1
|
Gong Z, Weng X, Wu D, Lei Z, Yang G, Shuai L. Recombination of agricultural residues into moldable composites. SCIENCE ADVANCES 2025; 11:eadv3533. [PMID: 40279424 PMCID: PMC12024680 DOI: 10.1126/sciadv.adv3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/21/2025] [Indexed: 04/27/2025]
Abstract
Increasing efforts have been devoted to developing biobased and biodegradable plastics and composites from lignocellulosic biomass. Current bioplastic production entails multiple challenging steps including monomer production from biomass as well as polymer synthesis and modification. Here, we report a practical recombination strategy to transform agricultural residues into moldable cellulose-reinforced lignin (CRL) composites. The strategy involves deconstruction of biomass particles followed by thermo-compression molding of cellulose fibers and lignin mixtures. The resulting CRL composites demonstrated excellent mechanical and thermal properties as well as water, abrasive, and flame resistance. Mechanistic studies reveal that small particle size, removal of water-soluble fractions, as well as reservation of lignin and its cross-linking reactivity have considerably positive effects on preparation of high-quality composite items. These insights offer a versatile strategy for transforming various types of low-grade biomass, such as corn stover, into eco-friendly and potentially biodegradable or compostable composites that can serve as sustainable alternatives to traditional duroplast materials.
Collapse
Affiliation(s)
- Zhenggang Gong
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xianggang Weng
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deli Wu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhendong Lei
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guangxu Yang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li Shuai
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
2
|
Xue H, Xi Y, Kishimoto N. Quantum Chemical Model Calculations of Adhesion and Dissociation between Epoxy Resin and Si-Containing Molecules. Molecules 2024; 29:5050. [PMID: 39519691 PMCID: PMC11547936 DOI: 10.3390/molecules29215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
There is no doubt that when solid surfaces are modified, the functional groups and atoms directly bonded to solid atoms play a major role in adsorption interactions with molecules or resins. In this study, the adhesion and dissociation between epoxy resin and molecules containing Si atoms were analyzed. The analysis, conducted in contact with the solid surface of silicon, utilized quantum chemical calculations based on a molecular model. We compared some Si-containing molecular models to test quantum chemical calculations that contribute to the study of adhesion and dissociation between epoxy resins and solid surfaces somehow other than simple potential energy curve calculations. The AFIR (artificial force induced reaction) method, implemented in the GRRM (global reaction route mapping) program, was employed to separate an epoxy resin model molecule and three types of silicon compounds (Si(CH3)2(OH)2, Si(CH3)4, and (CH3)2SiF2) in three directions, determining their minimum dissociation energy when changing the applied energy by 2.5 kJ/mol. In systems with weak hydrogen bonds, such as Si(CH3)4 or (CH3)2SiF2, the energy required for dissociation was not large; however, in systems with strong hydrogen bonds, such as Si(CH3)2(OH)2, dissociation was more difficult in the vertical direction. Although anisotropy due to hydroxyl groups was calculated in the horizontal direction, dissociation remained relatively easy.
Collapse
Affiliation(s)
| | | | - Naoki Kishimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (H.X.); (Y.X.)
| |
Collapse
|
3
|
Jin R, Xu B, Guo D, Shi B, Chen Y, Jia X, Qu L. Advanced chemical modification technology of inorganic oxide nanoparticles in epoxy resin and mechanical properties of epoxy resin nanocomposites: A review. NANO MATERIALS SCIENCE 2024. [DOI: 10.1016/j.nanoms.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Dinu R, Bejenari I, Volf I, Mija A. Exploring strategies for valorizing wood processing waste: advancing sustainable, fully lignocellulosic biocomposites. Int J Biol Macromol 2024; 280:135948. [PMID: 39332568 DOI: 10.1016/j.ijbiomac.2024.135948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/24/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
This study presents the design and synthesis of bio-composites exhibiting high properties, wherein both the matrix and filler originate from wood biomass. Notably, no additional hardener compounds or treatments/modifications of the lignocellulosic filler were employed. Thermosetting materials were developed by homopolymerizing a bio-based aromatic epoxy monomer, the resorcinol diglycidyl ether (RDGE), with different percentages, from 1 wt% to 30 wt% of natural wood processing side-product, such as spruce bark powder (SB), which was used as such without additional treatments and modifications. The DSC analyses revealed enhanced reactivities with the bio-filler content, resulting in a reduced reaction temperature range and maximum reaction temperature. These findings provide evidence of the chemical interaction between the functional groups from spruce bark and the epoxides groups. The obtained fully based lignocellulosic materials show high E' values from 2.4 GPa to 2.5-3.5 GPa (glassy state) and from 64 MPa to 99-156 MPa in the rubbery region. The damping factor of the bio-composites with 1-10 wt% SB have shown an increase of the α transition temperature from 92 °C to 94-97 °C. The excellent filler/matrix interface and optimal adhesion between them were confirmed by SEM analysis.
