1
|
Ma E, Guo X, Hu M, Wang P, Wang X, Wei C, Cheng G. A predictive language model for SARS-CoV-2 evolution. Signal Transduct Target Ther 2024; 9:353. [PMID: 39710752 DOI: 10.1038/s41392-024-02066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Modeling and predicting mutations are critical for COVID-19 and similar pandemic preparedness. However, existing predictive models have yet to integrate the regularity and randomness of viral mutations with minimal data requirements. Here, we develop a non-demanding language model utilizing both regularity and randomness to predict candidate SARS-CoV-2 variants and mutations that might prevail. We constructed the "grammatical frameworks" of the available S1 sequences for dimension reduction and semantic representation to grasp the model's latent regularity. The mutational profile, defined as the frequency of mutations, was introduced into the model to incorporate randomness. With this model, we successfully identified and validated several variants with significantly enhanced viral infectivity and immune evasion by wet-lab experiments. By inputting the sequence data from three different time points, we detected circulating strains or vital mutations for XBB.1.16, EG.5, JN.1, and BA.2.86 strains before their emergence. In addition, our results also predicted the previously unknown variants that may cause future epidemics. With both the data validation and experiment evidence, our study represents a fast-responding, concise, and promising language model, potentially generalizable to other viral pathogens, to forecast viral evolution and detect crucial hot mutation spots, thus warning the emerging variants that might raise public health concern.
Collapse
Affiliation(s)
- Enhao Ma
- School of Basic Medical Science, Tsinghua University, 30 Shuangqing Rd., Haidian District, Beijing, 100084, China
| | - Xuan Guo
- School of Basic Medical Science, Tsinghua University, 30 Shuangqing Rd., Haidian District, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangqiao Rd., Guangming District, Shenzhen, Guangdong, 518000, China.
| | - Mingda Hu
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Xin Wang
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai District, Beijing, 100071, China.
| | - Gong Cheng
- School of Basic Medical Science, Tsinghua University, 30 Shuangqing Rd., Haidian District, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangqiao Rd., Guangming District, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
2
|
Ashoor D, Marzouq M, Fathallah MD. Comparison of the Neutralization Power of Sotrovimab Against SARS-CoV-2 Variants: Development of a Rapid Computational Method. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2024; 5:e58018. [PMID: 39388246 PMCID: PMC11502979 DOI: 10.2196/58018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND The rapid evolution of SARS-CoV-2 imposed a huge challenge on disease control. Immune evasion caused by genetic variations of the SARS-CoV-2 spike protein's immunogenic epitopes affects the efficiency of monoclonal antibody-based therapy of COVID-19. Therefore, a rapid method is needed to evaluate the efficacy of the available monoclonal antibodies against the new emerging variants or potential novel variants. OBJECTIVE The aim of this study is to develop a rapid computational method to evaluate the neutralization power of anti-SARS-CoV-2 monoclonal antibodies against new SARS-CoV-2 variants and other potential new mutations. METHODS The amino acid sequence of the extracellular domain of the spike proteins of the severe acute respiratory syndrome coronavirus (GenBank accession number YP_009825051.1) and SARS-CoV-2 (GenBank accession number YP_009724390.1) were used to create computational 3D models for the native spike proteins. Specific mutations were introduced to the curated sequence to generate the different variant spike models. The neutralization potential of sotrovimab (S309) against these variants was evaluated based on its molecular interactions and Gibbs free energy in comparison to a reference model after molecular replacement of the reference receptor-binding domain with the variant's receptor-binding domain. RESULTS Our results show a loss in the binding affinity of the neutralizing antibody S309 with both SARS-CoV and SARS-CoV-2. The binding affinity of S309 was greater to the Alpha, Beta, Gamma, and Kappa variants than to the original Wuhan strain of SARS-CoV-2. However, S309 showed a substantially decreased binding affinity to the Delta and Omicron variants. Based on the mutational profile of Omicron subvariants, our data describe the effect of the G339H and G339D mutations and their role in escaping antibody neutralization, which is in line with published clinical reports. CONCLUSIONS This method is rapid, applicable, and of interest to adapt the use of therapeutic antibodies to the treatment of emerging variants. It could be applied to antibody-based treatment of other viral infections.
