1
|
Kang A, Ni J, Cheng X, Wu S, Liu Y, Ma W, Wang D. Influence of α-Linolenic Acid on the Intestinal Barrier Integrity and Intestinal Antioxidant Status in Broilers. Food Sci Nutr 2025; 13:e70271. [PMID: 40438093 PMCID: PMC12117540 DOI: 10.1002/fsn3.70271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 06/01/2025] Open
Abstract
This study aimed to investigate the beneficial effects of α-linolenic acid (ALA) on intestinal barrier function and antioxidant status in broilers, along with the associated molecular mechanisms. 320 one-day-old Arbor Acres broilers were randomly divided into four groups, each with eight replicates, and fed diets with 0 (control), 200, 400, and 600 mg of ALA/kg for 42 days. ALA supplementation did not significantly affect the broilers' overall growth performance. Supplementing diets with 400 and 600 mg/kg of ALA significantly enhanced (p < 0.05) jejunal and ileal villus height, the jejunal villus height to crypt depth ratio, and ileal mRNA expression and protein levels of Zonula occludens-1 (ZO-1) and occludin in broilers on Day 42. Broilers fed diets containing 600 mg/kg of ALA exhibited significantly increased (p < 0.05) serum catalase (CAT) activity, total antioxidant capacity (T-AOC), and jejunal and ileal activities of CAT and total superoxide dismutase (T-SOD), alongside reduced malondialdehyde (MDA) concentrations in serum, jejunum, and ileum on Days 21 and 42, compared to the control group. Supplementing 600 mg/kg of ALA significantly increased (p < 0.05) the mRNA expressions of CAT, SOD1, NRF2, and HO-1, along with the protein levels of cytoplasmic and nuclear NRF2 and HO-1 in the jejunum and ileum on Days 21 and 42. These findings demonstrate the protective effects of ALA in improving intestinal health in broilers. The underlying mechanisms may involve enhancing intestinal barrier integrity by increasing tight junction protein abundance and boosting intestinal antioxidant capacity by elevating antioxidant enzyme activity and activating the NRF2 pathway. In conclusion, our results showed that 600 mg/kg of ALA was identified as the optimal concentration for improving intestinal barrier function and antioxidant status in broilers, highlighting its potential for protecting intestinal health through ALA-based interventions.
Collapse
Affiliation(s)
- Ao Kang
- College of Veterinary Medicine, Shandong Agricultural UniversityTai'anShandongPeople's Republic of China
| | - Jialei Ni
- College of Veterinary Medicine, Shandong Agricultural UniversityTai'anShandongPeople's Republic of China
| | - Xinyu Cheng
- College of Veterinary Medicine, Shandong Agricultural UniversityTai'anShandongPeople's Republic of China
| | - Shuyu Wu
- College of Veterinary Medicine, Shandong Agricultural UniversityTai'anShandongPeople's Republic of China
| | - Yun Liu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinHeolongjiangPeople's Republic of China
| | - Weiming Ma
- College of Veterinary Medicine, Shandong Agricultural UniversityTai'anShandongPeople's Republic of China
| | - Dong Wang
- College of Veterinary Medicine, Shandong Agricultural UniversityTai'anShandongPeople's Republic of China
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinHeolongjiangPeople's Republic of China
| |
Collapse
|
2
|
Gao YY, Lin ZX, Zhang M, Yang R, Guo PT, Zhang J, Wang CK, Jin L. Health effects of astaxanthin in the intestinal tract of yellow-feathered broilers. Poult Sci 2025; 104:104768. [PMID: 39893918 PMCID: PMC11835650 DOI: 10.1016/j.psj.2025.104768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Astaxanthin (AST), a keto carotenoid, is widely recognized for its antioxidant, anti-inflammatory, and apoptosis-regulating properties, but its effects on intestinal health have not been elucidated. Therefore, this experiment aimed to investigate the effects of astaxanthin on intestinal morphology, barrier function, mucosal immunity, and cecal flora in yellow-feathered broilers, and to explore the potential mechanisms. A total