1
|
Dzianok P, Wojciechowski J, Wolak T, Kublik E. Alzheimer's disease-like features in resting state EEG/fMRI of cognitively intact and healthy middle-aged APOE/ PICALM risk carriers. J Alzheimers Dis 2025; 104:509-524. [PMID: 40095677 DOI: 10.1177/13872877251317489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BackgroundGenetic susceptibility is a primary factor contributing to etiology of late-onset Alzheimer's disease (LOAD). The exact mechanisms and timeline through which APOE/PICALM influence brain functions and contribute to LOAD remain unidentified. This includes their effects on individuals prior to the development of the disease.ObjectiveTo investigate the effects of APOE and PICALM risk genes on brain health and function in non-demented individuals. This study aims to differentiate the combined risk effects of both genes from the risk associated solely with APOE, and to examine how PICALM alleles influence the risk linked to APOE.MethodsAPOE/PICALM alleles were assessed to determine the genetic risk of LOAD in 79 healthy, middle-aged participants who underwent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings. The resting-state signal was analyzed to estimate relative spectral power, complexity (Higuchi's algorithm), and connectivity (coherence in EEG and independent component analysis-based connectivity in fMRI).ResultsThe main findings indicated that individuals at risk for LOAD exhibited reduced signal complexity and the so-called "slowing of EEG" which are well-known EEG markers of Alzheimer's disease. Additionally, these individuals showed altered functional connectivity in fMRI (within attention-related areas).ConclusionsRisk alleles of APOE/PICALM may affect brain integrity and function prior to the clinical onset of the disease.
Collapse
Affiliation(s)
- Patrycja Dzianok
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Wojciechowski
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Tomasz Wolak
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Ewa Kublik
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Zhou C, Yang G, Wang Y, Zhu R, Zhu D. TaiChi-MSS protocol: enhancing cognitive and brain function in MCI patients through Tai Chi exercise combined with multisensory stimulation. Front Aging Neurosci 2025; 17:1514127. [PMID: 40071122 PMCID: PMC11893585 DOI: 10.3389/fnagi.2025.1514127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Background The aging population in China is confronted with considerable challenges, with 14.71% of elderly individuals affected by mild cognitive impairment (MCI). The practice of Tai Chi has been demonstrated to enhance cognitive function, while sensory stimulation has been shown to facilitate neural activity. Nevertheless, the combined impact of Tai Chi and sensory stimulation on cognitive, sensory functions, and brain activation in older adults with MCI remains uncertain. This study aims to ascertain whether the integration of Tai Chi with sensory stimulation can facilitate more efficacious interventions for these outcomes. Methods and analysis The TaiChi-MSS (Tai Chi and Multisensory Stimulation for Cognitive Function) study is a multi-center, randomized controlled trial (RCT) conducted in Suzhou and Shanghai, enrolling 88 participants aged 60 years or older with MCI. Participants will be randomly assigned to one of four groups: Tai Chi, multisensory stimulation, Tai Chi combined with multisensory stimulation or control. The intervention will last 6 months, with follow-up assessments at 3, 6, and 9 months. Primary outcomes include cognitive and sensory assessments, assessed using the Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), domain-specific cognitive tests, Pure Tone Audiometry (PTA), and Sniffin' Sticks Odor Identification Test. Secondary outcomes involve brain activation, measured through functional Magnetic Resonance Imaging (fMRI) scans. fMRI will be used to assess brain structure and connectivity changes, focusing on neuroplasticity. Data will be analyzed using mixed-effects models. The False Discovery Rate (FDR) will be the correction method for multiple comparisons to control for the expected proportion of false positives. Ethics and dissemination This study was approved by the ethics committee of Shanghai University of Sport (No. 102772023RT200). The results of this study will be disseminated in peer-reviewed journals and presented at academic conferences.
Collapse
Affiliation(s)
- Chunhui Zhou
- School of Wushu, Shanghai University of Sport, Shanghai, China
| | - Ganfeng Yang
- Physical Education Institute, Soochow University, Suzhou, Jiangsu, China
| | - Yinying Wang
- School of Wushu, Shanghai University of Sport, Shanghai, China
| | - Ruiting Zhu
- School of Wushu, Shanghai University of Sport, Shanghai, China
| | - Dong Zhu
- School of Wushu, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
3
|
Zhou C, Yang G, Theeboom M, Yang H, Zhu R, Zhou Z, Zhu D. Role of visual function and performance of activities of daily living in cognitive function in patients with mild cognitive impairment: a cross-sectional study. Front Aging Neurosci 2025; 17:1505815. [PMID: 39975602 PMCID: PMC11835840 DOI: 10.3389/fnagi.2025.1505815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
Background Mild cognitive impairment (MCI) is a precursor to dementia, with many patients showing early decline in activities of daily living (ADLs). However, the role of visual impairment in this process is underexplored despite evidence suggesting it may accelerate cognitive decline. Current research does not understand how visual dysfunction affects cognitive abilities and how ADLs might moderate this relationship. This gap is crucial because early interventions targeting visual impairments could potentially delay progression to dementia, offering new avenues for supporting MCI patients. Objective This study investigates the relationship between visual function and cognitive abilities in patients with MCI. Specifically, it seeks to determine how different aspects of visual function, such as visual field indices and visual acuity, correlate with various cognitive domains measured by standardized assessments. Additionally, the study aims to examine the role of ADLs as a potential moderating factor in this relationship. By analyzing how ADL performance influences the strength and direction of the association between visual impairments and cognitive function, this research intends to identify key areas where visual deficits may contribute to cognitive decline in MCI. Methods This is a cross-sectional study. Two hundred and seventy four elderly patients were diagnosed with MCI from various communities in Taicang City, Jiangsu Province, China. Most participants were women (68.6%), and the average age was 69 years. Notable comorbidities included hypertension (41.6%) and diabetes (33.2%), indicating a higher burden of health conditions than typical older adult populations. Visual function, Montreal Cognitive Assessment (MoCA), and the ADLs were measured. Pearson's correlation coefficients were used to examine the unadjusted associations between visual function measures and cognitive performance. Multivariable linear regression models were employed to further explore these relationships and to assess the moderating role of ADLs. Results Significant positive correlations were found between visual function and cognitive performance, particularly with Visual Function Index (VFI) showing a strong initial correlation with the total MoCA score (r = 0.61, p < 0.001), which was attenuated after adjusting for ADL (β = 0.06, p = 0.23). Maximum Visual Field (Max VF) was positively correlated with language skills (r = 0.13, p < 0.05). The negative correlation of Minimum Visual Field (Min VF) with cognitive performance became positive after ADL adjustment (β = 0.12, p = 0.04). Conclusions These findings suggest that visual function plays a crucial role in the cognitive and functional abilities of patients with MCI. Early interventions targeting visual impairments may help mitigate cognitive decline and improve the quality of life for these patients.
Collapse
Affiliation(s)
- Chunhui Zhou
- School of Wushu, Shanghai University of Sport, Shanghai, China
| | - Ganfeng Yang
- Physical Education Institute, Soochow University, Suzhou, Jiangsu, China
| | - Marc Theeboom
- Department of Exercise and Sport Science, Free University of Brussels, Brussels, Belgium
| | - Hua Yang
- Physical Education Institute, Soochow University, Suzhou, Jiangsu, China
| | - Ruiting Zhu
- School of Wushu, Shanghai University of Sport, Shanghai, China
| | - Zijian Zhou
- School of Wushu, Shanghai University of Sport, Shanghai, China
| | - Dong Zhu
- School of Wushu, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Miranda GG, Gonen C, Kraft JN, Rodrigue KM, Kennedy KM. Lifespan longitudinal changes in mesocortical thickness and executive function: Role of dopaminergic genetic predisposition. Neurobiol Aging 2025; 146:58-73. [PMID: 39613505 PMCID: PMC12024007 DOI: 10.1016/j.neurobiolaging.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Dopamine (DA) signaling is critical for optimal cognitive aging, especially in prefrontal-parietal and fronto-striatal networks. Single nucleotide polymorphisms associated with dopamine regulation, COMTVal158Met and DRD2C957T, stand to exert influence on executive function performance via neural properties. The current study investigated whether longitudinal thinning of mesocortical regions is related to COMT and DRD2 genetic predisposition and associated with decline in executive function over four-years. N=235 healthy adults aged 20-94 years were recruited, with n=124 returning 4-years later. Latent mixed effects modeling revealed dopamine-related thinning in several frontal, parietal, and cingulate regions as well as decline in verbal fluency category switching across 4-years. Mesocortical thinning was also related to switching performance. Greater cortical thinning interacted with DA-genotype risk for lower DA-availability to predict poorer switching performance in parietal and posterior cingulate cortex. These findings lend support to the notion that early-life factors, such as genetic influence on neurotransmitter function, play a role in cognitive and brain aging and their linked association.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Chen Gonen
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Jessica N Kraft
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Karen M Rodrigue
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Kristen M Kennedy
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States.
| |
Collapse
|
5
|
Belaich R. The Brain-Wellness Nexus: exploring neurobiological mechanisms and evidence-based interventions for stress resilience in neurodivergent populations. Cogn Neuropsychiatry 2025; 30:15-30. [PMID: 39982427 DOI: 10.1080/13546805.2025.2464726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Research into brain mechanisms and their impact on quality of life has gained significant traction, emphasising stress management, cognitive enhancement, and emotional well-being as essential components. OBJECTIVE This study explores the relationship between brain health and overall wellness, focusing on neurobiological mechanisms and evidence-based interventions that enhance stress resilience in neurodivergent populations. METHODS A comprehensive review of neuroscience and psychological literature was conducted, including neuroimaging and behavioural studies to assess the effectiveness of various interventions. RESULTS Findings indicate that targeted strategies - such as Acceptance and Commitment Therapy (ACT), cognitive training, and lifestyle modifications - significantly improve stress resilience, cognitive abilities, and emotional regulation. Key brain regions involved include the amygdala, prefrontal cortex, and hippocampus. CONCLUSIONS Implementing evidence-based interventions fosters improved quality of life through enhanced brain wellness. Future research should focus on scalable approaches that are inclusive of diverse populations.
Collapse
Affiliation(s)
- Rachida Belaich
- Higher Institute of Nursing Professions and Health Techniques of Rabat - Annex Kenitra, Morocco
| |
Collapse
|
6
|
Cicali KA, Tapia-Rojas C. Synaptic mitochondria: A crucial factor in the aged hippocampus. Ageing Res Rev 2024; 101:102524. [PMID: 39369797 DOI: 10.1016/j.arr.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Aging is a multifaceted biological process characterized by progressive molecular and cellular damage accumulation. The brain hippocampus undergoes functional deterioration with age, caused by cellular deficits, decreased synaptic communication, and neuronal death, ultimately leading to memory impairment. One of the factors contributing to this dysfunction is the loss of mitochondrial function. In neurons, mitochondria are categorized into synaptic and non-synaptic pools based on their location. Synaptic mitochondria, situated at the synapses, play a crucial role in maintaining neuronal function and synaptic plasticity, whereas non-synaptic mitochondria are distributed throughout other neuronal compartments, supporting overall cellular metabolism and energy supply. The proper function of synaptic mitochondria is essential for synaptic transmission as they provide the energy required and regulate calcium homeostasis at the communication sites between neurons. Maintaining the structure and functionality of synaptic mitochondria involves intricate processes, including mitochondrial dynamics such as fission, fusion, transport, and quality control mechanisms. These processes ensure that mitochondria remain functional, replace damaged organelles, and sustain cellular homeostasis at synapses. Notably, deficiencies in these mechanisms have been increasingly associated with aging and the onset of age-related neurodegenerative diseases. Synaptic mitochondria from the hippocampus are particularly vulnerable to age-related changes, including alterations in morphology and a decline in functionality, which significantly contribute to decreased synaptic activity during aging. This review comprehensively explores the critical roles that mitochondrial dynamics and quality control mechanisms play in preserving synaptic activity and neuronal function. It emphasizes the emerging evidence linking the deterioration of synaptic mitochondria to the aging process and the development of neurodegenerative diseases, highlighting the importance of these organelles from hippocampal neurons as potential therapeutic targets for mitigating cognitive decline and synaptic degeneration associated with aging. The novelty of this review lies in its focus on the unique vulnerability of hippocampal synaptic mitochondria to aging, underscoring their importance in maintaining brain function across the lifespan.
Collapse
Affiliation(s)
- Karina A Cicali
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile.
| |
Collapse
|
7
|
Unterrainer JM, Petersen J, Schmidt P, Ernst M, Wirtz MA, Reinwarth AC, Wicke F, Ghaemi Kerahrodi J, Michal M, Münzel T, König J, Lackner KJ, Pfeiffer N, Tüscher O, Galle PR, Beutel M, Wild PS. Different risk and protective factors predict change of planning ability in middle versus older age. Sci Rep 2024; 14:25275. [PMID: 39455694 PMCID: PMC11511955 DOI: 10.1038/s41598-024-76784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Age-related cognitive decline has become an increasingly relevant public health issue. However, risk and protective factors of cognitive decline have yet to be investigated prospectively taking into account genetic, lifestyle, physical and mental health factors. Population-based data from middle-aged (40 to 59 years; N = 2,764) and older individuals (60 to 80 years; N = 1,254) were drawn from a prospective community cohort study using the Tower of London (TOL) planning task. Assessments were repeated at a 5-year interval to investigate age-related changes in planning performance and to determine the impact of risk and protective factors. Planning performance improved in middle-aged, but declined in older participants over 5 years. SNPs affecting the dopamine system (COMT, DRD2) and APOE polymorphisms differentially predicted cognitive performance in older vs. middle-aged individuals. For older individuals, high alcohol consumption, antidepressant medication and living without a partner had additional negative predictive power on cognition. In contrast, undiagnosed hypertension, no obstructive lung disease, and fewer years of education predicted cognitive decline in the middle-aged group. The results inform screening for individuals particularly vulnerable to cognitive decline and interventions (e.g., focusing on lifestyle factors) to help maintain cognitive performance into old age.