Collapse
Affiliation(s)
- Dana Ashoor
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Maryam Marzouq
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - M-Dahmani Fathallah
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
3
|
Jubair M, Hossain M, Begum M, Moon S, Islam S, Karim M, Rahman S, Khan M, Habib M, Shirin T, Qadri F, Rahman M. A Strategic Framework of SARS-CoV-2 Genomic Surveillance in Bangladesh. Influenza Other Respir Viruses 2024; 18:e70019. [PMID: 39440811 PMCID: PMC11497173 DOI: 10.1111/irv.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The global pandemic caused by SARS-CoV-2 has underlined the significance of strict genomic surveillance to track virus evolution and the possible emergence of new variants, particularly in densely populated countries like Bangladesh. This study outlines a strategic framework of genomic surveillance to track the evolution of the virus in Bangladesh between June 2021 and December 2022 through the National SARS-CoV-2 Variant Surveillance (NSVS) program involving collaboration across 4 major institutes and 13 hospitals nationwide. METHODS We aimed to capture the variants of SARS-CoV-2 throughout the country utilizing standardized procedures, modern sequencing technology, and stringent quality control, promoting data accuracy and the timely detection of new variants of concern. We sequenced over 2200 genomes, documenting the prevalence of the Delta variant initially, followed by the emergence of Omicron variants BA.1, BA.2, BA.5, and XBB, each affecting transmission rates and vaccine efficacy differently. RESULTS The clinical manifestations of the variants differed, with some symptoms occurring more frequently in Delta cases and vice versa. Vaccinated individuals were more affected by Omicron cases compared to Delta cases. These variants were responsible for two major COVID-19 waves in the country, each with significant clinical effects. Phylogenetic analyses placed the local SARS-CoV-2 variants within a global context, indicating the Delta variant likely entered from India and Omicron from Europe. CONCLUSION This research highlights the significance of collaborative surveillance strategies for guiding public health choices and the critical role of genomic analysis in monitoring virus evolution, shaping targeted pandemic responses. Bangladesh's contributions significantly enhance global insight into COVID-19's genomic evolution.
Collapse
Affiliation(s)
- Mohammad Jubair
- Genome Centre, Infectious Diseases DivisionInternational Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
| | - Md. Mobarok Hossain
- Genome Centre, Infectious Diseases DivisionInternational Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
| | - Mst. Noorjahan Begum
- Infectious Diseases DivisionInternational Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
| | - Shovan Basak Moon
- Genome Centre, Infectious Diseases DivisionInternational Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
| | - Shahriar Islam
- Genome Centre, Infectious Diseases DivisionInternational Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
| | - Md. Yeasir Karim
- Infectious Diseases DivisionInternational Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
| | - Sezanur Rahman
- Infectious Diseases DivisionInternational Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
| | - Manjur H. Khan
- Department of VirologyInstitute of Epidemiology, Disease Control and ResearchDhakaBangladesh
| | | | - Tahmina Shirin
- Department of VirologyInstitute of Epidemiology, Disease Control and ResearchDhakaBangladesh
| | - Firdausi Qadri
- Infectious Diseases DivisionInternational Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
- Institute for Developing Science and Health Initiatives (ideSHi)DhakaBangladesh
| | - Mustafizur Rahman
- Genome Centre, Infectious Diseases DivisionInternational Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
- Infectious Diseases DivisionInternational Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
| |
Collapse
|
4
|
Nimer NA, Nimer SN. Immunization against Medically Important Human Coronaviruses of Public Health Concern. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:9952803. [PMID: 38938549 PMCID: PMC11208815 DOI: 10.1155/2024/9952803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