of 288 male yellow-feathered broilers (1-day-old) were randomly allocated to four groups with six replicates of 12 birds each. The control group (CON) was fed a basal diet, the test groups were fed a basal diet added with 20 mg/kg, 40 mg/kg, and 80mg/kg of astaxanthin (AST20, AST40, and AST80), respectively. The results showed that compared with the CON group, the villus height and the villus-to-crypt ratio of broiler jejunum in the astaxanthin-added group increased, while the crypt depth decreased (P < 0.05). In addition, IL-1β content and gene expression in broiler jejunal mucosa decreased, IL-6 gene expression decreased, and IL-4 content and gene expression increased (P < 0.05). The tight junction protein ZO-1 expression level in the jejunum mucosa of broilers was up-regulated, and the content of serum D-lactic acid was decreased (P < 0.05). Besides, the α-diversity and β-diversity analyses showed that astaxanthin regulated both the diversity and the structure of the intestinal flora of broilers. After multiple comparative analyses, the relative abundance of norank_f__Eubacterium_coprostanoligenes_group, Lachnospiraceae NC2004_group, and unclassified_p_Firmicutes increased in the AST20 group compared to the CON group, while that of Ruminococcus_torques_group in the AST80 group decreased (P < 0.05). Therefore, AST can regulate the immune function of broiler intestinal mucosa, improve intestinal morphology and structure, and then influence intestinal permeability. It also has a considerable regulatory effect on the diversity and structure of broiler intestinal flora and plays a multifaceted role in maintaining broiler intestinal health.
Collapse
Affiliation(s)
- Yu-Yun Gao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhi-Xin Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Zhang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping-Ting Guo
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang-Kang Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Jin
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
da Silva FF, das Chagas Costa F, Azevedo VAN, de Assis EIT, Gomes GA, Araújo VR, de Morais SM, Rodrigues THS, Silva JRV. Croton grewioides essential oil and anethole reduce oxidative stress and improve growth of bovine primordial follicles during culture of ovarian tissue. J Pharm Pharmacol 2024; 76:1609-1619. [PMID: 39016304 DOI: 10.1093/jpp/rgae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES This study aims to evaluate the effects of Croton grewioides essential oil (CGEO) and anethole on follicle survival, growth, and oxidative stress in cultured bovine ovarian tissues. METHODS Ovarian tissues were cultured for 6 days in a medium supplemented with different concentrations (1, 10, 100, or 1000 µg mL-1) of CGEO or anethole and then, follicular survival and growth, collagen content, and stromal cell density in ovarian tissues cultured in vitro were evaluated by histology. The mRNA levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 1 (GPX1), peroxirredoxin 6 (PRDX6), and nuclear factor erythroid 2-related factor 2 (NRF2) were evaluated by real-time PCR. The activity of SOD, CAT, glutathione peroxidase (GPx), and thiol concentrations were investigated. KEY FINDINGS Ovarian tissues cultured with 1 µg mL-1 CGEO or anethole had a higher percentage of healthy follicles than those cultured in a control medium (P < .05). The 1 µg mL-1 CGEO also increased the number of stromal cells, collagen fibers, and thiol levels. Anethole (1 µg mL-1) increased CAT activity and reduced that of GPx. The activity of SOD was reduced by CGEO. In contrast, 1 µg mL-1 anethole reduced mRNA for CAT, PRDX1, and NRF2 (P < .05). In addition, 1 µg mL-1 CGEO reduced mRNA for CAT, PRDX6, and GPx1 (P < .05). CONCLUSIONS The presence of 1 µg mL-1 anethole or CGEO in a culture medium promotes follicle survival and regulates oxidative stress and the expression of mRNA and activity of antioxidant enzymes in cultured bovine ovarian tissues.
