1
|
Zhang X, Wu L, Gu L, Jiang Q, He Z, Qi Y, Zheng X, Xu T. Dietary areca nut extract supplementation modulates the growth performance and immunity of Jiaji ducks (Cairina moschata). Poult Sci 2025; 104:104971. [PMID: 40101514 PMCID: PMC11960628 DOI: 10.1016/j.psj.2025.104971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
Areca nut extract (ANE) has a variety of pharmacological effects on animals. Here, we investigated the influence of ANE on the slaughter performance and immune function of Jiaji ducks. One hundred and fifty 42-day-old healthy Jiaji ducks were randomly divided into 2 groups (5 replicates of 15 ducks each), named DCK group (control) and DNT group (treatment), respectively. Ducks in the DCK group were fed a basal diet and ducks in the DNT group were fed a basal food supplemented with 0.08 g ANE per kg of basal diet. Additionally, using proteomics, untargeted metabolomics, and metagenomics, we analyzed the impact of ANE on the protein profile of the spleen, the composition of plasma metabolites, and the structure of the cecal microbiota. The results showed that the dietary inclusion of ANE significantly increased the slaughter rate of Jiaji ducks. Proteomic analysis revealed 78 differentially expressed proteins in the spleens of ANE-treated birds, including 54 proteins up-regulated and 24 proteins down-regulated in the DNT group, mainly enriched in cell adhesion molecules and glutathione metabolic pathways. Untargeted metabolomic analysis revealed that 117 serum metabolites were differentially regulated between the ANE and DCK groups; meanwhile, KEGG pathway analysis indicated that these metabolites were mainly involved in arachidonic acid metabolism, phospholipase D signaling pathway and eicosanoids. Furthermore, a metagenomic analysis showed that the genus Methanobrevibacter was significantly downregulated in the ANE supplementation group. Combined, the results of the metagenomic and metabolomic analyses showed that the relative abundance of Prevotella was significantly lower in the ANE group than in the DCK group and that Prevotella was negatively correlated with the levels of the anti-inflammatory compound hydrocinnamic acid and the lipid metabolism regulator ganoderic acid A. This study provides a reference for the application of ANE as a supplement in the diet of Jiaji ducks.
Collapse
Affiliation(s)
- Xiaohui Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan 471003, China.
| | - Lehuan Wu
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan 471003, China
| | - Lihong Gu
- Hainan Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Haikou, Hainan 571100, China
| | - Qicheng Jiang
- Hainan Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Haikou, Hainan 571100, China
| | - Zhongchun He
- Hainan Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Haikou, Hainan 571100, China
| | - Yanxia Qi
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan 471003, China
| | - Xinli Zheng
- Hainan Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Haikou, Hainan 571100, China
| | - Tieshan Xu
- Chinese Academy of Tropical Agricultural Sciences, Institute of Tropical Crop Varieties Resources, Haikou, Hainan 571101, China
| |
Collapse
|
2
|
Ren J, Ren S, Yang H, Ji P. Effects of Phytogenic Feed Additive on Production Performance, Slaughtering Performance, Meat Quality, and Intestinal Flora of White-Feathered Broilers. Vet Sci 2025; 12:396. [PMID: 40431489 PMCID: PMC12115448 DOI: 10.3390/vetsci12050396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
This study systematically evaluates the effects of dietary supplementation with phytogenic feed additive (0.2%, 0.4%, and 0.8%) on white-feathered broilers (n = 88) through a 42-day controlled trial with the weight of approximately 50 g. The experimental design incorporates a triplicate-group-replicated protocol with daily feed intake monitoring, culminating in comprehensive assessments of the growth performance, slaughter traits, meat quality, and cecal microbiome dynamics. The results demonstrated that the 0.8% supplementation significantly enhanced average daily weight gain (p < 0.05), optimized meat characteristics (elevated the redness of meat, reduced pH; p < 0.05), and restructured cecal microbiota by enriching Deinococcus-Thermus, Bacteroidetes, Actinobacteria, and Cyanobacteria (p < 0.05). Based on microbiota-based functional prediction analyses (COG/KEGG/MetaCyc), phytogenic feed additive significantly activated lipid metabolism pathways in broilers. The immunomodulatory correlations between Deinococcus/Thermus/Cyanobacteria and immune indicators suggested their potential immune-enhancing effects mediated through host immune regulation. The findings established the 0.8% phytogenic feed additive as a multifunctional phytogenic additive that synchronously improves zootechnical performance, meat quality, and microbiome homeostasis, offering a scientifically validated strategy for antibiotic-free precision nutrition in sustainable poultry production.