SARS-CoV-2 is a virus that affects the human immune system. It was observed to be on the rise since the beginning of 2020 and turned into a life-threatening pandemic. Scientists have tried to develop a possible preventive and therapeutic drug against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and other related coronaviruses by assessing COVID-19-recovered persons' immunity. This study aims to review immunization against SARS-CoV-2, along with exploring the interventions that have been developed for the prevention of SARS-CoV-2. This study also highlighted the role of phototherapy in treating SARS-CoV infection. The study adopted a review approach to gathering the information available and the progress that has been made in the treatment and prevention of COVID-19. Various vaccinations, including nucleotide, subunit, and vector-based vaccines, as well as attenuated and inactivated forms that have already been shown to have prophylactic efficacy against the Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV, have been summarized. Neutralizing and non-neutralizing antibodies are all associated with viral infections. Because there is no specific antiviral vaccine or therapies for coronaviruses, the main treatment strategy is supportive care, which is reinforced by combining broad-spectrum antivirals, convalescent plasma, and corticosteroids. COVID-19 has been a challenge to keep reconsidering the usual approaches to regulatory evaluation as a result of getting mixed and complicated findings on the vaccines, as well as licensing procedures. However, it is observed that medicinal herbs also play an important role in treating infection of the upper respiratory tract, the principal symptom of SARS-CoV due to their natural bioactive composite. However, some Traditional Chinese Medicines contain mutagens and nephrotoxins and the toxicological properties of the majority of Chinese herbal remedies are unknown. Therefore, to treat the COVID-19 infection along with conventional treatment, it is recommended that herb-drug interaction be examined thoroughly.
Collapse
Affiliation(s)
- Nabil A. Nimer
- Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Seema N. Nimer
- School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
5
|
Hattab D, Amer MFA, Al-Alami ZM, Bakhtiar A. SARS-CoV-2 journey: from alpha variant to omicron and its sub-variants. Infection 2024; 52:767-786. [PMID: 38554253 PMCID: PMC11143066 DOI: 10.1007/s15010-024-02223-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024]
Abstract
The COVID-19 pandemic has affected hundreds of millions of individuals and caused more than six million deaths. The prolonged pandemic duration and the continual inter-individual transmissibility have contributed to the emergence of a wide variety of SARS-CoV-2 variants. Genomic surveillance and phylogenetic studies have shown that substantial mutations in crucial supersites of spike glycoprotein modulate the binding affinity of the evolved SARS-COV-2 lineages to ACE2 receptors and modify the binding of spike protein with neutralizing antibodies. The immunological spike mutations have been associated with differential transmissibility, infectivity, and therapeutic efficacy of the vaccines and the immunological therapies among the new variants. This review highlights the diverse genetic mutations assimilated in various SARS-CoV-2 variants. The implications of the acquired mutations related to viral transmission, infectivity, and COVID-19 severity are discussed. This review also addresses the effectiveness of human neutralizing antibodies induced by SARS-CoV-2 infection or immunization and the therapeutic antibodies against the ascended variants.
Collapse
Affiliation(s)
- Dima Hattab
- School of Pharmacy, The University of Jordan, Queen Rania Street, Amman, Jordan
| | - Mumen F A Amer
- Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Zina M Al-Alami
- Department of Basic Medical Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
6
|
Arevalo-Romero JA, Chingaté-López SM, Camacho BA, Alméciga-Díaz CJ, Ramirez-Segura CA. Next-generation treatments: Immunotherapy and advanced therapies for COVID-19. Heliyon 2024; 10:e26423. [PMID: 38434363 PMCID: PMC10907543 DOI: 10.1016/j.heliyon.2024.e26423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.