Collapse
Affiliation(s)
- Josef M Unterrainer
- Institute of Medical Psychology and Medical Sociology, Faculty of Medicine, University of Freiburg, Hebelstraße 29, Freiburg, 79104, Germany.
| | - Julia Petersen
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Schmidt
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Political Science and the Centre for International Development and Environment (ZEU), University of Giessen, Giessen, Germany
| | - Mareike Ernst
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Clinical Psychology, Psychotherapy and Psychoanalysis, Institute of Psychology, University of Klagenfurt, Klagenfurt am Wörthersee, Austria
| | - Markus A Wirtz
- Research Methods in the Health Sciences, University of Education Freiburg, Freiburg, Germany
| | - Anna C Reinwarth
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Felix Wicke
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jasmin Ghaemi Kerahrodi
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Michal
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Münzel
- Partner Site RhineMain, German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Jochem König
- Division of Pediatric Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR) Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB) Mainz, Mainz, Germany
| | - Peter R Galle
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Manfred Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg- University Mainz, Mainz, Germany
- Center for Translational Vascular Biology (CTVB), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB) Mainz, Mainz, Germany
| |
Collapse
|
8
|
Daly J, De Luca F, Berens SC, Field AP, Rusted JM, Bird CM. The effect of apolipoprotein E genotype on spatial processing in humans: A meta-analysis and systematic review. Cortex 2024; 177:268-284. [PMID: 38878339 DOI: 10.1016/j.cortex.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/04/2024] [Accepted: 05/20/2024] [Indexed: 07/31/2024]
Abstract
The ε4 allele of the apolipoprotein E (APOE4) gene is an established risk factor for Alzheimer's disease but its impact on cognition in healthy adults across the lifespan is unclear. One cognitive domain that is affected early in the course of Alzheimer's disease is spatial cognition, yet the evidence for APOE-related changes in spatial cognition is mixed. In this meta-analysis we assessed the impact of carrying the APOE4 allele on five subdomains of spatial cognition across the lifespan. We included studies of healthy human participants where an APOE4-carrier group (heterozygous or homozygous) could be compared to a homozygous group of APOE3-carriers. We identified 156 studies in total from three databases (Pubmed, Scopus and Web of Science) as well as through searching cited literature and contacting authors for unpublished data. 122 studies involving 32,547 participants were included in a meta-analysis, and the remaining studies are included in a descriptive review. APOE4 carriers scored significantly lower than APOE3 carriers (θˆ = -.08 [-.14, -.02]) on tests of spatial long-term memory; this effect was very small and was not modulated by age. On other subdomains of spatial cognition (spatial construction, spatial working memory, spatial reasoning, navigation) there were no effects of genotype. Overall, our results demonstrate that the APOE4 allele exerts little influence on spatial cognitive abilities in healthy adults.
Collapse
Affiliation(s)
- Jessica Daly
- Sussex Neuroscience, School of Psychology, University of Sussex, United Kingdom
| | - Flavia De Luca
- Sussex Neuroscience, School of Psychology, University of Sussex, United Kingdom
| | - Sam C Berens
- Sussex Neuroscience, School of Psychology, University of Sussex, United Kingdom
| | - Andy P Field
- School of Psychology, University of Sussex, United Kingdom
| | | | - Chris M Bird
- Sussex Neuroscience, School of Psychology, University of Sussex, United Kingdom.
| |
Collapse
|
9
|
Wang YZ, Zhao W, Moorjani P, Gross AL, Zhou X, Dey AB, Lee J, Smith JA, Kardia SLR. Effect of apolipoprotein E ε4 and its modification by sociodemographic characteristics on cognitive measures in South Asians from LASI-DAD. Alzheimers Dement 2024; 20:4854-4867. [PMID: 38889280 PMCID: PMC11247697 DOI: 10.1002/alz.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND We investigated the effects of apolipoprotein E (APOE) ε4 and its interactions with sociodemographic characteristics on cognitive measures in South Asians from the Diagnostic Assessment of Dementia for the Longitudinal Aging Study of India (LASI-DAD). METHODS Linear regression was used to assess the association between APOE ε4 and global- and domain-specific cognitive function in 2563 participants (mean age 69.6 ± 7.3 years; 53% female). Effect modification by age, sex, and education were explored using interaction terms and subgroup analyses. RESULTS APOE ε4 was inversely associated with most cognitive measures (p < 0.05). This association was stronger with advancing age for the Hindi Mental State Examination (HMSE) score (βε4×age = -0.44, p = 0.03), orientation (βε4×age = -0.07, p = 0.01), and language/fluency (βε4×age = -0.07, p = 0.01), as well as in females for memory (βε4×male = 0.17, p = 0.02) and language/fluency (βε4×male = 0.12, p = 0.03). DISCUSSION APOE ε4 is associated with lower cognitive function in South Asians from India, with a more pronounced impact observed in females and older individuals. HIGHLIGHTS APOE ε4 carriers had lower global and domain-specific cognitive performance. Females and older individuals may be more susceptible to ε4 effects. For most cognitive measures, there was no interaction between ε4 and education.
Collapse
Affiliation(s)
- Yi Zhe Wang
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Wei Zhao
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Survey Research CenterInstitute for Social ResearchUniversity of MichiganAnn ArborMichiganUSA
| | - Priya Moorjani
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Center for Computational BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Alden L. Gross
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Xiang Zhou
- Department of BiostatisticsSchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Aparajit B. Dey
- Department of Geriatric MedicineAll India Institute of Medical Sciences, Ansari NagarNew DelhiIndia
| | - Jinkook Lee
- Department of Economics and Center for Social ResearchUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jennifer A. Smith
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Survey Research CenterInstitute for Social ResearchUniversity of MichiganAnn ArborMichiganUSA
| | - Sharon L. R. Kardia
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
10
|
Wunderlich A, Wollesen B, Asamoah J, Delbaere K, Li K. The impact of cognitive-motor interference on balance and gait in hearing-impaired older adults: a systematic review. Eur Rev Aging Phys Act 2024; 21:17. [PMID: 38914940 PMCID: PMC11194914 DOI: 10.1186/s11556-024-00350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Hearing impairments are a rising burden in our aging society. Hearing loss is associated with reduced cognitive performance as well as decrements in balance and gait. Therefore, impaired hearing affects also dual tasking (DT). The aim of this review is to summarize the evidence for DT performance decrements of older adults with hearing impairments during maintaining balance or walking. METHODS The systematic literature research according to PRISMA guidelines was conducted using MEDLINE, APA Psych-Info, and Web of Science. Inclusion criteria were: Independent living older people ≥ 60 years with hearing impairments, use of a DT paradigm to test hearing impaired older adults within a balance or walking condition. RESULTS N = 57 studies were found within the databases. Eight studies were included (N = 456 participants (58% women), including n = 200 older hearing-impaired persons with different levels of hearing loss). Most of the included studies oriented their inclusion criteria for hearing-impairments at thresholds for mild hearing loss with Pure Tone Average (0.5-4 kHz) ≥ 25 and < 40 dB. Three of the studies focused on DT balance performance and five used DT walking comparing participants with and without hearing loss. For DT balance and gait performance, higher decrements for the hearing-impaired group were observed compared to healthy older adults. Performance decrements were accompanied by reduced compensatory strategies in balance performance. CONCLUSION More pronounced decrements in DT performance were observed for participants with hearing impairments compared to those without. This implies that hearing-impaired older adults might need specific interventions to reduce the cognitive-motor interference (CMI) to maintain balance control or walking stability in daily situations that require managing of cognitive and motor tasks simultaneously. However, taking all results into account the underlying mechanisms of CMI for this target group needs to be further examined. TRIAL REGISTRATION This review was registered at Prospero with the ID CRD42022340232.
Collapse
Affiliation(s)
- Anna Wunderlich
- Technische Universität Berlin, Chair of Biopsychology and Neuroergonomics, Berlin, Germany.
| | - Bettina Wollesen
- Faculty of Psychology and Human Movement Science, Institute for Human Movement Science, Universität Hamburg, Hamburg, Germany
| | - Janek Asamoah
- Faculty of Psychology and Human Movement Science, Institute for Human Movement Science, Universität Hamburg, Hamburg, Germany
| | - Kim Delbaere
- Neuroscience Research Australia (NeuRA) Falls, Balance and Injury Research Centre, Sydney, NSW, Australia
- Population Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Karen Li
- Department of Psychology, Concordia University, Montreal, Canada
| |
Collapse
|
11
|
Park HY, Jung M, Park GY, Lee JI, Kim Y, Kim YH, Lim SH, Yoo YJ, Im S. Investigating the link between antipsychotic use and post-stroke infections in older people: multi-centre propensity score analysis. Age Ageing 2024; 53:afae117. [PMID: 38880504 DOI: 10.1093/ageing/afae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The risk of stroke increases with age, and although previous reports have suggested that infection risk may increase with antipsychotic use, relevant studies after stroke are scarce. We aimed to investigate whether antipsychotics increase post-stroke infection risk in the acute stroke period. METHODS This propensity score matching study included adults diagnosed with first-ever stroke between 2011 and 2020 at five university hospitals. In-hospital antipsychotic exposure was defined as any administration during hospitalisation for stroke. The primary outcome was post-stroke infection after the first 2 days of hospitalisation, and the secondary outcome was the presence of pneumonia, bacteraemia and/or bacteriuria. RESULT Among 23,885 first-ever stroke patients, 2,773 antipsychotic users (age 71.6 ± 12.4, male 54.6%) and 2,773 non-users (age 71.2 ± 13.2, male 54.6%) were selected as matched cohorts. After adjusting for propensity score, antipsychotics were not associated with an increased risk of post-stroke infection (odds ratio 0.99, 95% confidence interval 0.87-1.14). CONCLUSION While our study did not find conclusive evidence linking antipsychotic medication to an increased risk of post-stroke infection, prescribing these medications should still be approached with prudence. Until further research can provide more definitive insights, clinicians should carefully weigh the potential infection risks when considering antipsychotic treatment during the acute stroke care period.
Collapse
Affiliation(s)
- Hae-Yeon Park
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Moa Jung
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Geun-Young Park
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong In Lee
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngkook Kim
- Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yeo Hyung Kim
- Department of Rehabilitation Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yeun Jie Yoo
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sun Im
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
12
|
Mick P, Kabir R, Karunatilake M, Kathleen Pichora-Fuller M, Young TL, Sosero Y, Gan-Or Z, Wittich W, Phillips NA. APOE-ε4 is not associated with pure-tone hearing thresholds, visual acuity or cognition, cross-sectionally or over 3 years of follow up in the Canadian Longitudinal Study on Aging. Neurobiol Aging 2024; 138:72-82. [PMID: 38547662 DOI: 10.1016/j.neurobiolaging.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Hearing loss and diminished visual acuity are associated with poorer cognition, but the underlying mechanisms are not understood. The apolipoprotein (APOE) ε4 allelic variant may drive the associations. We tested whether APOE-ε4 allele count (0, 1, or 2) was associated with declines in memory, executive function, pure-tone hearing threshold averages, and pinhole-corrected visual acuity among participants in the Canadian Longitudinal Study on Aging (CLSA). METHODS Multivariable linear mixed regression models were utilized to assess associations between APOE-ε4 allele count and each of the outcome variables. For each main effects model, interactions between APOE-ε4 and sex and age group (45-54-, 55-64-, 65-74-, and 75-85 years) respectively, were analyzed. RESULTS Significant associations were not observed in main effects models. Models including APOE-ε4 * age (but not APOE-ε4 * sex) interaction terms better fit the data compared to main effects models. In age group-stratified models, however, there were minimal differences in effect estimates according to allele count. CONCLUSION APOE-ε4 allele count does not appear to be a common cause of sensory-cognitive associations in this large cohort.
Collapse
Affiliation(s)
- Paul Mick
- University of Saskatchewan, College of Medicine, Department of Surgery, Canada.
| | | | - Malshi Karunatilake
- University of Alberta, College of Health Sciences, Department of Ophthalmology and Visual Sciences, Canada
| | - M Kathleen Pichora-Fuller
- Professor emeritus, University of Toronto, Faculty of Arts and Sciencies, Department of Psychology, Canada
| | - Terry-Lyn Young
- Memorial University of Newfoundland, Faculty of Medicine, Canada
| | - Yuri Sosero
- McGill University, Faculty of Medicine and Health Sciences, Department of Human Genetics, Canada
| | - Ziv Gan-Or
- McGill University, Faculty of Medicine and Health Sciences, Department of Human Genetics, Canada
| | | | - Natalie A Phillips
- Concordia University, Faculty of Arts and Sciences, Department of Psychology, Canada
| |
Collapse
|
13
|
Herzog N, Hartmann H, Janssen LK, Waltmann M, Fallon SJ, Deserno L, Horstmann A. Working memory gating in obesity: Insights from a case-control fMRI study. Appetite 2024; 195:107179. [PMID: 38145879 DOI: 10.1016/j.appet.2023.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Computational models and neurophysiological data propose that a 'gating mechanism' coordinates distractor-resistant maintenance and flexible updating of working memory contents: While maintenance of information is mainly implemented in the prefrontal cortex, updating of information is signaled by phasic increases in dopamine in the striatum. Previous literature demonstrates structural and functional alterations in these brain areas, as well as differential dopamine transmission among individuals with obesity, suggesting potential impairments in these processes. To test this hypothesis, we conducted an observational case-control fMRI study, dividing participants into groups with and without obesity based on their BMI. We probed maintenance and updating of working memory contents using a modified delayed match to sample task and investigated the effects of SNPs related to the dopaminergic system. While the task elicited the anticipated brain responses, our findings revealed no evidence for group differences in these two processes, neither at the neural level nor behaviorally. However, depending on Taq1A genotype, which affects dopamine receptor density in the striatum, participants with obesity performed worse on the task. In conclusion, this study does not support the existence of overall obesity-related differences in working memory gating. Instead, we propose that potentially subtle alterations may manifest specifically in individuals with a 'vulnerable' genotype.