Collapse
Affiliation(s)
- Felipe F da Silva
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral, State of Ceará, 62042-280Brazil
| | - Francisco das Chagas Costa
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral, State of Ceará, 62042-280Brazil
| | - Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral, State of Ceará, 62042-280Brazil
| | - Ernando I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral, State of Ceará, 62042-280Brazil
| | - Geovany A Gomes
- Laboratory of Phytochemical and Bioactive Products, State University Vale do Acarau, Sobral, Ceara, 62010-295Brazil
| | - Valdevane R Araújo
- Laboratory of Physiology Reproduction, State University of Ceara, Fortaleza, Ceará, 60740-000Brazil
| | | | - Tigressa H S Rodrigues
- Laboratory of Phytochemical and Bioactive Products, State University Vale do Acarau, Sobral, Ceara, 62010-295Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral, State of Ceará, 62042-280Brazil
| |
Collapse
|
4
|
Kishawy AT, Abd El-Wahab RA, Eldemery F, Abdel Rahman MMI, Altuwaijri S, Ezz-Eldin RM, Abd-Allah EM, Zayed S, Mulla ZS, El Sharkawy RB, Badr S, Youssef W, Ibrahim D. Insights of early feeding regime supplemented with glutamine and various levels of omega-3 in broiler chickens: growth performance, muscle building, antioxidant capacity, intestinal barriers health and defense against mixed Eimeria spp infection. Vet Q 2024; 44:1-20. [PMID: 38961536 PMCID: PMC11225632 DOI: 10.1080/01652176.2024.2373287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024] Open
Abstract
Early nutritional management approach greatly impacts broilers' performance and resistance against coccidiosis. The current study explored the impact of post-hatch feeding with a combination of glutamine (Glut) and different levels of omega-3 on broiler chickens' growth performance, muscle building, intestinal barrier, antioxidant ability and protection against avian coccidiosis. A total of six hundred Cobb 500 was divided into six groups: first group (fed basal diet and unchallenged (control) and challenged (negative control, NC) groups were fed a basal diet without additives, and the other groups were infected with Eimeria spp and supplemented with 1.5% Glut alone or with three different levels of omega-3 (0.25, 0.5 and 1%) during the starter period. Notable improvement in body weight gain was observed in the group which fed basal diet supplemented with glut and 1% omega 3 even after coccidia infection (increased by 25% compared challenged group) while feed conversion ratio was restored to control. Myogeneis was enhanced in the group supplemented with Glut and omega-3 (upregulation of myogenin, MyoD, mechanistic target of rapamycin kinase and insulin like growth factor-1 and downregulating of myostatin genes). Groups supplemented with Glut and higher levels of omega-3 highly expressed occluding, mucin-2, junctional Adhesion Molecule 2, b-defensin-1 and cathelicidins-2 genes. Group fed 1% Glut + omega-3 showed an increased total antioxidant capacity and glutathione peroxidase and super oxide dismutase enzymes activities with reduced levels of malondialdehyde, reactive oxygen species and H2O2. Post-infection, dietary Glut and 1% omega-3 increased intestinal interleukin-10 (IL) and secretory immunoglobulin-A and serum lysozyme, while decreased the elevated inflammatory mediators comprising interleukin IL-6, tumor necrosis factor-alpha, nitric oxide (NO) and inducible NO synthase. Fecal oocyst excretion and lesions score severity were lowered in the group fed 1% Glut and omega 3. Based on these findings, dietary Glut and omega-3 supplementation augmented restored overall broilers' performance after coccidial challenge.