Collapse
Affiliation(s)
- Jenny Andrea Arevalo-Romero
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Sandra M. Chingaté-López
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bernardo Armando Camacho
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Carlos Javier Alméciga-Díaz
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Cesar A. Ramirez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| |
Collapse
|
7
|
El-Megharbel SM, Qahl SH, Albogami B, Hamza RZ. Chemical and spectroscopic characterization of (Artemisinin/Querctin/ Zinc) novel mixed ligand complex with assessment of its potent high antiviral activity against SARS-CoV-2 and antioxidant capacity against toxicity induced by acrylamide in male rats. PeerJ 2024; 12:e15638. [PMID: 38188145 PMCID: PMC10768679 DOI: 10.7717/peerj.15638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024] Open
Abstract
A novel Artemisinin/Quercetin/Zinc (Art/Q/Zn) mixed ligand complex was synthesized, tested for its antiviral activity against coronavirus (SARS-CoV-2), and investigated for its effect against toxicity and oxidative stress induced by acrylamide (Acy), which develops upon cooking starchy foods at high temperatures. The synthesized complex was chemically characterized by performing elemental analysis, conductance measurements, FT-IR, UV, magnetic measurements, and XRD. The morphological surface of the complex Art/Q/Zn was investigated using scanning and transmission electron microscopy (SEM and TEM) and energy dispersive X-ray analysis (XRD). The in vitro antiviral activity of the complex Art/Q/Zn against SARS-CoV-2 and its in vivo activity against Acy-induced toxicity in hepatic and pulmonary tissues were analyzed. An experimental model was used to evaluate the beneficial effects of the novel Art/Q/Zn novel complex on lung and liver toxicities of Acy. Forty male rats were randomly divided into four groups: control, Acy (500 mg/Kg), Art/Q/Zn (30 mg/kg), and a combination of Acy and Art/Q/Zn. The complex was orally administered for 30 days. Hepatic function and inflammation marker (CRP), tumor necrosis factor, interleukin-6 (IL-6), antioxidant enzyme (CAT, SOD, and GPx), marker of oxidative stress (MDA), and blood pressure levels were investigated. Histological and ultrastructure alterations and caspase-3 variations (immunological marker) were also investigated. FT-IR spectra revealed that Zn (II) is able to chelate through C=O and C-OH (Ring II) which are the carbonyl oxygen atoms of the quercetin ligand and carbonyl oxygen atom C=O of the Art ligand, forming Art/Q/Zn complex with the chemical formula [Zn(Q)(Art)(Cl)(H2O)2]⋅3H2O. The novel complex exhibited a potent anti-SARS-CoV-2 activity even at a low concentration (IC50 = 10.14 µg/ml) and was not cytotoxic to the cellular host (CC50 = 208.5 µg/ml). Art/Q/Zn may inhibit the viral replication and binding to the angiotensin-converting enzyme-2 (ACE2) receptor and the main protease inhibitor (MPro), thereby inhibiting the activity of SARS-CoV-2 and this proved by the molecular dynamics simulation. It alleviated Acy hepatic and pulmonary toxicity by improving all biochemical markers. Therefore, it can be concluded that the novel formula Art/Q/Zn complex is an effective antioxidant agent against the oxidative stress series, and it has high inhibitory effect against SARS-CoV-2.