Collapse
Affiliation(s)
- Nadine Herzog
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany.
| | - Hendrik Hartmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lieneke K Janssen
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Institute of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Maria Waltmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; School of Psychology, University of Plymouth, Plymouth, UK
| | - Sean J Fallon
- School of Psychology, University of Plymouth, Plymouth, UK
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, University of Würzburg, Würzburg, Germany
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Johansson J, Nordin K, Pedersen R, Karalija N, Papenberg G, Andersson M, Korkki SM, Riklund K, Guitart-Masip M, Rieckmann A, Bäckman L, Nyberg L, Salami A. Biphasic patterns of age-related differences in dopamine D1 receptors across the adult lifespan. Cell Rep 2023; 42:113107. [PMID: 37676765 DOI: 10.1016/j.celrep.2023.113107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Age-related alterations in D1-like dopamine receptor (D1DR) have distinct implications for human cognition and behavior during development and aging, but the timing of these periods remains undefined. Enabled by a large sample of in vivo assessments (n = 180, age 20 to 80 years of age, 50% female), we discover that age-related D1DR differences pivot at approximately 40 years of age in several brain regions. Focusing on the most age-sensitive dopamine-rich region, we observe opposing pre- and post-forties interrelations among caudate D1DR, cortico-striatal functional connectivity, and memory. Finally, particularly caudate D1DR differences in midlife and beyond, but not in early adulthood, associate with manifestation of white matter lesions. The present results support a model by which excessive dopamine modulation in early adulthood and insufficient modulation in aging are deleterious to brain function and cognition, thus challenging a prevailing view of monotonic D1DR function across the adult lifespan.
Collapse
Affiliation(s)
- Jarkko Johansson
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden.
| | - Kristin Nordin
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden
| | - Robin Pedersen
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Saana M Korkki
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden
| | - Marc Guitart-Masip
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Anna Rieckmann
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; The Munich Center for the Economics of Aging, Max Planck Institute for Social Law and Social Policy, 80799 Munich, Germany
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Mansoor M, Katz B. Differential Effects of ADHD Polygenic Risk on Cognitive Performance in Later Life. J Atten Disord 2023; 27:1272-1283. [PMID: 37190750 DOI: 10.1177/10870547231172768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Understanding the association between polygenic risk for ADHD and cognition throughout aging has not been widely studied. This study aimed to determine whether ADHD risk influences cognitive performance among individuals at both young-old and middle-old age. METHOD Participants from the Health and Retirement Study, a biennial survey of 20,000 Americans, were compared on executive function and delayed recall measures using regression analyses. RESULTS There was no significant effect of ADHD risk on memory at both age waves for African-ancestry (AA; n = 403) and European-ancestry (EA; n = 2,286). There was, however, a significant association between ADHD risk and performance on executive function for EA at middle-old age (p = .028), but not young-old age; no such association was observed for AA adults. CONCLUSION This finding suggests that ADHD risk may differentially influence cognition among older adults throughout the aging process, with important implications for future research.
Collapse
|
16
|
Chen HY, Marxen M, Dahl MJ, Glöckner F. Effects of Adult Age and Functioning of the Locus Coeruleus Norepinephrinergic System on Reward-Based Learning. J Neurosci 2023; 43:6185-6196. [PMID: 37541835 PMCID: PMC10476638 DOI: 10.1523/jneurosci.2006-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023] Open
Abstract
Age-related impairments in value representations and updating during decision-making and reward-based learning are often related to age-related attenuation in the catecholamine system such as dopamine (DA) and norepinephrine (NE). However, it is unclear to what extent age-related declines in NE functioning in humans affect reward-based decision-making. We conducted a probabilistic decision-making task and applied a Q-learning model to investigate participants' anticipatory values and value sensitivities. Task-related pupil dilations and locus coeruleus (LC) magnetic resonance imaging (MRI) contrast, which served as a potential window of the LC-NE functions, were assessed in younger and older adults. Results showed that in both choice and feedback phases, younger adults' (N = 42, 22 males) pupil dilations negatively correlated with anticipatory values, indicating uncertainty about outcome probabilities. Uncertainty-evoked pupil dilations in older adults (N = 41, 27 males) were smaller, indicating age-related impairments in value estimation and updating. In both age groups, participants who showed a larger uncertainty-evoked pupil dilation exhibited a higher value sensitivity as reflected in the β parameter of the reinforcement Q-learning model. Furthermore, older adults (N = 34, 29 males) showed a lower LC-MRI contrast than younger adults (N = 25, 15 males). The LC-MRI contrast positively correlated with value sensitivity only in older but not in younger adults. These findings suggest that task-related pupillary responses can reflect age-related deficits in value estimation and updating during reward-based decision-making. Our evidence with the LC-MRI contrast further showed the age-related decline of the LC structure in modulating value representations during reward-based learning.SIGNIFICANCE STATEMENT Age-related impairments in value representation and updating during reward-based learning are associated with declines in the catecholamine modulation with age. However, it is unclear how age-related declines in the LC-NE system may affect reward-based learning. Here, we show that compared with younger adults, older adults exhibited reduced uncertainty-induced pupil dilations, suggesting age-related deficits in value estimation and updating. Older adults showed a lower structural MRI of the LC contrast than younger adults, indicating age-related degeneration of the LC structure. The association between the LC-MRI contrast and value sensitivity was only observed in older adults. Our findings may demonstrate a pioneering model to unravel the role of the LC-NE system in reward-based learning in aging.
Collapse
Affiliation(s)
- Hsiang-Yu Chen
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
- Methods of Psychology and Cognitive Modeling, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Marxen
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, 01062 Dresden, Germany
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
- Davis School of Gerontology, University of Southern California, Los Angeles, Los Angeles, California 90089
| | - Franka Glöckner
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
17
|
Ma J, Tang L, Peng P, Wang T, Gui H, Ren X. Shifting as an executive function separate from updating and inhibition in old age: Behavioral and genetic evidence. Behav Brain Res 2023; 452:114604. [PMID: 37516210 DOI: 10.1016/j.bbr.2023.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
This study aimed to examine the organization of executive functions (EFs), specifically working memory updating, prepotent response inhibition, and mental-set shifting in old age, with a particular focus on determining whether the shifting function was behaviorally and genetically separated from the other functions. A total of 248 healthy older Chinese individuals participated, and multiple measures of executive functions were collected. Additionally, measures of fluid intelligence were included to explore the varying relationships between the three executive functions and this higher-order cognitive ability. Furthermore, genetic data were gathered and analyzed to investigate the associations between EFs and six candidate single-nucleotide polymorphisms (SNPs) mapped to dopaminergic, serotonergic, or glutamatergic genes. The results indicated that both the three-factor model and the two-factor model, which combined updating and inhibition, demonstrated a good fit. Furthermore, shifting was found to be behaviorally separated from the other two functions, and the correlation between shifting and fluid intelligence was smaller compared to the correlations between updating and inhibition with fluid intelligence. Moreover, the DRD2 SNPs showed significant associations with shifting, rather than with updating and inhibition. These findings provide evidence that shifting is distinct and separate from updating and inhibition, highlighting the diversity of EFs among older adults.
Collapse
Affiliation(s)
- Juanjuan Ma
- School of Education, Huazhong University of Science & Technology, Wuhan, China
| | - Lixu Tang
- School of Wushu, Wuhan Sports University, Wuhan 430079, China
| | - Peng Peng
- Department of Special Education, University of Texas at Austin, Austin, USA
| | - Tengfei Wang
- Department of Psychology, Zhejiang University, Hangzhou, China
| | - Hongsheng Gui
- Behavioral Health Services and Psychiatry Research, Henry Ford Health, USA; Department of Psychiatry, Michigan State University, USA
| | - Xuezhu Ren
- School of Education, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
18
|
Baeuchl C, Glöckner F, Koch C, Petzold J, Schuck NW, Smolka MN, Li SC. Dopamine differentially modulates medial temporal lobe activity and behavior during spatial navigation in young and older adults. Neuroimage 2023; 273:120099. [PMID: 37037380 DOI: 10.1016/j.neuroimage.2023.120099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
Aging is associated with changes in spatial navigation behavior. In addition to an overall performance decline, older adults tend to rely more on proximal location cue information than on environmental boundary information during spatial navigation compared to young adults. The fact that older adults are more susceptible to errors during spatial navigation might be partly attributed to deficient dopaminergic modulation of hippocampal and striatal functioning. Hence, elevating dopamine levels might differentially modulate spatial navigation and memory performance in young and older adults. In this work, we administered levodopa (L-DOPA) in a double-blind within-subject, placebo-controlled design and recorded functional neuroimaging while young and older adults performed a 3D spatial navigation task in which boundary geometry or the position of a location cue were systematically manipulated. An age by intervention interaction on the neural level revealed an upregulation of brain responses in older adults and a downregulation of responses in young adults within the medial temporal lobe (including hippocampus and parahippocampus) and brainstem, during memory retrieval. Behaviorally, L-DOPA had no effect on older adults' overall memory performance; however, older adults whose spatial memory improved under L-DOPA also showed a shift towards more boundary processing under L-DOPA. In young adults, L-DOPA induced a decline in spatial memory performance in task-naïve participants. These results are consistent with the inverted-U-shaped hypothesis of dopamine signaling and cognitive function and suggest that increasing dopamine availability improves hippocampus-dependent place learning in some older adults.
Collapse
Affiliation(s)
- Christian Baeuchl
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Franka Glöckner
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Christoph Koch
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; International Max Planck Research School on the Life Course (LIFE), Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany
| | - Johannes Petzold
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany; Institute of Psychology, Universität Hamburg, Hamburg, German
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
19
|
Ballester-Ferrer JA, Bonete-López B, Roldan A, Cervelló E, Pastor D. Effect of acute exercise intensity on cognitive inhibition and well-being: Role of lactate and BDNF polymorphism in the dose-response relationship. Front Psychol 2022; 13:1057475. [PMID: 36570982 PMCID: PMC9780502 DOI: 10.3389/fpsyg.2022.1057475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction There is evidence in the literature that acute exercise can modify cognitive function after the effort. However, there is still some controversy concerning the most effective exercise modality to improve cognitive function in acute interventions. Regarding these different exercise modalities, the dose-response relationship between exercise intensity and cognitive response is one of the most challenging questions in exercise and cognition research. Methods In this study, we tested the impact of moderate-intensity (MICT), high-intensity (HIIT) exercise sessions, or control situation (CTRL) on cognitive inhibition (measured with the Stroop Test). Thirty-six young college students participated in this study, where a within-subject repeated measure design was used. Results ANOVA 2×3 demonstrated that HIIT improved the acute cognitive response to a higher degree when compared to MICT or CTRL (p < 0.05). The cognitive improvements correlated with lactate release, providing a plausible molecular explanation for the cognitive enhancement (r < -0.2 and p < 0.05 for all the Stroop conditions). Moreover, a positive trend in wellbeing was observed after both exercise protocols (HIIT and MICT) but not in the CTRL situation. Genetic BDNF single nucleotide polymorphism did not influence any interactions (p < 0.05). Discussion In this sense, our results suggest that exercise intensity could be a key factor in improved cognitive function following exercise in young college students, with no additional impact of BDNF polymorphism. Moreover, our results also provide evidence that exercise could be a useful tool in improving psychological wellbeing.