Collapse
Affiliation(s)
- Asmaa T.Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham A. Abd El-Wahab
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | - Saleh Altuwaijri
- Department of Pathology and laboratory diagnosis, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Rasha M.M. Ezz-Eldin
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ehab M. Abd-Allah
- Veterinary Educational Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shimaa Zayed
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Zohair S. Mulla
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudia Arabia
| | - Rasha B. El Sharkawy
- Department of Clinical Pathology, Zagazig Branch, Animal Health Research Institute (AHRI), Agriculture Research Center, Zagazig, Egypt
| | - Shereen Badr
- Department of Clinical Pathology, Animal Health Research Institute (AHRI), Mansoura Branch, Agricultural Research Center (ARC), Giza, Egypt
| | - Wessam Youssef
- Department of Biotechnology, Animal Health Research Institute (AHRI), Giza, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Conceição-Santos AL, Ferreira ACA, Sá NAR, Palomino GJQ, Silva AFB, Oliveira AC, Velarde JMDS, Celestino JJH, Rodrigues APR, Figueiredo JR. Anethole supplementation during in vitro maturation increases in vitro goat embryo production in a concentration-dependent manner. Theriogenology 2024; 215:78-85. [PMID: 38016304 DOI: 10.1016/j.theriogenology.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
During in vitro maturation (IVM) cumulus-oocyte complexes (COCs) are exposed to conditions that can trigger oxidative stress, thus, reducing oocyte maturation and viability. Aiming to mitigate these detrimental conditions, the effects of IVM medium supplementation with anethole have been tested. Anethole, also known as trans-anethole (1-methoxy-4 [1-propenyl]-benzene), is a naturally occurring phenylpropanoid with various pharmacological properties, including antioxidant effects. However, no study has examined anethole effect on goat COCs during IVM. Thus, the aim of this study was to evaluate the effects of different anethole concentrations on oocyte maturation, oxidative stress, and in vitro development of caprine embryos after parthenogenetic activation. Goat COCs were selected and randomly distributed into the following treatments: TCM-199+ medium (control), or TCM-199+ medium supplemented with 30 μg/mL (AN30); 300 μg/mL (AN300) or 2000 μg/mL (AN2000) of anethole. After IVM, part of the COCs was chosen for oocyte viability and chromatin configuration, intracellular reactive oxygen species levels, and mitochondrial membrane potential assessment. Another part of COCs was parthenogenetically activated, and presumptive zygotes were cultured for 7 days. Results demonstrated that anethole at 30 μg/mL increased oocyte maturation and cleavage rates when compared to the other treatments (P < 0.05), as well as oocyte viability and in vitro embryo production when compared to the control treatment (P < 0.05). Additionally, treatment with anethole at 2000 μg/mL decreased oocyte nuclear maturation and cleavage rates when compared to other treatments (P < 0.05) and embryo production if compared to control and AN30 treatments (P < 0.05). Moreover, anethole at 2000 μg/mL increased mitochondrial membrane potential when compared to the other treatments (P < 0.05). In conclusion, anethole exerts a concentration-dependent effect during goat COCs IVM. For a more desirable outcome of oocyte viability and maturation, and in vitro embryo production, the use of anethole at 30 μg/mL is recommended.
Collapse
Affiliation(s)
- A L Conceição-Santos
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - A C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - N A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - G J Q Palomino
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - A F B Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - A C Oliveira
- Superior Institute of Biomedical Science, State University of Ceará, Fortaleza, CE, Brazil
| | - J M D S Velarde
- Department of Animal Science, Center of Agrarian Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - J J H Celestino
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - A P R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
6
|
Yuan H, Bai G, Lin Y, Yu X, Yang Q, Dou R, Sun H, Zhao Z, Li Z, Chen Z, Xu L. Effects of dietary Nisin on growth performance, immune function, and gut health of broilers challenged by Clostridium perfringens. J Anim Sci 2024; 102:skae017. [PMID: 38266070 PMCID: PMC11254313 DOI: 10.1093/jas/skae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024] Open
Abstract