Collapse
Affiliation(s)
- Jianming Ren
- College of Chemistry and Life Sciences, Gansu Normal University for Nationalities, No. 233, Zhihema Road, Hezuo 747000, China
| | - Siyu Ren
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (S.R.); (H.Y.)
| | - Haochi Yang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (S.R.); (H.Y.)
| | - Peng Ji
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (S.R.); (H.Y.)
| |
Collapse
|
3
|
Zheng W, Chen S, Guan Y, Wu B. Effects of Yupingfeng polysaccharide in diet on slaughtering performance and meat flavor of Qingyuan partridge chicken. Food Chem 2025; 471:142814. [PMID: 39798377 DOI: 10.1016/j.foodchem.2025.142814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
With the improvement of living standards, people's expectations for chickens' quality and flavor have also grown. Yupingfeng polysaccharide (YPF-P) has pharmacological effects such as regulating fatty acid composition and gut microbiota. In this study, different doses of YPF-P were added to the feed of qingyuan partridge chickens. The results showed that 8 g/kg YPF-P increased thigh muscle yield by 16.8 % and improved chicken breast flavor by elevating its pH1h and protein content, thereby enhancing flavor richness by 17.16 %.The non-targeted metabolomics (LC-MS) analysis of chicken breast revealed significant enrichment in Arachidonic acid metabolism. Correlation analysis showed the results of LC-MS are significantly correlated with flavor, protein and fat content. Taken together, YPF-P could provide better taste by changing muscle metabolism and increasing the deposition of beneficial compounds in muscle. This study provides valuable insights into the impact of YPF-P as feed additive on the meat flavor quality of poultry.
Collapse
Affiliation(s)
- Wendan Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Yuling Guan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China.
| |
Collapse
|
4
|
Li D, Li C, Liu N, Liu H, Yu Z, Liu Q, Shu G, Lin J, Zhang W, Peng G, Zhao L, Tang H, Li H, Xu F, Fu H. Integrated metabolomics and intestinal microbiota analysis to reveal anti-post-weaning diarrhea mechanisms of Modified Yupingfeng Granule in Rex rabbits. Front Microbiol 2025; 16:1470731. [PMID: 40276219 PMCID: PMC12020438 DOI: 10.3389/fmicb.2025.1470731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/17/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Post-weaning Diarrhea (PWD) is a kind of physiological stress diarrhea in Rex rabbits after weaning, which can lead to death in severe cases. Traditional Chinese medicine (TCM) has been widely used in animal due to its advantages of natural origin, diverse functions, safety, reliability, economy and environmental protection. Modified Yupingfeng Granule (MYPFG) is an improved Yupingfeng prescription based on the famous traditional Chinese prescription Yupingfeng (YPF), which is combined with other TCM and has obvious synergistic and additive activity in order to obtain an excellent natural medicine for PWD. Methods In this study, 120 weaned Rex rabbits were randomly allocated to 4 treatment groups, including control (CON), low dose (LD), medium dose (MD), high dose (HD). Rabbits were fed a control diet or a different MYPFG proportions of diet for 30 days. The study combined 16S rRNA analysis of intestinal microbiota and cecal contents metabolomics to explore the MYPFG effect on weaned Rex rabbits. Results MYPFG increased average daily gain, villus length to crypt depth ratio and decreased the feed to meat ratio, diarrhea frequency, mortality rate, depth of crypt (p < 0.05). The intestinal microbiota test found that MYPFG could change the abundances of Patescibacteria, Sphingobium, Ruminococcus, and Oxalobacter. Metabolomics analysis found that effect may be related to its regulation of Glycine, serine and threonine metabolism, Arginine and proline metabolism. Nicotinate and nicotinamide metabolism. Discussion MYPFG could regulate intestinal microbiota and change the metabolic pathway of some amino acids to alleviate the PWD in Rex rabbits.