Collapse
Affiliation(s)
| | | | - Alba Roldan
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Spain
| | - Eduardo Cervelló
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Spain
| | - Diego Pastor
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Spain,*Correspondence: Diego Pastor,
| |
Collapse
|
20
|
Cachide M, Carvalho L, Rosa IM, Wiltfang J, Henriques AG, da Cruz e Silva OAB. BIN1 rs744373 SNP and APOE alleles specifically associate to common diseases. FRONTIERS IN DEMENTIA 2022; 1:1001113. [PMID: 39081475 PMCID: PMC11285651 DOI: 10.3389/frdem.2022.1001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/12/2022] [Indexed: 08/02/2024]
Abstract
APOE ε4 and BIN1 are the two main genetic risk factors for sporadic Alzheimer's Disease (AD). Among several BIN1 variants, the rs744373 is frequently associated with AD risk by contributing to tau pathology and poor cognitive performance. This study addressed the association of APOE and BIN1 rs744373 to specific characteristics in a Portuguese primary care-based study group, denoted pcb-Cohort. The study included 590 participants from five primary care health centers in the Aveiro district of Portugal. Individuals were evaluated and scored for cognitive and clinical characteristics, and blood samples were collected from the volunteers meeting the inclusion and exclusion criteria (N = 505). APOE and BIN1 genotypes were determined, and their association with cognitive characteristics and other diseases that might contribute to cognitive deficits, namely depression, hypertension, type 2 diabetes, dyslipidemia, osteoarticular diseases, gastrointestinal diseases, cardiovascular and respiratory diseases, was assessed. The diseases attributed to the study group were those previously diagnosed and confirmed by specialists. The results generated through multivariate analysis show that APOE ε4 carriers significantly associated with poorer cognitive performance (OR = 2.527; p = 0.031). Additionally, there was a significant risk of dyslipidemia for APOE ε4 carriers (OR = 1.804; p = 0.036), whereas BIN1 rs744373 risk-allele carriers were at a significantly lower risk of having dyslipidemia (OR = 0.558; p = 0.006). Correlations were evident for respiratory diseases in which APOE ε4 showed a protective tendency (OR = 0.515; p = 0.088), and BIN1 had a significative protective profile (OR = 0.556; p = 0.026). Not of statistical significance, APOE ε2 showed a trend to protect against type 2 diabetes (OR = 0.342; p = 0.093), in contrast BIN1 rs744373 risk-allele carriers were more likely to exhibit the disease (OR = 1.491; p = 0.099). The data here presented clearly show, for the first time, that the two top genetic risk factors for sporadic AD impact a similar group of common diseases, namely dyslipidemia, respiratory diseases, and type 2 diabetes.
Collapse
Affiliation(s)
- Maria Cachide
- Neurosciences and Signalling Group, Medical Sciences Department, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Liliana Carvalho
- Neurosciences and Signalling Group, Medical Sciences Department, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ilka Martins Rosa
- Neurosciences and Signalling Group, Medical Sciences Department, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Jens Wiltfang
- Neurosciences and Signalling Group, Medical Sciences Department, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Psychiatry and Psychotherapy, University Medical Centre Goettingen (UMG), Georg-August University, Goettingen, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| | - Ana Gabriela Henriques
- Neurosciences and Signalling Group, Medical Sciences Department, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Odete A. B. da Cruz e Silva
- Neurosciences and Signalling Group, Medical Sciences Department, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
21
|
Nordin K, Gorbach T, Pedersen R, Panes Lundmark V, Johansson J, Andersson M, McNulty C, Riklund K, Wåhlin A, Papenberg G, Kalpouzos G, Bäckman L, Salami A. DyNAMiC: A prospective longitudinal study of dopamine and brain connectomes: A new window into cognitive aging. J Neurosci Res 2022; 100:1296-1320. [PMID: 35293013 PMCID: PMC9313590 DOI: 10.1002/jnr.25039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 11/07/2022]
Abstract
Concomitant exploration of structural, functional, and neurochemical brain mechanisms underlying age-related cognitive decline is crucial in promoting healthy aging. Here, we present the DopamiNe, Age, connectoMe, and Cognition (DyNAMiC) project, a multimodal, prospective 5-year longitudinal study spanning the adult human lifespan. DyNAMiC examines age-related changes in the brain's structural and functional connectome in relation to changes in dopamine D1 receptor availability (D1DR), and their associations to cognitive decline. Critically, due to the complete lack of longitudinal D1DR data, the true trajectory of one of the most age-sensitive dopamine systems remains unknown. The first DyNAMiC wave included 180 healthy participants (20-80 years). Brain imaging included magnetic resonance imaging assessing brain structure (white matter, gray matter, iron), perfusion, and function (during rest and task), and positron emission tomography (PET) with the [11 C]SCH23390 radioligand. A subsample (n = 20, >65 years) was additionally scanned with [11 C]raclopride PET measuring D2DR. Age-related variation was evident for multiple modalities, such as D1DR; D2DR, and performance across the domains of episodic memory, working memory, and perceptual speed. Initial analyses demonstrated an inverted u-shaped association between D1DR and resting-state functional connectivity across cortical network nodes, such that regions with intermediate D1DR levels showed the highest levels of nodal strength. Evident within each age group, this is the first observation of such an association across the adult lifespan, suggesting that emergent functional architecture depends on underlying D1DR systems. Taken together, DyNAMiC is the largest D1DR study worldwide, and will enable a comprehensive examination of brain mechanisms underlying age-related cognitive decline.
Collapse
Affiliation(s)
- Kristin Nordin
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Present address:
Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholm11330Sweden
| | - Tetiana Gorbach
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Umeå School of Business, Economics and StatisticsUmeå UniversityUmeåSweden
| | - Robin Pedersen
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Vania Panes Lundmark
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Jarkko Johansson
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Charlotte McNulty
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Goran Papenberg
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Grégoria Kalpouzos
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Lars Bäckman
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| |
Collapse
|
22
|
Cha E, Ahn HJ, Kang W, Jung KI, Ohn SH, Bashir S, Yoo WK. Correlations between COMT polymorphism and brain structure and cognition in elderly subjects: An observational study. Medicine (Baltimore) 2022; 101:e29214. [PMID: 35550471 PMCID: PMC9276462 DOI: 10.1097/md.0000000000029214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/14/2022] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT The catechol-O-methyltransferase (COMT) gene has been noted to play an important role in individual variations in the aging process. We investigated whether COMT polymorphism could influence cognition related to white matter networks. More specifically, we examined whether methionine (Met) allele loading is associated with better individual cognitive performance. Thirty-four healthy elderly participants were recruited; each participant's COMT genotype was determined, and Korean version of Montreal Cognitive Assessment scores and a diffusion tensor image were obtained for all participants. The Met carrier group showed significantly lower mean diffusivity, axial diffusivity, and radial diffusivity values for the right hippocampus, thalamus, uncinate fasciculus, and left caudate nucleus than the valine homozygote group. The Met carrier group also scored higher for executive function and attention on the Korean version of Montreal Cognitive Assessment. Based on these results, we can assume that the COMT Met allele has a protective effect on cognitive decline contributing to individual differences in cognitive function in late life period.
Collapse
Affiliation(s)
- Eunsil Cha
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Hyun Jung Ahn
- Hallym Institute of Translational Genomics & Bioinformatics, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Wonil Kang
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Kwang-Ik Jung
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| |
Collapse
|
23
|
Role of Catechol-O-methyltransferase Val158Met Polymorphism on Transcranial Direct Current Stimulation in Swallowing. J Pers Med 2022; 12:jpm12030488. [PMID: 35330487 PMCID: PMC8949172 DOI: 10.3390/jpm12030488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is one of the latest post-stroke dysphagia treatment modalities, and the effect of tDCS is known to be affected by various factors including genetic polymorphisms. However, the role of catechol-O-methyltransferase (COMT) polymorphisms on tDCS in swallowing is unclear. In this prospective pilot study, we aim to explore the effect of tDCS on the swallowing cortex and subsequent swallowing motor function according to COMT polymorphism. Twenty-four healthy participants received either anodal tDCS or sham mode tDCS on the mylohyoid motor cortex at random order, after inhibitory repetitive transcranial magnetic stimulation (rTMS) for preconditioning. The primary outcome was the changes of mylohyoid-motor-evoked potentials (MH-MEP) amplitude in each COMT polymorphism group, from the post-inhibitory rTMS baseline state to immediate, 30, and 60 min after tDCS. The secondary outcomes were the changes in swallowing function. The results showed that COMT Val/Val polymorphism showed improvement across time in the MH-MEP amplitudes and triggering time of swallowing after tDCS, whereas COMT Met carrier group did not show significant changes of MH-MEP or swallowing function across time. This therapeutic response variability of tDCS in the mylohyoid motor system according to COMT polymorphism support the importance of genetic analysis in individualized dysphagia treatment.
Collapse
|
24
|
White-Matter Integrity and Working Memory: Links to Aging and Dopamine-Related Genes. eNeuro 2022; 9:ENEURO.0413-21.2022. [PMID: 35346961 PMCID: PMC9014983 DOI: 10.1523/eneuro.0413-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Working memory, a core function underlying many higher-level cognitive processes, requires cooperation of multiple brain regions. White matter refers to myelinated axons, which are critical to interregional brain communication. Past studies on the association between white-matter integrity and working memory have yielded mixed findings. Using voxelwise tract-based spatial statistics analysis, we investigated this relationship in a sample of 328 healthy adults from 25 to 80 years of age. Given the important role of dopamine (DA) in working-memory functioning and white matter, we also analyzed the effects of dopamine-related genes on them. There were associations between white-matter integrity and working memory in multiple tracts, indicating that working-memory functioning relies on global connections between different brain areas across the adult life span. Moreover, a mediation analysis suggested that white-matter integrity contributes to age-related differences in working memory. Finally, there was an effect of the COMT Val158Met polymorphism on white-matter integrity, such that Val/Val carriers had lower fractional anisotropy values than any Met carriers in the internal capsule, corona radiata, and posterior thalamic radiation. As this polymorphism has been associated with dopaminergic tone in the prefrontal cortex, this result provides evidence for a link between DA neurotransmission and white matter. Together, the results support a link between white-matter integrity and working memory, and provide evidence for its interplay with age- and DA-related genes.
Collapse
|
25
|
Karalija N, Köhncke Y, Düzel S, Bertram L, Papenberg G, Demuth I, Lill CM, Johansson J, Riklund K, Lövdén M, Bäckman L, Nyberg L, Lindenberger U, Brandmaier AM. A common polymorphism in the dopamine transporter gene predicts working memory performance and in vivo dopamine integrity in aging. Neuroimage 2021; 245:118707. [PMID: 34742942 DOI: 10.1016/j.neuroimage.2021.118707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Dopamine (DA) integrity is suggested as a potential cause of individual differences in working memory (WM) performance among older adults. Still, the principal dopaminergic mechanisms giving rise to WM differences remain unspecified. Here, 61 single-nucleotide polymorphisms, located in or adjacent to various dopamine-related genes, were assessed for their links to WM performance in a sample of 1313 adults aged 61-80 years from the Berlin Aging Study II. Least Absolute Shrinkage and Selection Operator (LASSO) regression was conducted to estimate associations between polymorphisms and WM. Rs40184 in the DA transporter gene, SLC6A3, showed allelic group differences in WM, with T-carriers performing better than C homozygotes (p<0.01). This finding was replicated in an independent sample from the Cognition, Brain, and Aging study (COBRA; baseline: n = 181, ages: 64-68 years; 5-year follow up: n = 129). In COBRA, in vivo DA integrity was measured with 11C-raclopride and positron emission tomography. Notably, WM as well as in vivo DA integrity was higher for rs40184 T-carriers at baseline (p<0.05 for WM and caudate and hippocampal D2-receptor availability) and at the 5-year follow-up (p<0.05 for WM and hippocampal D2 availability). Our findings indicate that individual differences in DA transporter function contribute to differences in WM performance in old age, presumably by regulating DA availability.
Collapse
Affiliation(s)
- Nina Karalija
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden.
| | - Ylva Köhncke
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany; Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet & Stockholm University, Solna, Sweden
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany; Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany; Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Jarkko Johansson
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Martin Lövdén
- Department of psychology, University of Gothenburg, Gothenburg, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet & Stockholm University, Solna, Sweden
| | - Lars Nyberg
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| |
Collapse
|
26
|
Sprague BN, Rosso AL, Zhu X, Bohnen NI, Rosano C. Catechol-O-methyltransferase (COMT) polymorphism predicts rapid gait speed changes in healthy older adults. J Am Geriatr Soc 2021; 69:3194-3202. [PMID: 34231207 DOI: 10.1111/jgs.17351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022]
Abstract
IMPORTANCE Adapting one's gait speed to external circumstances is critical for safe ambulation. Dopamine (DA), critical for adapting to increased task demands, predicts usual gait speed and may exert a greater role in complex tasks like rapid gait speed. OBJECTIVE We hypothesized that a genotypic proxy indicator of greater prefrontal DA signaling would predict significantly faster rapid gait. DESIGN Longitudinal cohort study over 8 years. SETTING Community-dwelling adults with no baseline mobility disability. PARTICIPANTS N = 2353 participants from the Health ABC Study. MEASUREMENTS Repeated measures of walking speed (meters/sec) were obtained in response to: "walk as fast as possible… (rapid gait) or "walk at your usual pace (usual gait)." Catechol-O-methyltransferase (COMT) val158met polymorphism indicated DA signaling (val/val = higher metabolism, lower DA signaling; met/met = lower metabolism, higher DA signaling). RESULTS Participants declined in rapid gait from 1.55 (SD = 0.33) to 1.35 m/s (SD = 0.34). Across the full follow-up period, the met/met genotype was associated with significantly greater rapid gait slowing. In mixed effect models, between-group differences were independent of covariates, and remained similar after adjustment for sensorimotor function, cognition, depressive symptoms, and energy. Follow-up analyses indicated the met/met genotype had a significantly faster rapid gait speed compared to the val/val genotype for the first 3 years (p < 0.01) but not years 4-8 (p > 0.05). CONCLUSION Greater prefrontal DA measured with COMT polymorphism may facilitate short-term adaptation to rapid walking demands that are lost over time. Studies should examine whether these effects are long-term and the underlying mechanistic pathways.