Nisin (Ni) is a polypeptide bacteriocin produced by lactic streptococci (probiotics) that can inhibit the majority of gram-positive bacteria, and improve the growth performance of broilers, and exert antioxidative and anti-inflammatory properties. The present study investigated the potential preventive effect of Nisin on necrotic enteritis induced by Clostridium perfringens (Cp) challenge. A total of 288 Arbor Acres broiler chickens of 1-d-olds were allocated using 2 × 2 factorial arrangement into four groups with six replicates (12 chickens per replicate), including: (1) control group (Con, basal diet), (2) Cp challenge group (Cp, basal diet + 1.0 × 108 CFU/mL Cp), (3) Ni group (Ni, basal diet + 100 mg/kg Ni), and (4) Ni + Cp group (Ni + Cp, basal diet + 100 mg/kg Ni + 1.0 × 108 CFU/mL Cp). The results showed that Cp challenge decreased the average daily gain (ADG) of days 15 to 21 (P<0.05) and increased interleukin-6 (IL-6) content in the serum (P < 0.05), as well as a significant reduction in villus height (VH) and the ratio of VH to crypt depth (VCR) (P<0.05) and a significant increase in crypt depth (CD) of jejunum (P<0.05). Furthermore, the mRNA expressions of Occludin and Claudin-1 were downregulated (P<0.05), while the mRNA expressions of Caspase3, Caspase9, Bax, and Bax/Bcl-2 were upregulated (P<0.05) in the jejunum. However, the inclusion of dietary Ni supplementation significantly improved body weight (BW) on days 21 and 28, ADG of days 15 to 21 (P<0.05), decreased CD in the jejunum, and reduced tumor necrosis factor-α (TNF-α) content in the serum (P<0.05). Ni addition upregulated the mRNA levels of Claudin-1 expression and downregulated the mRNA expression levels of Caspase9 in the jejunum (P<0.05). Moreover, Cp challenge and Ni altered the cecal microbiota composition, which manifested that Cp challenge decreased the relative abundance of phylum Fusobacteriota and increased Shannon index (P<0.05) and the trend of phylum Proteobacteria (0.05
Collapse
Affiliation(s)
- Hua Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guangdong Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xilong Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qinghui Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Renkai Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hao Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhihui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Liangmei Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Wei Y, Sun L, Liu C, Li L. Naringin regulates endoplasmic reticulum stress and mitophagy through the ATF3/PINK1 signaling axis to alleviate pulmonary fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1155-1169. [PMID: 36688958 DOI: 10.1007/s00210-023-02390-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease that is characterized by abnormal proliferation of fibroblasts and extracellular matrix remodeling, ultimately leading to respiratory insufficiency or even death. Naringin (Nar), a natural compound derived from grapefruit and citrus fruits, has several pharmacological activities that are associated with therapeutic benefits for IPF. However, the specific molecular mechanisms underlying its pulmonary tissue-protective effects remain largely unknown. This study aimed to investigate the effects of Nar on endoplasmic reticulum stress (ERS) and mitophagy. A bleomycin (BLM)-induced mouse model of IPF was established for treatment with different doses of Nar. Histopathological changes in the lung were examined by hematoxylin and eosin (HE) staining and Masson staining. The extent of fibrosis was determined by measuring hydroxyproline and collagen expression levels. The levels of inflammatory cytokines and oxidative stress indicators were determined by Enzyme linked immunosorbent assay (ELISA) and biochemical kits. Western blot and immunofluorescence were used to evaluate the expression levels of the mitophagy-related markers. Cell apoptosis was estimated by western blot and TUNEL staining. Nar reduced the levels of inflammatory response, oxidative stress and decreased the proportion of apoptosis. Nar also inhibited the expression of the ERS and mitophagy-related genes and ERS-downstream proteins, thereby activating transcription factor (ATF) 3 and inhibiting the transcription of PTEN-induced kinase 1 (PINK1). Taken together, Nar is a promising therapeutic agent for treating IPF via inhibiting ERS, reducing apoptosis, and maintaining mitochondrial homeostasis, all of which may be associated with the regulation of the ATF3/PINK1 signaling axis.
Collapse
Affiliation(s)
- Yi Wei
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lei Sun
- Department of Pharmacy, Aoshanwei Hospital of Qingdao Jimo District, Qingdao, 266235, China
| | - Chao Liu
- Department of Medical Imaging, Qingdao Hospital of Traditional Chinese Medicine, 4th Renmin Road, Qingdao, 266013, China.
| | - Lujia Li
- Department of Health Care, People's Liberation Army Navy 971 Hospital, Shandong Road, Qingdao, 266071, China.