Collapse
Affiliation(s)
- Samy M. El-Megharbel
- Department of Chemistry, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Bander Albogami
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Reham Z. Hamza
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
8
|
Chen K, Zhang L, Fang Z, Li J, Li C, Song W, Huang Z, Chen R, Zhang Y, Li J. Analysis of the protective efficacy of approved COVID-19 vaccines against Omicron variants and the prospects for universal vaccines. Front Immunol 2023; 14:1294288. [PMID: 38090587 PMCID: PMC10711607 DOI: 10.3389/fimmu.2023.1294288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
By the end of 2022, different variants of Omicron had rapidly spread worldwide, causing a significant impact on the Coronavirus disease 2019 (COVID-19) pandemic situation. Compared with previous variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), these new variants of Omicron exhibited a noticeable degree of mutation. The currently developed platforms to design COVID-19 vaccines include inactivated vaccines, mRNA vaccines, DNA vaccines, recombinant protein vaccines, virus-like particle vaccines, and viral vector vaccines. Many of these platforms have obtained approval from the US Food and Drug Administration (FDA) or the WHO. However, the Omicron variants have spread in countries where vaccination has taken place; therefore, the number of cases has rapidly increased, causing concerns about the effectiveness of these vaccines. This article first discusses the epidemiological trends of the Omicron variant and reviews the latest research progress on available vaccines. Additionally, we discuss progress in the development progress and practical significance of universal vaccines. Next, we analyze the neutralizing antibody effectiveness of approved vaccines against different variants of Omicron, heterologous vaccination, and the effectiveness of multivalent vaccines in preclinical trials. We hope that this review will provide a theoretical basis for the design, development, production, and vaccination strategies of novel coronavirus vaccines, thus helping to end the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ling Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Chaonan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wancheng Song
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiwei Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruyi Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yanjun Zhang
- Department of Virus Inspection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianhua Li
- Department of Virus Inspection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
9
|
Mohapatra RK, Mishra S, Kandi V, Branda F, Ansari A, Rabaan AA, Kudrat‐E‐Zahan M. Analyzing the emerging patterns of SARS-CoV-2 Omicron subvariants for the development of next-gen vaccine: An observational study. Health Sci Rep 2023; 6:e1596. [PMID: 37867789 PMCID: PMC10584996 DOI: 10.1002/hsr2.1596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Background and Aim Understanding the prevalence and impact of SARS-CoV-2 variants has assumed paramount importance. This study statistically analyzed to effectively track the emergence and spread of the variants and highlights the importance of such investigations in developing potential next-gen vaccine to combat the continuously emerging Omicron subvariants. Methods Transmission fitness advantage and effective reproductive number (R e) of epidemiologically relevant SARS-CoV-2 sublineages through time during the study period based on the GISAID data were estimated. Results The analyses covered the period from January to June 2023 around an array of sequenced samples. The dominance of the XBB variant strain, accounting for approximately 57.63% of the cases, was identified during the timeframe. XBB.1.5 exhibited 37.95% prevalence rate from March to June 2023. Multiple variants showed considerable global influence throughout the study, as sporadically documented. Notably, the XBB variant demonstrated an estimated relative 28% weekly growth advantage compared with others. Numerous variants were resistant to the over-the-counter vaccines and breakthrough infections were reported. Similarly, the efficacy of mAB-based therapy appeared limited. However, it's important to underscore the perceived benefits of these preventive and therapeutic measures were restricted to specific variants. Conclusion Given the observed trends, a comprehensive next-gen vaccine coupled with an advanced vaccination strategy could be a potential panacea in the fight against the pandemic. The findings suggest that targeted vaccine development could be an effective strategy to prevent infections. The study also highlights the need of global collaborations to rapidly develop and distribute the vaccines to ensure global human health.
Collapse
Affiliation(s)
| | - Snehasish Mishra
- School of Biotechnology, Campus‐11KIIT Deemed‐to‐be‐UniversityBhubaneswarOdishaIndia
| | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Francesco Branda
- Department of Computer Science, Modeling, Electronics and Systems Engineering (DIMES)University of CalabriaRendeItaly
| | - Azaj Ansari
- Department of ChemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Ali A. Rabaan
- Molecular Diagnostic LaboratoryJohns Hopkins Aramco HealthcareDhahranSaudi Arabia
- College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
- Department of Public Health and NutritionThe University of HaripurHaripurPakistan
| | | |
Collapse
|
10
|
Satapathy BS, Pattnaik G, Sahoo RN, Pattanaik S, Sarangi AK, Kandi V, Mishra S, Rabaan AA, Mohanty A, Sah R, Mohapatra RK. COVID-19 vaccines and their underbelly: Are we going the right way? Health Sci Rep 2023; 6:e1540. [PMID: 37670844 PMCID: PMC10475498 DOI: 10.1002/hsr2.1540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023] Open