Collapse
Affiliation(s)
- Briana N Sprague
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrea L Rosso
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaonan Zhu
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicolaas I Bohnen
- Department of Radiology and Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Ann Arbor VAMC, Ann Arbor, Michigan, USA
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Park HY, Kim Y, Oh HM, Kim TW, Park GY, Im S. Potential Prognostic Impact of Dopamine Receptor D1 ( rs4532) Polymorphism in Post-stroke Outcome in the Elderly. Front Neurol 2021; 12:675060. [PMID: 34276537 PMCID: PMC8277925 DOI: 10.3389/fneur.2021.675060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Single-nucleotide polymorphisms (SNPs) may affect post-stroke motor recovery, and some SNPs have been implicated in swallowing disturbances after stroke. Certain SNPs may also have altered influences according to different age. Objective: This post-hoc study investigated whether SNPs have different effects on dysphagia recovery between the elderly vs. young stroke patients. Methods: Analysis was conducted from a previous study including 218 stroke subjects with dysphagia. They were stratified into two groups, aged <65 and aged ≥65 years. The primary outcome was persistence of nil per mouth (NPM) at 3 months post-stroke onset. Association between outcome and nine different SNPs were investigated. Results: The elderly group (50%, n = 103) showed poorer swallowing outcomes than the young group. The minor allele of the dopamine receptor D1 (DRD1, rs4532) polymorphism showed potential association (p = 0.022) with an increased risk of NPM at 12 weeks post-stroke in the elderly, both in the additive (OR, 2.94; 95% CI, 1.17-7.37) and dominant models (OR, 2.93; 95% CI, 1.04-8.23) but did not reach statistical significance after Bonferonni correction. Logistic regression analysis showed that in those aged ≥65 years, models including the minor allele of rs4532 predicted the risk of the poor outcome with good accuracies even after adjustment of clinical factors, such as previous pneumonia episodes (AUROC, 0.86; 95% CI, 0.79-0.93) or the National Institutes of Health Stroke Scale (AUROC, 0.82; 95% CI, 0.67-0.92). In contrast, those aged <65 years seemed not to be affected by the presence of the rs4532 polymorphism, and models that included intubation history (AUROC, 0.81; 95% CI, 0.73-0.90) or previous pneumonia episodes (AUROC, 0.77; 95% CI, 0.68-0.87) showed modest levels of accuracies in predicting NPM at 12 weeks poststroke. Conclusions: Our study suggests a possible association between the rs4532 and post-stroke swallowing recovery, primarily in those aged ≥65 years. Certain SNPs may lead to less favorable outcomes in the elderly. The gene-age interaction should be considered in post-stroke swallowing recovery. Clinical Trial Registration: https://www.clinicaltrials.gov, Unique identifier [NCT03577444].
Collapse
Affiliation(s)
- Hae-Yeon Park
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Youngkook Kim
- Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Mi Oh
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong, South Korea.,Department of Rehabilitation Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Tae-Woo Kim
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong, South Korea.,Department of Rehabilitation Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Geun-Young Park
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun Im
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
28
|
Spontaneous Eye Blinks Predict Executive Functioning in Seniors. JOURNAL OF COGNITIVE ENHANCEMENT 2021. [DOI: 10.1007/s41465-021-00217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractAs the world’s population is aging rapidly, cognitive training is an extensively used approach to attempt improvement of age-related cognitive functioning. With increasing numbers of older adults required to remain in the workforce, it is important to be able to reliably predict future functional decline, as well as the individual advantages of cognitive training. Given the correlation between age-related decline and striatal dopaminergic function, we investigated whether eye blink rate (EBR), a non-invasive, indirect indicator of dopaminergic activity, could predict executive functioning (response inhibition, switching and working memory updating) as well as trainability of executive functioning in older adults. EBR was collected before and after a cognitive flexibility training, cognitive training without flexibility, or a mock training. EBR predicted working memory updating performance on two measures of updating, as well as trainability of working memory updating, whereas performance and trainability in inhibition and switching tasks could not be predicted by EBR. Our findings tentatively indicate that EBR permits prediction of working memory performance in older adults. To fully interpret the relationship with executive functioning, we suggest future research should assess both EBR and dopamine receptor availability among seniors.
Collapse
|
29
|
Dashti HS, Ordovás JM. Genetics of Sleep and Insights into Its Relationship with Obesity. Annu Rev Nutr 2021; 41:223-252. [PMID: 34102077 DOI: 10.1146/annurev-nutr-082018-124258] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Considerable recent advancements in elucidating the genetic architecture of sleep traits and sleep disorders may provide insight into the relationship between sleep and obesity. Despite the considerable involvement of the circadian clock in sleep and metabolism, few shared genes, including FTO, were implicated in genome-wide association studies (GWASs) of sleep and obesity. Polygenic scores composed of signals from GWASs of sleep traits show largely null associations with obesity, suggesting lead variants are unique to sleep. Modest genome-wide genetic correlations are observed between many sleep traits and obesity and are largest for snoring.Notably, U-shaped positive genetic correlations with body mass index (BMI) exist for both short and long sleep durations. Findings from Mendelian randomization suggest robust causal effects of insomnia on higher BMI and, conversely, of higher BMI on snoring and daytime sleepiness. Bidirectional effects between sleep duration and daytime napping with obesity may also exist. Limited gene-sleep interaction studies suggest that achieving favorable sleep, as part of a healthy lifestyle, may attenuate genetic predisposition to obesity, but whether these improvements produce clinically meaningful reductions in obesity risk remains unclear. Investigations of the genetic link between sleep and obesity for sleep disorders other than insomnia and in populations of non-European ancestry are currently limited. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hassan S Dashti
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA; .,Broad Institute, Cambridge, Massachusetts 02142, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA.,Precision Nutrition and Obesity Program, IMDEA Alimentación, 28049 Madrid, Spain
| |
Collapse
|
30
|
Matijevic S, Ryan L. Tract Specificity of Age Effects on Diffusion Tensor Imaging Measures of White Matter Health. Front Aging Neurosci 2021; 13:628865. [PMID: 33790778 PMCID: PMC8006297 DOI: 10.3389/fnagi.2021.628865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Well-established literature indicates that older adults have poorer cerebral white matter integrity, as measured through diffusion tensor imaging (DTI). Age differences in DTI have been observed widely across white matter, although some tracts appear more sensitive to the effects of aging than others. Factors like APOE ε4 status and sex may contribute to individual differences in white matter integrity that also selectively impact certain tracts, and could influence DTI changes in aging. The present study explored the degree to which age, APOE ε4, and sex exerted global vs. tract specific effects on DTI metrics in cognitively healthy late middle-aged to older adults. Data from 49 older adults (ages 54–92) at two time-points separated by approximately 2.7 years were collected. DTI metrics, including fractional anisotropy (FA) and mean diffusivity (MD), were extracted from nine white matter tracts and global white matter. Results showed that across timepoints, FA and MD increased globally, with no tract-specific changes observed. Baseline age had a global influence on both measures, with increasing age associated with lower FA and higher MD. After controlling for global white matter FA, age additionally predicted FA for the genu, callosum body, inferior fronto-occipital fasciculus (IFOF), and both anterior and posterior cingulum. Females exhibited lower global FA on average compared to males. In contrast, MD was selectively elevated in the anterior cingulum and superior longitudinal fasciculus (SLF), for females compared to males. APOE ε4 status was not predictive of either measure. In summary, these results indicate that age and sex are associated with both global and tract-specific alterations to DTI metrics among a healthy older adult cohort. Older women have poorer white matter integrity compared to older men, perhaps related to menopause-induced metabolic changes. While age-related alterations to white matter integrity are global, there is substantial variation in the degree to which tracts are impacted, possibly as a consequence of tract anatomical variability. The present study highlights the importance of accounting for global sources of variation in DTI metrics when attempting to investigate individual differences (due to age, sex, or other factors) in specific white matter tracts.
Collapse
Affiliation(s)
- Stephanie Matijevic
- Cognition and Neuroimaging Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Lee Ryan
- Cognition and Neuroimaging Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
31
|
Stickel AM, McKinnon AC, Matijevic S, Grilli MD, Ruiz J, Ryan L. Apolipoprotein E ε4 Allele-Based Differences in Brain Volumes Are Largely Uniform Across Late Middle Aged and Older Hispanic/Latino- and Non-Hispanic/Latino Whites Without Dementia. Front Aging Neurosci 2021; 13:627322. [PMID: 33716715 PMCID: PMC7952627 DOI: 10.3389/fnagi.2021.627322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/01/2022] Open
Abstract
Hispanics/Latinos are at an equal or a greater risk for Alzheimer's disease (AD), yet risk factors remain more poorly characterized as compared to non-Hispanic/Latino Whites. Among non-Hispanic/Latino White cohorts, the apolipoprotein E (APOE) ε4 allele is one of the strongest risk factors for AD with subtle declines in episodic memory and brain volumes detectable in the preclinical stages. We examined whether the APOE ε4 status had a differential impact on cognition and brain volumes among cognitively healthy and mild cognitively impaired Hispanics/Latinos (n = 86; ε4 n = 23) compared to a well-matched group of non-Hispanic/Latino Whites (n = 92; ε4 n = 29). Neither the APOE ε4 status nor the interaction between the ε4 status and ethnicity was associated with cognitive performance. The APOE ε4 status was associated with white matter and not with gray matter volumes. APOE ε4 carriers had a significantly smaller total brain white matter volumes, as well as smaller right middle temporal and left superior temporal volumes. The Hispanics/Latinos had significantly smaller left middle frontal gray matter volumes, yet marginally larger overall white matter volumes, than the non-Hispanic/Latino Whites. Exploratory analysis within the Hispanic/Latino sample found that those people whose primary language was Spanish had larger total brain white matter volumes compared primarily to the English speakers. Importantly, primary language differences only held for Hispanic/Latino ε4 carriers and did not differentiate Hispanic/Latino non-carriers, underscoring the need for further investigation into the impacts of language and acculturation on cognitive aging among the fastest growing ethnic minority group in the United States.
Collapse
Affiliation(s)
- Ariana M. Stickel
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Andrew C. McKinnon
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | | | - Matthew D. Grilli
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - John Ruiz
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Lee Ryan
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
32
|
Integrating Three Characteristics of Executive Function in Non-Demented Aging: Trajectories, Classification, and Biomarker Predictors. J Int Neuropsychol Soc 2021; 27:158-171. [PMID: 32772936 PMCID: PMC7873176 DOI: 10.1017/s1355617720000703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE With longitudinal executive function (EF) data from the Victoria Longitudinal Study, we investigated three research goals pertaining to key characteristics of EF in non-demented aging: (a) examining variability in EF longitudinal trajectories, (b) establishing trajectory classes, and (c) identifying biomarker predictors discriminating these classes. METHOD We used a trajectory analyses sample (n = 781; M age = 71.42) for the first and second goals and a prediction analyses sample (n = 570; M age = 70.10) for the third goal. Eight neuropsychological EF measures were used as indicators of three EF dimensions: inhibition, updating, and shifting. Data-driven classification analyses were applied to the full trajectory distribution. Machine learning prediction analyses tested 15 predictors from genetic, functional, lifestyle, mobility, and demographic risk domains. RESULTS First, we observed: (a) significant variability in EF trajectories over a 40-year band of aging and (b) significantly variable patterns of EF decline. Second, a four-class EF trajectory model was observed, characterized with classes differentiated by an algorithm of level and slope information. Third, the highest group class was discriminated from lowest by several prediction factors: more education, more novel cognitive activity, lower pulse pressure, younger age, faster gait, lower body mass index, and better balance. CONCLUSION First, with longitudinal variability in EF aging, the data-driven approach showed that long-term trajectories can be differentiated into separable classes. Second, prediction analyses discriminated class membership by a combination of multiple biomarkers from demographic, lifestyle, functional, and mobility domains of risk for brain and cognitive aging decline.
Collapse
|
33
|
Yee A, Tsui NBY, Kwan RYC, Leung AYM, Lai CKY, Chung T, Lau JYN, Fok M, Dai DLK, Lau LT. Apolipoprotein E Gene Revisited: Contribution of Rare Variants to Alzheimer's Disease Susceptibility in Southern Chinese. Curr Alzheimer Res 2021; 18:67-79. [PMID: 33761857 DOI: 10.2174/1567205018666210324111401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND APOE ε4 is the best-known risk factor for late-onset alzheimer's disease (AD). Population studies have demonstrated a relatively low prevalence of APOE ε4 among Chinese population, implying additional risk factors that are Chinese-specific may exist. Apart from - alleles, genetic variation profile along the full-length APOE has rarely been investigated. OBJECTIVE In this study, we filled this gap by comprehensively determining all genetic variations in APOE and investigated their potential associations with late-onset AD and mild cognitive impairment (MCI) in southern Chinese. METHODS Two hundred and fifty-seven southern Chinese participants were recruited, of whom 69 were AD patients, 83 had MCI, and 105 were normal controls. Full-length APOE from promoter to 3'UTR regions were sequenced. Genetic variants were identified and compared among the three groups. RESULTS While APOE ε4 was more significantly found in AD patients, the prevalence of APOE ε4 in southern Chinese AD patients was the lowest when compared to other areas of China and nearby regions, as well as other countries worldwide. We further identified 13 rare non-singleton variants in APOE. Significantly more AD patients carried any of the rare non-singleton variants than MCI and normal subjects. Such difference was observed in the non-carriers of ε4-allele only. Among the identified rare variants, the potential functional impact was predicted for rs532314089, rs553874843, rs533904656 and rs370594287. CONCLUSION Our study suggests an ethnic difference in genetic risk composition of AD in southern Chinese. Rare variants on APOE are a potential candidate for AD risk stratification biomarker in addition to APOE-ε4.