Collapse
Affiliation(s)
- Dongbo Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chao Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ning Liu
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Hanzhong Liu
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Zhiju Yu
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Quanjin Liu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Zhang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guangneng Peng
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huaqiao Tang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haohuan Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Funeng Xu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Chen L, Wang X, Li J, Zhang L, Wu W, Wei S, Zou W, Zhao Y. Elucidation of the mechanism of berberine against gastric mucosa injury in a rat model with chronic atrophic gastritis based on a combined strategy of multi-omics and molecular biology. Front Pharmacol 2025; 15:1499753. [PMID: 39834822 PMCID: PMC11743660 DOI: 10.3389/fphar.2024.1499753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Background Berberine (BBR) is widely used to treat gastrointestinal diseases. However, the pharmacological mechanism of action of BBR in anti-chronic atrophic gastritis (CAG) remains unclear. This study aimed to investigate the mechanism of action of BBR in CAG by integration of molecular biology and multi-omics studies strategy. Methods The CAG model was established by alternating drinking water of 0.1% ammonia and 20 mmol/L sodium deoxycholate, accompanied by an irregular diet. Serum biochemical indices including PGI, PGII, GAS-17, IL-6, IL-1β, and TNF-α were analyzed. HE and AB-PAS staining were employed to assess pathological damage in gastric tissue. The underlying molecular mechanism of BBR in CAG treatment was explored via the integration of network pharmacology, transcriptomics, widely targeted metabolomics and intestinal flora analysis. Finally, relevant key targets and pathway were verified. Results The results showed that BBR exerted therapeutic effects in improving CAG via alleviating inflammation response, maintaining the gastric mucosal barrier's integrity and repairing gastric mucosal tissues. Network pharmacology showed that the treatment of CAG by BBR mainly involved in inflammatory response, apoptosis, angiogenesis and metabolic processes. Furthermore, 234 different expression genes were identified in the gastric tissue transcriptome, which were mainly involved in biological processes such as cell adhesion, angiogenesis, apoptosis, cell migration and lipids metabolism by regulating the MAPK signaling pathway. Metabolomics results showed that 125 differential metabolites were also identified, while the pathways were mainly involved in D-glutamine and D-glutamate metabolism, and tyrosine metabolism, etc. Integrating transcriptomics and metabolomics analyses indicated that BBR directly regulated Carnitine C3:0, LPC (0:0/20:3), L-Glutamic Acid and FFA (15:0) by acting on SLC25A20, PNLIPRP1, PLA2G4C, GSR, GFPT2, GCLM, CTPS1, ACSL1, ACOT4 and ACOT2. 16S rRNA sequencing revealed that BBR could restore the balance of gut microbiota dysbiosis by significantly regulating the relative abundance of unclassified_Muribaculaceae and Lactobacillus_johnsonii. Conclusion This study demonstrated that BBR alleviates CAG through the regulation of the MAPK signaling pathway, metabolic disorders and gut microbiota dysbiosis, thereby revealing the complex mechanism of BBR in relation to alleviating CAG from multiple levels and perspectives.