| |
Collapse
|
8
|
Tong Y, Yu C, Chen S, Zhang X, Yang Z, Wang T. Trans-anethole exerts protective effects on lipopolysaccharide-induced acute jejunal inflammation of broilers via repressing NF-κB signaling pathway. Poult Sci 2022; 102:102397. [PMID: 36565631 PMCID: PMC9801195 DOI: 10.1016/j.psj.2022.102397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
This study aimed to explore the effects of trans-anethole (TA) on lipopolysaccharide (LPS)-induced acute jejunal inflammation model of broilers. A total of 160 one-day-old broilers (male; Arbor Acres) were randomly allocated into four treatment groups with 8 replicates of 5 birds each. On d 20, the dose of 5 mg/kg body weight LPS solution and the equal amount of sterile saline were intraperitoneally injected into LPS-challenged and unchallenged broilers, respectively. Compared with the control group, LPS decreased (P < 0.05) the villus height (VH) and the ratio of villus height to crypt depth (VCR) but increased (P < 0.05) the crypt depth (CD), meanwhile, enhanced (P < 0.01) the levels of interleukin-6 (IL-6), interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) but decreased (P < 0.01) the level of interleukin-10 (IL-10). The group supplemented with 600 mg/kg of TA had lower (P < 0.01) CD and higher (P < 0.01) VCR than the LPS group. TA increased (P < 0.01) the level of IL-10 and decreased (P < 0.01) the level of IL-1β. The mRNA expression levels of IL-6, nuclear factor kappa B (NF-κB), TNF-α were up-regulated (P < 0.05) and the levels of IL-10 and inhibitor of NF-κB alpha (IκBα) were down-regulated (P < 0.05) by LPS as compared with the control group. TA down-regulated (P < 0.05) the increased mRNA expression levels of genes caused by LPS, as well as up-regulated (P < 0.05) the levels of IL-10 and IκBα. Furthermore, LPS down-regulated (P < 0.05) and up-regulated (P < 0.05) the protein expression levels of IκBα and NF-κB p65, respectively. TA up-regulated (P < 0.05) the level of IκBα and down-regulated (P < 0.05) the level of NF-κB p65. The conclusion of this study is that TA could exert protective effect on the LPS-induced acute jejunal inflammation of broilers via repressing the activation of NF-κB and the 600 mg/kg is the optimal dose against LPS-induced acute jejunal inflammation of broilers.
Collapse
Affiliation(s)
- Yichun Tong
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, PR China
| | - Caiyun Yu
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, PR China
| | - Shun Chen
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, PR China
| | - Xianglei Zhang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, PR China
| | - Zaibin Yang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, 271018 Shandong, PR China
| | - Tian Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, PR China,Corresponding author:
| |
Collapse
|
9
|
Effects of Dietary Supplementation with Vitamin A on Antioxidant and Intestinal Barrier Function of Broilers Co-Infected with Coccidia and Clostridium perfringens. Animals (Basel) 2022; 12:ani12233431. [PMID: 36496951 PMCID: PMC9740507 DOI: 10.3390/ani12233431] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Necrotic enteritis (NE) impairs poultry production and causes great economic loss. The nutritional regulation of diets has the potential to alleviate NE. The present study was conducted to investigate the effects of dietary supplementation with vitamin A (VA) on the antioxidant and intestinal barrier function of broilers co-infected with coccidia and C. perfringens (CCP). In a 2 × 2 factorial arrangement, 336 one-day-old Ross 308 broilers were divided into four treatments with two levels of VA (0 or 12,000 IU/kg) and challenged with or without CCP. The animal trial lasted for 42 days. The results showed that dietary supplemental VA improved body weight gain (BWG) and the feed intake (FI), and the FI was negatively affected by CCP. Additionally, the levels of catalase (CAT) in the serum, total superoxide dismutase (T-SOD), and CAT in the jejunum and glutathione peroxidase (GSH-Px) in the liver decreased with the CCP challenge (p < 0.05). The mRNA levels of SOD, CAT, GSH-Px1, and GSH-Px3 in the liver and jejunum were upregulated by the CCP challenge (p < 0.05). In addition, the level of serum diamine oxidase (DAO), and the mRNA level of ZO-1 were also upregulated with the CCP challenge. Dietary supplementation with VA contributed to the intestinal villi height and the mRNA level of Mucin-2 in the jejunum (p < 0.05). Additionally, dietary VA had the ability to alleviate the upregulation of SOD in the liver and SOD, CAT, GSH-Px1, GSH-Px3, ZO-1, and claudin-1 in the jejunum with the CCP challenge (p < 0.05). However, the mRNA level of GSH-Px3 and the levels of SOD in the liver and jejunum were downregulated with the VA supplementation in the diet. In conclusion, dietary VA improved the growth performance and the intestinal barrier function; nonetheless, it failed to alleviate the negative effects of CCP on the antioxidant function in broilers.
Collapse
|