Collapse
Affiliation(s)
- Anita Yee
- Avalon Genomics (Hong Kong) Limited, Shatin,Hong Kong
| | | | - Rick Y C Kwan
- Centre for Gerontological Nursing, School of Nursing, The Hong Kong Polytechnic University, Hung Hom,Hong Kong
| | - Angela Y M Leung
- Centre for Gerontological Nursing, School of Nursing, The Hong Kong Polytechnic University, Hung Hom,Hong Kong
| | - Claudia K Y Lai
- Centre for Gerontological Nursing, School of Nursing, The Hong Kong Polytechnic University, Hung Hom,Hong Kong
| | - Teresa Chung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom,Hong Kong
| | | | - Manson Fok
- Faculty of Health Sciences, Macau University of Science and Technology, Taipa, Macau,Hong Kong
| | - David L K Dai
- Hong Kong Alzheimer's Disease Association, Wang Tau Hom,Hong Kong
| | - Lok-Ting Lau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom,Hong Kong
| |
Collapse
|
34
|
Miranda GG, Rodrigue KM, Kennedy KM. Cortical thickness mediates the relationship between DRD2 C957T polymorphism and executive function across the adult lifespan. Brain Struct Funct 2021; 226:121-136. [PMID: 33179159 PMCID: PMC7855542 DOI: 10.1007/s00429-020-02169-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Dopamine (DA) signaling is critical for optimal cognitive performance. Aging is accompanied by a change in the strength of this signaling, with a loss of striatal and extrastriatal D2 binding potential. The reduction in dopamine modulation with age negatively influences various aspects of cognition. DRD2 C957T (rs6277) impacts DA D2 receptor density and availability, with C homozygotes linked to lower striatal DA availability and reduced executive functioning (EF), but also high extrastriatal binding potential. Here, we investigated in 176 participants aged 20-94 years whether: (1) DRD2 C carriers differ from T carriers in cortical thickness or subcortical volume in areas of high concentrations of D2 receptors that receive projections from mesocortical or nigrostriatal dopaminergic pathways; (2) whether the DRD2*COMT relationship has any synergistic effects on cortical thickness; (3) whether the effect of DRD2 on brain structure depends upon age; and (4) whether DRD2-related regional thinning affects executive function performance. We show that DRD2 impacts cortical thickness in the superior parietal lobule, precuneus, and anterior cingulate (marginal after FDR correction), while statistically controlling sex, age, and COMT genotype. Specifically, C homozygotes demonstrated thinner cortices than both heterozygotes and/or T homozygotes in an age-invariant manner. Additionally, DRD2 predicted executive function performance via cortical thickness. The results highlight that genetic influences on dopamine availability impact cognitive performance via the contribution of brain structure in cortical regions influenced by DRD2.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA.
| |
Collapse
|
35
|
Chen HY, Dix A, Goh JOS, Smolka MN, Thurm F, Li SC. Effects and mechanisms of information saliency in enhancing value-based decision-making in younger and older adults. Neurobiol Aging 2020; 99:86-98. [PMID: 33422897 DOI: 10.1016/j.neurobiolaging.2020.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 10/12/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022]
Abstract
Aging attenuates frontostriatal network functioning, which could lead to deficits in value computation when decision-making involves uncertainty. Although it has been shown that visually enhancing information saliency of outcome probability can improve decision-making in old age, mechanisms of this effect are still unclear. In the present study, the saliency of outcome probability was increased using a color-coding scheme as a decision aid in a mixed lottery choice task, and spontaneous eye-blink rate and pupillary responses were assessed in younger and older adults. Older adults showed lower value sensitivity than younger adults; however, increasing information saliency benefitted choice behaviors in both age groups. Furthermore, the decision aid reduced pupil size during decision-making in both age groups, suggesting that enhancing information saliency decreases cognitive demands of value computation. Baseline value sensitivity was negatively correlated with benefit of enhancing information saliency only in older adults. As value representations in older decision makers are less distinctive at baseline, they may have required more environmental compensation than younger adults.
Collapse
Affiliation(s)
- Hsiang-Yu Chen
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Annika Dix
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Chair of Engineering Psychology and Applied Cognitive Research, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| | - Joshua Oon Soo Goh
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Franka Thurm
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
36
|
Braun RG, Kittner SJ, Ryan KA, Cole JW. Effects of the BDNF Val66Met polymorphism on functional status and disability in young stroke patients. PLoS One 2020; 15:e0237033. [PMID: 33306691 PMCID: PMC7732081 DOI: 10.1371/journal.pone.0237033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/17/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE The preponderance of evidence from recent studies in human subjects supports a negative effect of the BDNF Val66Met polymorphism on motor outcomes and motor recovery. However prior studies have generally reported the effect of the Met allele in older stroke patients, while potential effects in younger stroke patients have remained essentially unexamined. The lack of research in younger patients is significant since aging effects on CNS repair and functional recovery after stroke are known to interact with the effects of genetic polymorphisms. Here we present a study of first-ever ischemic stroke patients aged 15-49 years that examines the effect of Met carrier status on functional disability. METHODS 829 patients with a first ischemic stroke (Average age = 41.4 years, SD = 6.9) were recruited from the Baltimore-Washington region. Genotyping was performed at the Johns Hopkins University Center for Inherited Disease Research (CIDR). Data cleaning and harmonization were done at the GEI-funded GENEVA Coordinating Center at the University of Washington. Our sample contained 165 Met carriers and 664 non-Met carriers. Modified Rankin scores as recorded at discharge were obtained from the hospital records by study personnel blinded to genotype, and binarized into "Good" versus "Poor" outcomes (mRS 0-2 vs. 3+), with mRS scores 3+ reflecting a degree of disability that causes loss of independence. RESULTS Our analysis showed that the Met allele conveyed a proportionally greater risk for poor outcomes and disability-related loss of independence with mRS scores 3+ (adjusted OR 1.73, 95% CI 1.13-2.64, p = 0.01). CONCLUSIONS The BDNF Val66Met polymorphism was negatively associated with functional outcomes at discharge in our sample of 829 young stroke patients. This finding stands in contrast to what would be predicted under the tenets of the resource modulation hypothesis (i.e. that younger patients would be spared from the negative effect of the Met allele on recovery since it is posited to arise as a manifestation of age-related decline in physiologic resources).
Collapse
Affiliation(s)
- Robynne G. Braun
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Steven J. Kittner
- University of Maryland School of Medicine, Baltimore, MD, United States of America
- Veterans Affairs Maryland Health Care System, Baltimore, MD, United States of America
| | - Kathleen A. Ryan
- Veterans Affairs Maryland Health Care System, Baltimore, MD, United States of America
| | - John W. Cole
- University of Maryland School of Medicine, Baltimore, MD, United States of America
- Veterans Affairs Maryland Health Care System, Baltimore, MD, United States of America
| |
Collapse
|
37
|
de Las Heras B, Rodrigues L, Cristini J, Weiss M, Prats-Puig A, Roig M. Does the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Modulate the Effects of Physical Activity and Exercise on Cognition? Neuroscientist 2020; 28:69-86. [PMID: 33300425 DOI: 10.1177/1073858420975712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Val66Met is a polymorphism of the brain-derived neurotrophic factor (BDNF) gene that encodes a substitution of a valine (Val) to methionine (Met) amino acid. Carrying this polymorphism reduces the activity-dependent secretion of the BDNF protein, which can potentially affect brain plasticity and cognition. We reviewed the biology of Val66Met and surveyed 26 studies (11,417 participants) that examined the role of this polymorphism in moderating the cognitive response to physical activity (PA) and exercise. Nine observational studies confirmed a moderating effect of Val66Met on the cognitive response to PA but differences between Val and Met carriers were inconsistent and only significant in some cognitive domains. Only five interventional studies found a moderating effect of Val66Met on the cognitive response to exercise, which was also inconsistent in its direction. Two studies showed a superior cognitive response in Val carriers and three studies showed a better response in Met carriers. These results do not support a general and consistent effect of Val66Met in moderating the cognitive response to PA or exercise. Both Val and Met carriers can improve specific aspects of cognition by increasing PA and engaging in exercise. Causes for discrepancies among studies, effect moderators, and future directions are discussed.
Collapse
Affiliation(s)
- Bernat de Las Heras
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Lynden Rodrigues
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jacopo Cristini
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Maxana Weiss
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Anna Prats-Puig
- University School of Health and Sport (EUSES), University of Girona, Girona, Catalunya, Spain
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Nyberg L, Boraxbekk CJ, Sörman DE, Hansson P, Herlitz A, Kauppi K, Ljungberg JK, Lövheim H, Lundquist A, Adolfsson AN, Oudin A, Pudas S, Rönnlund M, Stiernstedt M, Sundström A, Adolfsson R. Biological and environmental predictors of heterogeneity in neurocognitive ageing: Evidence from Betula and other longitudinal studies. Ageing Res Rev 2020; 64:101184. [PMID: 32992046 DOI: 10.1016/j.arr.2020.101184] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Individual differences in cognitive performance increase with advancing age, reflecting marked cognitive changes in some individuals along with little or no change in others. Genetic and lifestyle factors are assumed to influence cognitive performance in ageing by affecting the magnitude and extent of age-related brain changes (i.e., brain maintenance or atrophy), as well as the ability to recruit compensatory processes. The purpose of this review is to present findings from the Betula study and other longitudinal studies, with a focus on clarifying the role of key biological and environmental factors assumed to underlie individual differences in brain and cognitive ageing. We discuss the vital importance of sampling, analytic methods, consideration of non-ignorable dropout, and related issues for valid conclusions on factors that influence healthy neurocognitive ageing.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Daniel Eriksson Sörman
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Patrik Hansson
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden
| | - Agneta Herlitz
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jessica K Ljungberg
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Statistics, USBE, Umeå University, 901 87 Umeå, Sweden
| | | | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, S-90187 Umeå, Sweden; Environment Society and Health, Occupational and Environmental Medicine, Lund University
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | | | - Mikael Stiernstedt
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | - Anna Sundström
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden; Centre for Demographic and Ageing Research (CEDAR), Umeå University, Umeå, S-90187, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
39
|
Fan J, Yang C, Liu Z, Li H, Han Y, Chen K, Chen C, Wang J, Zhang Z. Female-specific effects of the catechol-O-methyl transferase Val 158Met gene polymorphism on working memory-related brain function. Aging (Albany NY) 2020; 12:23900-23916. [PMID: 33221753 PMCID: PMC7762470 DOI: 10.18632/aging.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 11/25/2022]
Abstract
The catechol-O-methyltransferase (COMT) Val158Met polymorphism has been associated with working memory (WM) in many studies, but the results have not been consistent. One plausible explanation is sex-specific effects of this polymorphism as reported in several studies. The current study aimed to explore the sex-specific effects of the COMT Val158Met polymorphism on WM-related brain function in an elderly sample. We found that Val homozygotes outperformed Met allele carriers on the backward digit span subtest for both males and females. The triangular part of the left inferior frontal gyrus and the left inferior temporal gyrus exhibited higher activation in Met allele carriers compared with Val homozygotes during the n-back task, while the background functional connectivity (bFC) between the left angular gyrus (ANG) and the right ANG was enhanced in Val homozygotes as compared to Met allele carriers. Finally, the associations between brain activation, bFC (among various regions), and WM performance were identified only in specific genotype groups of the female participants. These findings provide new insights into the role of COMT Val158Met gene polymorphism in brain function, particularly its female-specific nature.
Collapse
Affiliation(s)
- Jialing Fan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Zhen Liu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - He Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA 92697, USA
| | - Jun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
40
|
Boylan MA, Foster CM, Pongpipat EE, Webb CE, Rodrigue KM, Kennedy KM. Greater BOLD Variability is Associated With Poorer Cognitive Function in an Adult Lifespan Sample. Cereb Cortex 2020; 31:562-574. [PMID: 32915200 PMCID: PMC7727366 DOI: 10.1093/cercor/bhaa243] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 12/01/2022] Open
Abstract
Moment-to-moment fluctuations in brain signal assessed by functional magnetic resonance imaging blood oxygenation level dependent (BOLD) variability is increasingly thought to represent important “signal” rather than measurement-related “noise.” Efforts to characterize BOLD variability in healthy aging have yielded mixed outcomes, demonstrating both age-related increases and decreases in BOLD variability and both detrimental and beneficial associations. Utilizing BOLD mean-squared-successive-differences (MSSD) during a digit n-back working memory (WM) task in a sample of healthy adults (aged 20–94 years; n = 171), we examined effects of aging on whole-brain 1) BOLD variability during task (mean condition MSSD across 0–2–3-4 back conditions), 2) BOLD variability modulation to incrementally increasing WM difficulty (linear slope from 0–2–3-4 back), and 3) the association of age-related differences in variability with in- and out-of-scanner WM performance. Widespread cortical and subcortical regions evidenced increased mean variability with increasing age, with no regions evidencing age-related decrease in variability. Additionally, posterior cingulate/precuneus exhibited increased variability to WM difficulty. Notably, both age-related increases in BOLD variability were associated with significantly poorer WM performance in all but the oldest adults. These findings lend support to the growing corpus suggesting that brain-signal variability is altered in healthy aging; specifically, in this adult lifespan sample, BOLD-variability increased with age and was detrimental to cognitive performance.