Abstract
Background Historically, a critical aetiological agent of health concern stays till eternity after its discovery, so shall it be with the COVID-19 outbreak. It has transformed human life to a 'new normal' with huge tolls on the social, psychological, intellectual and financial spheres. Aim This perspective aimed to collate numerous reported COVID-19 vaccine-associated adverse events and the predisposing factors. It focussed on the efficacy of mix-n-match (cocktail) vaccines to effectively counter COVID-19 infection to facilitate future research and possible interventions. Material and Methods Databases like Scopus, Pubmed and the Web-of-science were searched for published literature on 'adverse events associated with COVID-19 vaccine'. The reports and updates from health agencies like the WHO and CDC were also considered for the purpose. The details with respect to the adverse events associated with COVID-19 vaccination and the predisposing factors were compiled to obtain insights and suggest possible future directions in vaccine research. Results India stood strong to manage its health resources in time and turned into a dominant global vaccine supplier at a time when healthcare infrastructure of many countries was still significantly challenged. Developing indigenous vaccines and the vaccination drive in India were its major achievements during the second and the subsequent COVID-19 waves. The fully indigenous Covaxin vaccine, primarily as an emergency intervention, was successfully rapidly launched. Similar such vaccines for emergency use were developed elsewhere as well. However, all of these reached the marketplace with a 'emergency use only' tag, without formal clinical trials and other associated formalities to validate and verify them as these would require much longer incubation time before they are available for human use. Discussion Many adverse events associated with either the first or the second/booster vaccination doses were reported. Evidently, these associated adverse events were considered as 'usually rare' or were often underreported. Without the additional financial or ethical burden on the vaccine companies, fortunately, the Phase IV (human) clinical trials of their manufactured vaccines are occurring by default as the human population receives these under the tag 'emergency use'. Thus, focused and collaborative strategies to unveil the molecular mechanisms in vaccine-related adverse events in a time-bound manner are suggested. Conclusion Reliable data particularly on the safety of children is lacking as majority of the current over-the-counter COVID-19 vaccines were for emergency use. Many of these were still in their Phase III and Phase IV trials. The need for a mutant-proof, next-gen COVID-19 vaccine in the face of vaccine-associated adverse events is opined.
Collapse
Affiliation(s)
- Bhabani Sankar Satapathy
- School of Pharmaceutical SciencesSiksha O Anusandhan Deemed to be UniversityBhubaneswarOdishaIndia
| | - Gurudutta Pattnaik
- School of Pharmaceutical SciencesCenturion University of Technology and ManagementAlluri NagarOdishaIndia
| | - Rudra Narayan Sahoo
- School of Pharmaceutical SciencesSiksha O Anusandhan Deemed to be UniversityBhubaneswarOdishaIndia
| | - Sovan Pattanaik
- School of Pharmaceutical SciencesSiksha O Anusandhan Deemed to be UniversityBhubaneswarOdishaIndia
| | - Ashish K. Sarangi
- Department of ChemistryCenturion University of Technology and ManagementAlluri NagarOdishaIndia
| | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Snehasish Mishra
- School of BiotechnologyCampus‐11, KIIT Deemed‐to‐be‐UniversityBhubaneswarOdishaIndia
| | - Ali A. Rabaan
- Molecular Diagnostic LaboratoryJohns Hopkins Aramco HealthcareDhahranSaudi Arabia
- College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
- Department of Public Health and NutritionThe University of HaripurHaripurPakistan
| | - Aroop Mohanty
- Department of Clinical MicrobiologyAll India Institute of Medical SciencesGorakhpurUttar PradeshIndia
| | - Ranjit Sah
- Department of MicrobiologyTribhuvan University Teaching HospitalKathmanduNepal
- Department of MicrobiologyDr. D.Y Patil Medical College, Hospital and Research Center, Dr. D.Y. Patil VidyapeethPuneIndia
| | | |
Collapse
|
11
|
Pal M, Parija S, Panda G, Mishra S, Mohapatra RK, Dhama K. COVID-19 Prognosis from Chest X-ray Images by using Deep Learning Approaches: A Next Generation Diagnostic Tool. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2023; 17:919-930. [DOI: 10.22207/jpam.17.2.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2025] Open
Abstract
Global public health is overwhelmed due to the ongoing Corona Virus Disease (COVID-19). As of October 2022, the causative virus SARS-CoV-2 and its multiple variants have infected more than 600 million confirmed cases and nearly 6.5 million fatalities globally. The main objective of this reported study is to understand the COVID-19 infection better from the chest X-ray (CXR) image database of COVID-19 cases from the dataset of CXR of normal, pneumonia and COVID-19 patients. Deep learning approaches like VGG-16 and LSTM models were used to classify images as normal, pneumonia and COVID-19 impacted by extracting the features. It has been observed during the COVID-19 pandemic peaks that large number of patients could not avail medical beds and were seen stranded outdoors. To address such health emergency situations with limited available bed and scarcity of expert physicians, computer-aided analysis could save precious lives through early screening and appropriate care. Such computer-based deep-learning strategy could help during future pandemics, especially when the available health resources and the need for preventive measures to take do not match the burden of a disease.
