID: 38378867 PMCID: PMC10879203 DOI: 10.1038/s41598-024-54857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
Animal African trypanosomiasis (AAT) is a significant food security and economic burden in sub-Saharan Africa. Current AAT empirical and immunodiagnostic surveillance tools suffer from poor sensitivity and specificity, with blood sampling requiring animal restraint and trained personnel. Faecal sampling could increase sampling accessibility, scale, and species range. Therefore, this study assessed feasibility of detecting Trypanosoma DNA in the faeces of experimentally-infected cattle. Holstein-Friesian calves were inoculated with Trypanosoma brucei brucei AnTat 1.1 (n = 5) or T. congolense Savannah IL3000 (n = 6) in separate studies. Faecal and blood samples were collected concurrently over 10 weeks and screened using species-specific PCR and qPCR assays. T. brucei DNA was detected in 85% of post-inoculation (PI) faecal samples (n = 114/134) by qPCR and 50% by PCR between 4 and 66 days PI. However, T. congolense DNA was detected in just 3.4% (n = 5/145) of PI faecal samples by qPCR, and none by PCR. These results confirm the ability to consistently detect T. brucei DNA, but not T. congolense DNA, in infected cattle faeces. This disparity may derive from the differences in Trypanosoma species tissue distribution and/or extravasation. Therefore, whilst faeces are a promising substrate to screen for T. brucei infection, blood sampling is required to detect T. congolense in cattle.
Collapse
Affiliation(s)
- Isabel Saldanha
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Martha Betson
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | | - Edith Paxton
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - James Nixon
- Large Animal Research and Imaging Facility, University of Edinburgh, Edinburgh, UK
| | - Peter Tennant
- Large Animal Research and Imaging Facility, University of Edinburgh, Edinburgh, UK
| | - Adrian Ritchie
- Large Animal Research and Imaging Facility, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute of Immunology and Infection, University of Edinburgh, Edinburgh, UK
| | | | - Stephen J Torr
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Lucas J Cunningham
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
4
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Shanmugasundram A, Starns D, Böhme U, Amos B, Wilkinson PA, Harb OS, Warrenfeltz S, Kissinger JC, McDowell MA, Roos DS, Crouch K, Jones AR. TriTrypDB: An integrated functional genomics resource for kinetoplastida. PLoS Negl Trop Dis 2023; 17:e0011058. [PMID: 36656904 PMCID: PMC9888696 DOI: 10.1371/journal.pntd.0011058] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2023] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
Parasitic diseases caused by kinetoplastid parasites are a burden to public health throughout tropical and subtropical regions of the world. TriTrypDB (https://tritrypdb.org) is a free online resource for data mining of genomic and functional data from these kinetoplastid parasites and is part of the VEuPathDB Bioinformatics Resource Center (https://veupathdb.org). As of release 59, TriTrypDB hosts 83 kinetoplastid genomes, nine of which, including Trypanosoma brucei brucei TREU927, Trypanosoma cruzi CL Brener and Leishmania major Friedlin, undergo manual curation by integrating information from scientific publications, high-throughput assays and user submitted comments. TriTrypDB also integrates transcriptomic, proteomic, epigenomic, population-level and isolate data, functional information from genome-wide RNAi knock-down and fluorescent tagging, and results from automated bioinformatics analysis pipelines. TriTrypDB offers a user-friendly web interface embedded with a genome browser, search strategy system and bioinformatics tools to support custom in silico experiments that leverage integrated data. A Galaxy workspace enables users to analyze their private data (e.g., RNA-sequencing, variant calling, etc.) and explore their results privately in the context of publicly available information in the database. The recent addition of an annotation platform based on Apollo enables users to provide both functional and structural changes that will appear as 'community annotations' immediately and, pending curatorial review, will be integrated into the official genome annotation.
Collapse
Affiliation(s)
- Achchuthan Shanmugasundram
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - David Starns
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ulrike Böhme
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - Beatrice Amos
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - Paul A. Wilkinson
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - Omar S. Harb
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Susanne Warrenfeltz
- Center for Tropical & Emerging Global Diseases, Department of Genetics, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Jessica C. Kissinger
- Center for Tropical & Emerging Global Diseases, Department of Genetics, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kathryn Crouch
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Andrew R. Jones
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|