Collapse
Affiliation(s)
- Maria A Boylan
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Chris M Foster
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Ekarin E Pongpipat
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Christina E Webb
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| |
Collapse
|
41
|
Walhovd KB, Fjell AM, Sørensen Ø, Mowinckel AM, Reinbold CS, Idland AV, Watne LO, Franke A, Dobricic V, Kilpert F, Bertram L, Wang Y. Genetic risk for Alzheimer disease predicts hippocampal volume through the human lifespan. NEUROLOGY-GENETICS 2020; 6:e506. [PMID: 33134508 PMCID: PMC7577559 DOI: 10.1212/nxg.0000000000000506] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/17/2020] [Indexed: 11/27/2022]
Abstract
Objective To test the hypothesis that genetic risk for Alzheimer disease (AD) may represent a stable influence on the brain from early in life, rather than being primarily age dependent, we investigated in a lifespan sample of 1,181 persons with a total of 2,690 brain scans, whether higher polygenic risk score (PGS) for AD and presence of APOE ε4 was associated with lower hippocampal volumes to begin with, as an offset effect, or possibly faster decline in older age. Methods Using general additive mixed models, we assessed the relations of PGS for AD, including variants in APOE with hippocampal volume and its change in a cognitively healthy longitudinal lifespan sample (age range: 4–95 years, mean visit age 39.7 years, SD 26.9 years), followed for up to 11 years. Results AD-PGS and APOE ε4 in isolation showed a significant negative effect on hippocampal volume. The effect of a 1 sample SD increase in AD-PGS on hippocampal volume was estimated to –36.4 mm3 (confidence interval [CI]: –71.8, –1.04) and the effect of carrying ε4 allele(s) –107.0 mm3 (CI: –182.0, –31.5). Offset effects of AD-PGS and APOE ε4 were present in hippocampal development, and interactions between age and genetic risk on volume change were not consistently observed. Conclusions Endophenotypic manifestation of polygenic risk for AD may be seen across the lifespan in cognitively healthy persons, not being confined to clinical populations or older age. This emphasizes that a broader population and age range may be relevant targets for attempts to prevent AD.
Collapse
Affiliation(s)
- Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition (K.B.W., A.M.F., Ø.S., A.M.M., C.S.R., A.-V.I., L.B., Y.W.), Department of Psychology, University of Oslo; Division of Radiology and Nuclear Medicine (K.B.W., A.M.F.), Oslo University Hospital, Rikshospitalet; Oslo Delirium Research Group (A.-V.I., L.O.W.), Department of Geriatric Medicine, and Institute of Basic Medical Sciences (A.-V.I., L.O.W.), University of Oslo, Norway; Institute of Clinical Molecular Biology (A.F.), Christian-Albrechts-University of Kiel; and Lübeck Interdisciplinary Platform for Genome Analytics (V.D., F.K., L.B.), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Germany
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition (K.B.W., A.M.F., Ø.S., A.M.M., C.S.R., A.-V.I., L.B., Y.W.), Department of Psychology, University of Oslo; Division of Radiology and Nuclear Medicine (K.B.W., A.M.F.), Oslo University Hospital, Rikshospitalet; Oslo Delirium Research Group (A.-V.I., L.O.W.), Department of Geriatric Medicine, and Institute of Basic Medical Sciences (A.-V.I., L.O.W.), University of Oslo, Norway; Institute of Clinical Molecular Biology (A.F.), Christian-Albrechts-University of Kiel; and Lübeck Interdisciplinary Platform for Genome Analytics (V.D., F.K., L.B.), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Germany
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition (K.B.W., A.M.F., Ø.S., A.M.M., C.S.R., A.-V.I., L.B., Y.W.), Department of Psychology, University of Oslo; Division of Radiology and Nuclear Medicine (K.B.W., A.M.F.), Oslo University Hospital, Rikshospitalet; Oslo Delirium Research Group (A.-V.I., L.O.W.), Department of Geriatric Medicine, and Institute of Basic Medical Sciences (A.-V.I., L.O.W.), University of Oslo, Norway; Institute of Clinical Molecular Biology (A.F.), Christian-Albrechts-University of Kiel; and Lübeck Interdisciplinary Platform for Genome Analytics (V.D., F.K., L.B.), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Germany
| | - Athanasia Monika Mowinckel
- Center for Lifespan Changes in Brain and Cognition (K.B.W., A.M.F., Ø.S., A.M.M., C.S.R., A.-V.I., L.B., Y.W.), Department of Psychology, University of Oslo; Division of Radiology and Nuclear Medicine (K.B.W., A.M.F.), Oslo University Hospital, Rikshospitalet; Oslo Delirium Research Group (A.-V.I., L.O.W.), Department of Geriatric Medicine, and Institute of Basic Medical Sciences (A.-V.I., L.O.W.), University of Oslo, Norway; Institute of Clinical Molecular Biology (A.F.), Christian-Albrechts-University of Kiel; and Lübeck Interdisciplinary Platform for Genome Analytics (V.D., F.K., L.B.), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Germany
| | - Céline Sonja Reinbold
- Center for Lifespan Changes in Brain and Cognition (K.B.W., A.M.F., Ø.S., A.M.M., C.S.R., A.-V.I., L.B., Y.W.), Department of Psychology, University of Oslo; Division of Radiology and Nuclear Medicine (K.B.W., A.M.F.), Oslo University Hospital, Rikshospitalet; Oslo Delirium Research Group (A.-V.I., L.O.W.), Department of Geriatric Medicine, and Institute of Basic Medical Sciences (A.-V.I., L.O.W.), University of Oslo, Norway; Institute of Clinical Molecular Biology (A.F.), Christian-Albrechts-University of Kiel; and Lübeck Interdisciplinary Platform for Genome Analytics (V.D., F.K., L.B.), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Germany
| | - Ane-Victoria Idland
- Center for Lifespan Changes in Brain and Cognition (K.B.W., A.M.F., Ø.S., A.M.M., C.S.R., A.-V.I., L.B., Y.W.), Department of Psychology, University of Oslo; Division of Radiology and Nuclear Medicine (K.B.W., A.M.F.), Oslo University Hospital, Rikshospitalet; Oslo Delirium Research Group (A.-V.I., L.O.W.), Department of Geriatric Medicine, and Institute of Basic Medical Sciences (A.-V.I., L.O.W.), University of Oslo, Norway; Institute of Clinical Molecular Biology (A.F.), Christian-Albrechts-University of Kiel; and Lübeck Interdisciplinary Platform for Genome Analytics (V.D., F.K., L.B.), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Germany
| | - Leiv Otto Watne
- Center for Lifespan Changes in Brain and Cognition (K.B.W., A.M.F., Ø.S., A.M.M., C.S.R., A.-V.I., L.B., Y.W.), Department of Psychology, University of Oslo; Division of Radiology and Nuclear Medicine (K.B.W., A.M.F.), Oslo University Hospital, Rikshospitalet; Oslo Delirium Research Group (A.-V.I., L.O.W.), Department of Geriatric Medicine, and Institute of Basic Medical Sciences (A.-V.I., L.O.W.), University of Oslo, Norway; Institute of Clinical Molecular Biology (A.F.), Christian-Albrechts-University of Kiel; and Lübeck Interdisciplinary Platform for Genome Analytics (V.D., F.K., L.B.), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Germany
| | - Andre Franke
- Center for Lifespan Changes in Brain and Cognition (K.B.W., A.M.F., Ø.S., A.M.M., C.S.R., A.-V.I., L.B., Y.W.), Department of Psychology, University of Oslo; Division of Radiology and Nuclear Medicine (K.B.W., A.M.F.), Oslo University Hospital, Rikshospitalet; Oslo Delirium Research Group (A.-V.I., L.O.W.), Department of Geriatric Medicine, and Institute of Basic Medical Sciences (A.-V.I., L.O.W.), University of Oslo, Norway; Institute of Clinical Molecular Biology (A.F.), Christian-Albrechts-University of Kiel; and Lübeck Interdisciplinary Platform for Genome Analytics (V.D., F.K., L.B.), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Germany
| | - Valerija Dobricic
- Center for Lifespan Changes in Brain and Cognition (K.B.W., A.M.F., Ø.S., A.M.M., C.S.R., A.-V.I., L.B., Y.W.), Department of Psychology, University of Oslo; Division of Radiology and Nuclear Medicine (K.B.W., A.M.F.), Oslo University Hospital, Rikshospitalet; Oslo Delirium Research Group (A.-V.I., L.O.W.), Department of Geriatric Medicine, and Institute of Basic Medical Sciences (A.-V.I., L.O.W.), University of Oslo, Norway; Institute of Clinical Molecular Biology (A.F.), Christian-Albrechts-University of Kiel; and Lübeck Interdisciplinary Platform for Genome Analytics (V.D., F.K., L.B.), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Germany
| | - Fabian Kilpert
- Center for Lifespan Changes in Brain and Cognition (K.B.W., A.M.F., Ø.S., A.M.M., C.S.R., A.-V.I., L.B., Y.W.), Department of Psychology, University of Oslo; Division of Radiology and Nuclear Medicine (K.B.W., A.M.F.), Oslo University Hospital, Rikshospitalet; Oslo Delirium Research Group (A.-V.I., L.O.W.), Department of Geriatric Medicine, and Institute of Basic Medical Sciences (A.-V.I., L.O.W.), University of Oslo, Norway; Institute of Clinical Molecular Biology (A.F.), Christian-Albrechts-University of Kiel; and Lübeck Interdisciplinary Platform for Genome Analytics (V.D., F.K., L.B.), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Germany
| | - Lars Bertram
- Center for Lifespan Changes in Brain and Cognition (K.B.W., A.M.F., Ø.S., A.M.M., C.S.R., A.-V.I., L.B., Y.W.), Department of Psychology, University of Oslo; Division of Radiology and Nuclear Medicine (K.B.W., A.M.F.), Oslo University Hospital, Rikshospitalet; Oslo Delirium Research Group (A.-V.I., L.O.W.), Department of Geriatric Medicine, and Institute of Basic Medical Sciences (A.-V.I., L.O.W.), University of Oslo, Norway; Institute of Clinical Molecular Biology (A.F.), Christian-Albrechts-University of Kiel; and Lübeck Interdisciplinary Platform for Genome Analytics (V.D., F.K., L.B.), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Germany
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition (K.B.W., A.M.F., Ø.S., A.M.M., C.S.R., A.-V.I., L.B., Y.W.), Department of Psychology, University of Oslo; Division of Radiology and Nuclear Medicine (K.B.W., A.M.F.), Oslo University Hospital, Rikshospitalet; Oslo Delirium Research Group (A.-V.I., L.O.W.), Department of Geriatric Medicine, and Institute of Basic Medical Sciences (A.-V.I., L.O.W.), University of Oslo, Norway; Institute of Clinical Molecular Biology (A.F.), Christian-Albrechts-University of Kiel; and Lübeck Interdisciplinary Platform for Genome Analytics (V.D., F.K., L.B.), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Germany
| |
Collapse
|
42
|
Kloosterman NA, Kosciessa JQ, Lindenberger U, Fahrenfort JJ, Garrett DD. Boosts in brain signal variability track liberal shifts in decision bias. eLife 2020; 9:54201. [PMID: 32744502 PMCID: PMC7398662 DOI: 10.7554/elife.54201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Adopting particular decision biases allows organisms to tailor their choices to environmental demands. For example, a liberal response strategy pays off when target detection is crucial, whereas a conservative strategy is optimal for avoiding false alarms. Using conventional time-frequency analysis of human electroencephalographic (EEG) activity, we previously showed that bias setting entails adjustment of evidence accumulation in sensory regions (Kloosterman et al., 2019), but the presumed prefrontal signature of a conservative-to-liberal bias shift has remained elusive. Here, we show that a liberal bias shift is reflected in a more unconstrained neural regime (boosted entropy) in frontal regions that is suited to the detection of unpredictable events. Overall EEG variation, spectral power and event-related potentials could not explain this relationship, highlighting that moment-to-moment neural variability uniquely tracks bias shifts. Neural variability modulation through prefrontal cortex appears instrumental for permitting an organism to adapt its biases to environmental demands.