Collapse
|
12
|
Chakraborty C, Bhattacharya M, Chopra H, Islam MA, Saikumar G, Dhama K. The SARS-CoV-2 Omicron recombinant subvariants XBB, XBB.1, and XBB.1.5 are expanding rapidly with unique mutations, antibody evasion, and immune escape properties - an alarming global threat of a surge in COVID-19 cases again? Int J Surg 2023; 109:1041-1043. [PMID: 36917125 PMCID: PMC10132296 DOI: 10.1097/js9.0000000000000246] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 03/16/2023]
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab
| | - Md. Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Gutulla Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
13
|
Mohapatra RK, Verma S, Kandi V, Sarangi AK, Seidel V, Das SN, Behera A, Tuli HS, Sharma AK, Dhama K. The SARS‐CoV‐2 Omicron Variant and its Multiple Sub‐lineages: Transmissibility, Vaccine Development, Antiviral Drugs, Monoclonal Antibodies, and Strategies for Infection Control – a Review. ChemistrySelect 2023. [DOI: 10.1002/slct.202201380] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Ranjan K. Mohapatra
- Department of Chemistry Government College of Engineering Keonjhar 758002 Odisha India
| | - Sarika Verma
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute Bhopal MP 462026 India
- Academy of council Scientific and Industrial Research - Advanced Materials and Processes Research Institute (AMPRI) Hoshangabad Road Bhopal (M.P) 462026 India
| | - Venkataramana Kandi
- Department of Microbiology Prathima Institute of Medical Sciences Karimnagar 505417 Telangana India
| | - Ashish K. Sarangi
- Department of Chemistry School of Applied Sciences Centurion University of Technology and Management Odisha India
| | - Veronique Seidel
- Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde Glasgow G4 0RE United Kingdom
| | - Subrata Narayan Das
- Department of Mining Engineering Government College of Engineering Keonjhar 758002 Odisha India
| | - Ajit Behera
- Department of Metallurgical & Materials Engineering National Institute of Technology Rourkela 769008 India
| | - Hardeep Singh Tuli
- Department of Biotechnology Maharishi MarkandeshwarEngineering College Maharishi MarkandeshwarDeemed to be University, Mullana Ambala, 133207 Haryana India
| | - Ashwani K. Sharma
- Department of Chemistry Government Digvijay (Autonomous) Post-Graduate College Rajnandgaon (C.G. India
| | - Kuldeep Dhama
- Division of Pathology ICAR-Indian Veterinary Research Institute Bareilly
| |
Collapse
|
14
|
Panda S, Singh PK, Mishra S, Mitra S, Pattnaik P, Adhikary SD, Mohapatra RK. Indian Biosimilars and Vaccines at Crossroads-Replicating the Success of Pharmagenerics. Vaccines (Basel) 2023; 11:110. [PMID: 36679955 PMCID: PMC9865573 DOI: 10.3390/vaccines11010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The global pharma sector is fast shifting from generics to biologics and biosimilars with the first approval in Europe in 2006 followed by US approval in 2015. In the form of Hepatitis B vaccine, India saw its first recombinant biologics approval in 2000. Around 20% of generic medications and 62% of vaccines are now supplied by the Indian pharmaceutical industry. It is this good position in biologics and biosimilars production that could potentially improve healthcare via decreased treatment cost. India has witnessed large investments in biosimilars over the years. Numerous India-bred new players, e.g., Enzene Biosciences Ltd., are keen on biosimilars and have joined the race alongside the emerging giants, e.g., Biocon and Dr. Reddy's. A very positive sign was the remarkable disposition during the COVID-19 pandemic by Bharat Biotech and the Serum Institute of India. India's biopharmaceutical industry has been instrumental in producing and supplying preventives