Collapse
Affiliation(s)
- Lisheng Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianyu Li
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lijuan Zhang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenbin Wu
- Healthcare Office of the Service Bureau of Agency for Offices Administration of the Central Military Commission, Beijing, China
| | - Shizhang Wei
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Liu M, Sun C, Zhou Q, Xu P, Wang A, Zheng X, Liu B. Supplementation of Yupingfeng polysaccharides in low fishmeal diets enhances intestinal health through influencing the intestinal barrier, immunity, and microflora in Macrobrachium rosenbergii. Front Immunol 2024; 15:1480897. [PMID: 39660141 PMCID: PMC11628508 DOI: 10.3389/fimmu.2024.1480897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction This study aimed to investigate the effects of a low-fishmeal diet (LF, substituting soybean meal for 40% fish meal) and the supplementation of 500 mg/kg and 1000 mg/kg Yu Ping Feng (YPF) polysaccharides on the growth performance, antioxidant enzyme activities, intestinal ultrastructure, non-specific immunity, and microbiota of Macrobrachium rosenbergii. Methods The study involved the administration of different diets to M. rosenbergii, including a control diet, a low-fishmeal diet (LF), and LF diets supplemented with 500 mg/kg and 1000 mg/kg YPF polysaccharides. Growth performance, antioxidant enzyme activities, intestinal ultrastructure, non-specific immunity, and microbiota were assessed. Results The LF diet significantly reduced growth performance parameters compared to the control group. However, YPF supplementation notably improved these parameters, with the greatest improvement observed at a 1000 mg/kg dosage. Antioxidant enzyme activities (SOD, GSH-PX) were diminished in the LF group, accompanied by elevated MDA levels, whereas YPF supplementation restored these activities and reduced MDA levels. Ultrastructural analysis revealed that the LF diet caused intestinal villi detachment and peritrophic matrix (PM) shedding, which were alleviated by YPF. Gene expression related to PM formation (GS, CHS, EcPT) was downregulated in the LF group but significantly upregulated in the 1000P group. Non-specific immune gene expressions (IMD, Relish, IκBα) and enzyme activities (NO, iNOS) were suppressed in the LF group but enhanced by YPF supplementation. Microbial community analysis showed reduced diversity and altered composition in the LF group, with increased Proteobacteria and decreased Firmicutes, which were partially restored by YPF. Correlation analysis revealed that Lactobacillus and Chitinibacter play pivotal roles in regulating intestinal health. Lactobacillus exhibited a positive relationship with the intestinal PM and immune-related indicators, whereas Chitinibacter was negatively associated with these factors. Discussion These results highlight the adverse impacts of a low-fishmeal diet on the intestinal health of M. rosenbergii and demonstrate the beneficial effects of YPF polysaccharides in alleviating these negative consequences through various mechanisms, including improved growth performance, enhanced antioxidant enzyme activities, restored intestinal ultrastructure, and modulated immune responses. The findings suggest that YPF supplementation could be a valuable strategy for mitigating the negative effects of low-fishmeal diets in aaquaculture.
Collapse
Affiliation(s)
- Mingyang Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Aimin Wang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Bo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|
7
|
Zhu J, Wang Z, Li N, Ma Y, Liu T, Wang J, Shen H. Effects of dietary Brassica rapa L. polysaccharide on growth performance, immune and antioxidant functions and intestinal flora of yellow-feathered quail. Sci Rep 2024; 14:28252. [PMID: 39548157 PMCID: PMC11567957 DOI: 10.1038/s41598-024-77017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
This study aimed to explore the impact of Brassica rapa L. polysaccharides (BRP) on the growth, immune response, antioxidant capacity, and cecal microbiota in yellow-feathered quails. A total of 250 one-day-old yellow-feathered quails, evenly divided by sex, were randomly assigned to five groups, with each group comprising ten replicates of five quails each. The control group (CON) received a basic diet, while the antibiotic control group (CTC) was fed a basic diet supplemented with chlortetracycline (0.05 g/kg). BRP was administered at concentrations of 0.25 g/kg (Low dose BRP, LBRP), 0.5 g/kg (Medium dose BRP, MBRP), and 1 g/kg (High dose BRP, HBRP). The duration of the experiment was 42 days. The results indicated that, compared to the CON group, the final body weight of quails in the MBRP group significantly increased (P < 0.05), and there was a significant difference in body weight between the LBRP group and the CTC group (P < 0.05). At 21 days of age, the average weights of the thymus and bursa of Fabricius in the MBRP group were significantly greater than those in the CON group (P < 0.05), with no significant difference observed when compared to the CTC group (P > 0.05); at 42 days of age, the average weight of the thymus in the MBRP group was significantly greater than that in the CON group (P < 0.05), with no significant difference observed compared to the CTC group (P > 0.05). At 21 days of age, the levels of IgA and IgG in the MBRP group were significantly elevated compared to the CON group (P < 0.05), with no significant difference noted compared to the CTC group (P > 0.05). Additionally, the MBRP group showed significant increases in CAT, T-SOD, and GSH-Px levels (P < 0.05) compared to the CON group; the levels of IL-1β and TNF-α were significantly reduced (P < 0.05), and the level of IL-10 was significantly elevated (P < 0.05) compared to the CON group. Furthermore, 16 S rRNA sequencing revealed that BRP supplementation increased the populations of beneficial cecal bacteria such as Lactococcus, Weissella, Parabacteroides, and norank_f_Ruminococcaceae, and decreased the population of the harmful bacterium Campylobacter, indicating that BRP modulates the microbial community structure in the cecum of yellow-feathered quails. In summary, BRP enhanced the growth performance, serum immunoglobulin levels, antioxidant functions, and improved the intestinal microbiota in yellow-feathered quails.