Collapse
Affiliation(s)
- Niels A Kloosterman
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Julian Q Kosciessa
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Johannes Jacobus Fahrenfort
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
43
|
Olesen MA, Torres AK, Jara C, Murphy MP, Tapia-Rojas C. Premature synaptic mitochondrial dysfunction in the hippocampus during aging contributes to memory loss. Redox Biol 2020; 34:101558. [PMID: 32447261 PMCID: PMC7248293 DOI: 10.1016/j.redox.2020.101558] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Aging is a process characterized by cognitive impairment and mitochondrial dysfunction. In neurons, these organelles are classified as synaptic and non-synaptic mitochondria depending on their localization. Interestingly, synaptic mitochondria from the cerebral cortex accumulate more damage and are more sensitive to swelling than non-synaptic mitochondria. The hippocampus is fundamental for learning and memory, synaptic processes with high energy demand. However, it is unknown if functional differences are found in synaptic and non-synaptic hippocampal mitochondria; and whether this could contribute to memory loss during aging. In this study, we used 3, 6, 12 and 18 month-old (mo) mice to evaluate hippocampal memory and the function of both synaptic and non-synaptic mitochondria. Our results indicate that recognition memory is impaired from 12mo, whereas spatial memory is impaired at 18mo. This was accompanied by a differential function of synaptic and non-synaptic mitochondria. Interestingly, we observed premature dysfunction of synaptic mitochondria at 12mo, indicated by increased ROS generation, reduced ATP production and higher sensitivity to calcium overload, an effect that is not observed in non-synaptic mitochondria. In addition, at 18mo both mitochondrial populations showed bioenergetic defects, but synaptic mitochondria were prone to swelling than non-synaptic mitochondria. Finally, we treated 2, 11, and 17mo mice with MitoQ or Curcumin (Cc) for 5 weeks, to determine if the prevention of synaptic mitochondrial dysfunction could attenuate memory loss. Our results indicate that reducing synaptic mitochondrial dysfunction is sufficient to decrease age-associated cognitive impairment. In conclusion, our results indicate that age-related alterations in ATP produced by synaptic mitochondria are correlated with decreases in spatial and object recognition memory and propose that the maintenance of functional synaptic mitochondria is critical to prevent memory loss during aging. Hippocampus-dependent learning and memory are impaired with age, which correlated with synaptic mitochondrial dysfunction. Synaptic mitochondria fail before non-synaptic mitochondria, indicating premature synaptic mitochondrial damage in aging. Reducing synaptic mitochondrial dysfunction, with MitoQ or Curcumin, decrease age-associated hippocampal memory impairment. Age-related changes in ATP production of synaptic mitochondria correlated with decreased hippocampal memory. Maintenance of functional synaptic mitochondria is critical to prevent memory loss during aging.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile
| | - Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile.
| |
Collapse
|
44
|
COMT Val158Met Polymorphism, Cardiometabolic Risk, and Nadir CD4 Synergistically Increase Risk of Neurocognitive Impairment in Men Living With HIV. J Acquir Immune Defic Syndr 2020; 81:e148-e157. [PMID: 31107306 DOI: 10.1097/qai.0000000000002083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The Val allele of the Val158Met single-nucleotide polymorphism of the catechol-o-methyltransferase gene (COMT) results in faster metabolism and reduced bioavailability of dopamine (DA). Among persons living with HIV, Val carriers display neurocognitive deficits relative to Met carriers, presumably due to exacerbation of HIV-related depletion of DA. COMT may also impact neurocognition by modulating cardiometabolic function, which is often dysregulated among persons living with HIV. We examined the interaction of COMT, cardiometabolic risk, and nadir CD4 on neurocognitive impairment (NCI) among HIV+ men. METHODS Three hundred twenty-nine HIV+ men underwent COMT genotyping and neurocognitive and neuromedical assessments. Cohort-standardized z scores for body mass index, systolic blood pressure, glucose, triglycerides, and high-density lipoprotein cholesterol were averaged to derive a cardiometabolic risk score (CMRS). NCI was defined as demographically adjusted global deficit score of ≥0.5. Logistic regression modeled NCI as a function of COMT, CMRS, and their interaction, covarying for estimated premorbid function, race/ethnicity, and HIV-specific characteristics. Follow-up analysis included the 3-way interaction of COMT, CMRS, and nadir CD4. RESULTS Genotypes were 81 (24.6%) Met/Met, 147 (44.7%) Val/Met, and 101 (30.7%) Val/Val. COMT interacted with CMRS (P = 0.02) such that higher CMRS increased risk of NCI among Val/Val [odds ratio (OR) = 2.13, P < 0.01], but not Val/Met (OR = 0.93, P > 0.05) or Met/Met (OR = 0.92, P > 0.05) carriers. Among Val/Val, nadir CD4 moderated the effect of CMRS (P < 0.01) such that higher CMRS increased likelihood of NCI only when nadir CD4 <180. DISCUSSION Results suggest a tripartite model by which genetically driven low DA reserve, cardiometabolic dysfunction, and historical immunosuppression synergistically enhance risk of NCI among HIV+ men, possibly due to neuroinflammation and oxidative stress.
Collapse
|
45
|
The BDNF Val66Met Polymorphism Modulates Resilience of Neurological Functioning to Brain Ageing and Dementia: A Narrative Review. Brain Sci 2020; 10:brainsci10040195. [PMID: 32218234 PMCID: PMC7226504 DOI: 10.3390/brainsci10040195] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Brain-derived neurotropic factor (BDNF) is an abundant and multi-function neurotrophin in the brain. It is released following neuronal activity and is believed to be particularly important in strengthening neural networks. A common variation in the BDNF gene, a valine to methionine substitution at codon 66 (Val66Met), has been linked to differential expression of BDNF associated with experience-dependent plasticity. The Met allele has been associated with reduced production of BDNF following neuronal stimulation, which suggests a potential role of this variation with respect to how the nervous system may respond to challenges, such as brain ageing and related neurodegenerative conditions (e.g., dementia and Alzheimer’s disease). The current review examines the potential of the BDNF Val66Met variation to modulate an individual’s susceptibility and trajectory through cognitive changes associated with ageing and dementia. On balance, research to date indicates that the BDNF Met allele at this codon is potentially associated with a detrimental influence on the level of cognitive functioning in older adults and may also impart increased risk of progression to dementia. Furthermore, recent studies also show that this genetic variation may modulate an individual’s response to interventions targeted at building cognitive resilience to conditions that cause dementia.
Collapse
|
46
|
Walhovd KB, Fjell AM, Westerhausen R, Nyberg L, Ebmeier KP, Lindenberger U, Bartrés-Faz D, Baaré WF, Siebner HR, Henson R, Drevon CA, Strømstad Knudsen GP, Ljøsne IB, Penninx BW, Ghisletta P, Rogeberg O, Tyler L, Bertram L. Healthy minds 0–100 years: Optimising the use of European brain imaging cohorts (“Lifebrain”). Eur Psychiatry 2020; 50:47-56. [DOI: 10.1016/j.eurpsy.2017.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
AbstractThe main objective of “Lifebrain” is to identify the determinants of brain, cognitive and mental (BCM) health at different stages of life. By integrating, harmonising and enriching major European neuroimaging studies across the life span, we will merge fine-grained BCM health measures of more than 5000 individuals. Longitudinal brain imaging, genetic and health data are available for a major part, as well as cognitive and mental health measures for the broader cohorts, exceeding 27,000 examinations in total. By linking these data to other databases and biobanks, including birth registries, national and regional archives, and by enriching them with a new online data collection and novel measures, we will address the risk factors and protective factors of BCM health. We will identify pathways through which risk and protective factors work and their moderators. Exploiting existing European infrastructures and initiatives, we hope to make major conceptual, methodological and analytical contributions towards large integrative cohorts and their efficient exploitation. We will thus provide novel information on BCM health maintenance, as well as the onset and course of BCM disorders. This will lay a foundation for earlier diagnosis of brain disorders, aberrant development and decline of BCM health, and translate into future preventive and therapeutic strategies. Aiming to improve clinical practice and public health we will work with stakeholders and health authorities, and thus provide the evidence base for prevention and intervention.
Collapse
|
47
|
Lövdén M, Karalija N, Andersson M, Wåhlin A, Axelsson J, Köhncke Y, Jonasson LS, Rieckman A, Papenberg G, Garrett DD, Guitart-Masip M, Salami A, Riklund K, Bäckman L, Nyberg L, Lindenberger U. Latent-Profile Analysis Reveals Behavioral and Brain Correlates of Dopamine-Cognition Associations. Cereb Cortex 2019; 28:3894-3907. [PMID: 29028935 DOI: 10.1093/cercor/bhx253] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/07/2017] [Indexed: 01/14/2023] Open
Abstract
Evidence suggests that associations between the neurotransmitter dopamine and cognition are nonmonotonic and open to modulation by various other factors. The functional implications of a given level of dopamine may therefore differ from person to person. By applying latent-profile analysis to a large (n = 181) sample of adults aged 64-68 years, we probabilistically identified 3 subgroups that explain the multivariate associations between dopamine D2/3R availability (probed with 11C-raclopride-PET, in cortical, striatal, and hippocampal regions) and cognitive performance (episodic memory, working memory, and perceptual speed). Generally, greater receptor availability was associated with better cognitive performance. However, we discovered a subgroup of individuals for which high availability, particularly in striatum, was associated with poor performance, especially for working memory. Relative to the rest of the sample, this subgroup also had lower education, higher body-mass index, and lower resting-state connectivity between caudate nucleus and dorsolateral prefrontal cortex. We conclude that a smaller subset of individuals induces a multivariate non-linear association between dopamine D2/3R availability and cognitive performance in this group of older adults, and discuss potential reasons for these differences that await further empirical scrutiny.
Collapse
Affiliation(s)
- Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Ylva Köhncke
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars S Jonasson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Center for Aging and Demographic Research, CEDAR, Umeå University, Umeå, Sweden
| | - Anna Rieckman
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Marc Guitart-Masip
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,European University Institute, San Domenico di Fiesole (FI), Italy
| |
Collapse
|
48
|
Li X, Bäckman L, Persson J. The relationship of age and DRD2 polymorphisms to frontostriatal brain activity and working memory performance. Neurobiol Aging 2019; 84:189-199. [PMID: 31629117 DOI: 10.1016/j.neurobiolaging.2019.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) in both prefrontal cortex (PFC) and caudate nucleus is critical for working memory (WM) function. The C957T and Taq1A polymorphisms of the DRD2 gene are related to DA D2 receptor densities in PFC and striatum. Using functional MRI, we investigated the relationship of age and these 2 DRD2 gene polymorphisms to WM function and examined possible age by gene interactions. Results demonstrated less caudate activity for older adults (70-80 years; n = 112) compared with the younger age group (25-65 years; n = 191), suggesting age-related functional differences in this region. Importantly, there was a gene-related difference regarding WM performance and frontostriatal brain activity. Specifically, better WM performance and greater activity in PFC were found among C957T C allele carriers. Combined genetic markers for increased DA D2 receptor density were associated with greater caudate activity and higher WM updating performance. The genetic effects on blood oxygen level-dependent activity were only observed in older participants, suggesting magnified genetic effects in aging. Our findings emphasize the importance of DA-related genes in regulating WM functioning in aging and demonstrate a positive link between DA and brain activation in the frontostriatal circuitry.
Collapse
Affiliation(s)
- Xin Li
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden.
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| |
Collapse
|
49
|
Salami A, Rieckmann A, Karalija N, Avelar-Pereira B, Andersson M, Wåhlin A, Papenberg G, Garrett DD, Riklund K, Lövdén M, Lindenberger U, Bäckman L, Nyberg L. Neurocognitive Profiles of Older Adults with Working-Memory Dysfunction. Cereb Cortex 2019; 28:2525-2539. [PMID: 29901790 PMCID: PMC5998950 DOI: 10.1093/cercor/bhy062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 02/23/2018] [Indexed: 01/21/2023] Open
Abstract
Individuals differ in how they perceive, remember, and think. There is evidence for the existence of distinct subgroups that differ in cognitive performance within the older population. However, it is less clear how individual differences in cognition in old age are linked to differences in brain-based measures. We used latent-profile analysis on n-back working-memory (WM) performance to identify subgroups in a large sample of older adults (n = 181; age = 64–68 years). Our analysis identified one larger normal subgroup with higher performance (n = 113; 63%), and a second smaller subgroup (n = 55; 31%) with lower performance. The low-performing subgroup showed weaker load-dependent BOLD modulation and lower connectivity within the fronto-parietal network (FPN) as well as between FPN and striatum during n-back, along with lower FPN connectivity at rest. This group also exhibited lower FPN structural integrity, lower frontal dopamine D2 binding potential, inferior performance on offline WM tests, and a trend-level genetic predisposition for lower dopamine-system efficiency. By contrast, this group exhibited relatively intact episodic memory and associated brain measures (i.e., hippocampal volume, structural, and functional connectivity within the default-mode network). Collectively, these data provide converging evidence for the existence of a group of older adults with impaired WM functioning characterized by reduced cortico-striatal coupling and aberrant cortico-cortical integrity within FPN.
Collapse
Affiliation(s)
- Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anna Rieckmann
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Bárbara Avelar-Pereira
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Micael Andersson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Douglas D Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
50
|
Ding X, Barban N, Tropf FC, Mills MC. The relationship between cognitive decline and a genetic predictor of educational attainment. Soc Sci Med 2019; 239:112549. [PMID: 31546143 PMCID: PMC6873779 DOI: 10.1016/j.socscimed.2019.112549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022]
Abstract
Genetic and environmental factors both make substantial contributions to the heterogeneity in individuals' levels of cognitive ability. Many studies have examined the relationship between educational attainment and cognitive performance and its rate of change. Yet there remains a gap in knowledge regarding whether the effect of genetic predictors on individual differences in cognition becomes more or less prominent over the life course. In this analysis of over 5000 older adults from the Health and Retirement Study (HRS) in the U.S., we measured the change in performance on global cognition, episodic memory, attention & concentration, and mental status over 14 years. Growth curve models are used to evaluate the association between a polygenic risk score for education (education PGS) and cognitive change. Using the most recent education PGS, we find that individuals with higher scores perform better across all measures of cognition in later life. Education PGS is associated with a faster decline in episodic memory in old age. The relationships are robust even after controlling for phenotypic educational attainment, and are unlikely to be driven by mortality bias. Future research should consider genetic effects when examining non-genetic factors in cognitive decline. Our findings represent a need to understand the mechanisms between genetic endowment of educational attainment and cognitive decline from a biological angle.
Collapse
Affiliation(s)
- Xuejie Ding
- Department of Sociology, University of Oxford, UK; Nuffield College, University of Oxford, UK.
| | - Nicola Barban
- Institute for Social and Economic Research (ISER), University of Essex, UK
| | - Felix C Tropf
- Center for Research in economics an Statistics (CREST), École Nationale de la Statistique et de L'administration Économique (ENSAE), France
| | - Melinda C Mills
- Department of Sociology, University of Oxford, UK; Nuffield College, University of Oxford, UK; Leverhulme Centre for Demographic Science, University of Oxford, UK
| |
Collapse
|