and therapeutics to fight COVID-19. Despite a weak supply chain and workforce pressure, the production was augmented to provide reasonably priced high-quality medications to more than 133 nations. Biosimilars could cost-effectively treat chronic diseases involving expensive conventional therapies, including diabetes, respiratory ailments, cancer, and connective tissue diseases. Biologics and biosimilars have been and are being tested to treat and manage COVID-19 symptoms characterized by inflammation and respiratory distress. PURPOSE OF REVIEW Although India boasts many universities, research centers, and a relatively skilled workforce, its global University-Industry collaboration ranking is 24, IPR ranking remains 47 and innovation ranking 39. This reveals a wide industry-academia gap to bridge. There are gaps in effective translational research in India that must be promptly and appropriately addressed. Innovation demands strong and effective collaborations among universities, techno-incubators, and industries. METHODOLOGY Many successful research findings in academia do not get translation opportunities supposedly due to low industrial collaboration, low IP knowledge, and publication pressure with stringent timelines. In light of this, a detailed review of literature, including policy papers, government initiatives, and corporate reviews, was carried out, and the compilation and synthesis of the secondary data were meticulously summarized for the easy comprehension of the facts and roadmap ahead. For easy comprehension, charts, figures, and compiled tables are presented. RESULTS This review assesses India's situation in the biosimilar space, the gaps and areas to improve for Indian investment strategies, development, and innovation, addressing need for a more skilled workforce, industrial collaboration, and business models. CONCLUSIONS This review also proposes forward an approach to empowering technopreneurs to develop MSMEs for large-scale operations to support India in taking innovative thoughts to the global level to ultimately realize a self-reliant India. The limitations of the compilation are also highlighted towards the end.
Collapse
Affiliation(s)
- Sunita Panda
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Puneet Kumar Singh
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Snehasish Mishra
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Sagnik Mitra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Priyabrata Pattnaik
- Merck Pte Ltd., 2 Science Park Drive, Ascent Building, #05-01/12, Singapore 118222, Singapore
| | - Sanjib Das Adhikary
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| |
Collapse
|
15
|
Kutikuppala LVS, Kandi V, Sarangi AK, Mishra S, Mohapatra RK. COVID-19 Era and the Constantly Reemerging Novel SARS-CoV-2 Variants Calls for Special Attention for the Geriatrics: A Real Challenge. Geriatrics (Basel) 2022; 7:geriatrics7060143. [PMID: 36547279 PMCID: PMC9778067 DOI: 10.3390/geriatrics7060143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Global public health is significantly challenged due to the continuing COrona VIrus Disease 2019 (COVID-19) outbreak brought forth by the severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) [...].
Collapse
Affiliation(s)
| | - Venkataramana Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar 505417, Telangana, India
- Correspondence: (V.K.); (R.K.M.)
| | - Ashish K. Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Balangir Campus, Parlakhemundi 767001, Odisha, India
| | - Snehasish Mishra
- School of Biotechnology, Campus-11, KIIT Deemed-to-be-University, Bhubaneswar 751024, Odisha, India
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
- Correspondence: (V.K.); (R.K.M.)
| |
Collapse
|