Collapse
Affiliation(s)
- Jianjun Zhu
- Collage of Animal Science & Technology, Shihezi University, Xinjiang, 832003, P. R. China
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Zhengli Wang
- Collage of Animal Science & Technology, Shihezi University, Xinjiang, 832003, P. R. China
| | - Ning Li
- Collage of Animal Science & Technology, Shihezi University, Xinjiang, 832003, P. R. China
| | - Yan Ma
- Collage of Animal Science & Technology, Shihezi University, Xinjiang, 832003, P. R. China
| | - Tingting Liu
- Collage of Animal Science & Technology, Shihezi University, Xinjiang, 832003, P. R. China
| | - Jungang Wang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China.
| | - Hong Shen
- Collage of Animal Science & Technology, Shihezi University, Xinjiang, 832003, P. R. China.
| |
Collapse
|
8
|
Yang J, Gao Y, Mao H, Kuang X, Tian F. Qiju Dihuang Pill protects the lens epithelial cells via alleviating cuproptosis in diabetic cataract. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118444. [PMID: 38851473 DOI: 10.1016/j.jep.2024.118444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qiju Dihuang Pill (QDP) is a traditional Chinese medicine prescription for the treatment of eye diseases. Novel literature reports that copper-induced cell death, called as cuproptosis, is a copper-dependent and differs distinctly from other types of cell death. AIM OF THE STUDY The present study aims to investigate whether QDP could protect lens epithelial cells via alleviating copper-induced death in diabetic cataract. MATERIALS AND METHODS The different concentration of QDP medicated serum was administrated on high glucose (HG)-induced human lens epithelial cells (HLECs). The copper concentration was tested using Elabscience Copper Assay kit. The proliferation was detected using CCK-8 and EdU assays. The molecular binding was identified using RIP-PCR and luciferase reporter assay. RESULTS Results indicated that HG culture condition triggered the copper concentration and repressed the proliferation of HLECs. Then, the elesclomol-Cu (Es-Cu) administration up-regulated the copper concentration and inhibited the proliferation, and cuproptosis inhibitor tetrathiomolybdate (TTM) could specifically reverse the consequence. QDP treatment reduced the copper concentration and cuproptosis-related genes (SLC31A1, FDX1). MeRIP-Seq and RIP-PCR confirmed that QDP reduced the stability of SLC31A1 mRNA through m6A modified site, and copper actually synergized the molecular binding efficiency. Rescue assay verified the role of QDP and SLC31A1 on HLECs' cuproptosis characteristic. CONCLUSION This research identified the protective role of QDP on HG-induced HLECs in DC through decreasing m6A/SLC31A1-mediated cuproptosis in DC. This finding provides novel insights into mechanisms for QDP and sheds light on the multifaceted role of traditional prescription on DC.
Collapse
Affiliation(s)
- Jun Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yichen Gao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Han Mao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xinqi Kuang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Fang Tian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|