Collapse
Affiliation(s)
- Roxana Dinu
- University Côte d'Azur, Institute of Chemistry of Nice, UMR CNRS 7272, 06108 Nice Cedex, France
| | - Iuliana Bejenari
- Gheorghe Asachi Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. D. Mangeron Street, 700050 Iasi, Romania
| | - Irina Volf
- Gheorghe Asachi Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. D. Mangeron Street, 700050 Iasi, Romania
| | - Alice Mija
- University Côte d'Azur, Institute of Chemistry of Nice, UMR CNRS 7272, 06108 Nice Cedex, France.
| |
Collapse
|
5
|
Gavrilović-Grmuša I, Rančić M, Tešić T, Stupar S, Milošević M, Gržetić J. Bio-Epoxy Resins Based on Lignin and Tannic Acids as Wood Adhesives-Characterization and Bonding Properties. Polymers (Basel) 2024; 16:2602. [PMID: 39339066 PMCID: PMC11435416 DOI: 10.3390/polym16182602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
The possibility of producing and designing bio-epoxides based on the natural polyphenol lignin/epoxidized lignin and tannic acids for application as wood adhesives is presented in this work. Lignin and tannic acids contain numerous reactive hydroxyl phenolic moieties capable of being efficiently involved in the reaction with commercial epoxy resins as a substitute for commercial, non-environmentally friendly, toxic amine-based hardeners. Furthermore, lignin was epoxidized in order to obtain an epoxy lignin that can be a replacement for diglycidyl ether bisphenol A (DGEBA). Cross-linking of bio-epoxy epoxides was investigated via FTIR spectroscopy and their prospects for wood adhesive application were evaluated. This study determined that the curing reaction of epoxy resin can be conducted using lignin/epoxy lignin or tannic acid. Tensile shear strength testing results showed that lignin and tannic acid can effectively replace amine hardeners in epoxy resins. Examination of the failure of the samples showed that all samples had a 100% fracture through the wood. All samples of bio-epoxy adhesives displayed significant tensile shear strength in the range of 5.84-10.87 MPa. This study presents an innovative approach to creating novel cross-linked networks of eco-friendly and high-performance wood bio-adhesives.
Collapse
Affiliation(s)
| | - Milica Rančić
- Faculty of Forestry, University of Belgrade, 11030 Belgrade, Serbia
| | - Tamara Tešić
- Faculty of Forestry, University of Belgrade, 11030 Belgrade, Serbia
| | - Stevan Stupar
- Military Technical Institute, Ratka Resanovića 1, 11000 Belgrade, Serbia
| | - Milena Milošević
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Gržetić
- Military Technical Institute, Ratka Resanovića 1, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Moraru D, Cortés A, Martinez-Diaz D, Prolongo SG, Jiménez-Suárez A, Sangermano M. Sustainable Electrically Conductive Bio-Based Composites via Radical-Induced Cationic Frontal Photopolymerization. Polymers (Basel) 2024; 16:2159. [PMID: 39125185 PMCID: PMC11314415 DOI: 10.3390/polym16152159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Diglycidylether of vanillyl alcohol (DGEVA), in combination with mechanically recycled carbon fibers (RCFs), was used to make, via Radical-Induced Cationic Frontal Photopolymerization (RICFP), fully sustainable and bio-based conductive composites with good electrical conductivity and consequent Joule effect proprieties. Three different fiber lengths, using three different sieve sizes during the mechanical recycling process (0.2, 0.5, and 2.0 mm), were used in five different amounts (ranging from 1 to 25 phr). The samples were first characterized by dynamic mechanical thermal analysis (DMTA), followed byelectrical conductivity and Joule heating tests. More specifically, the mechanical properties of the composites increased when increasing fiber content. Furthermore, the composites obtained with the longest fibers showed the highest electrical conductivity, reaching a maximum of 11 S/m, due to their higher aspect ratio. In this context, the temperature reached by Joule effect was directly related to the electrical conductivity, and was able to reach an average and maximum temperatures of 80 °C and 120 °C, respectively, just by applying 6 V.
Collapse
Affiliation(s)
- Dumitru Moraru
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Alejandro Cortés
- Materials Science and Engineering Area, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain; (A.C.); (D.M.-D.); (S.G.P.); (A.J.-S.)
| | - David Martinez-Diaz
- Materials Science and Engineering Area, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain; (A.C.); (D.M.-D.); (S.G.P.); (A.J.-S.)
| | - Silvia G. Prolongo
- Materials Science and Engineering Area, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain; (A.C.); (D.M.-D.); (S.G.P.); (A.J.-S.)
- Instituto de Tecnologías para la Sostenibilidad, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain
| | - Alberto Jiménez-Suárez
- Materials Science and Engineering Area, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain; (A.C.); (D.M.-D.); (S.G.P.); (A.J.-S.)
| | - Marco Sangermano
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy;
| |
Collapse
|
7
|
Xiao K, Fang Y, Wang Z, Ni N, Liu Z, Kim S, An Z, Lyu Z, Xu Y, Yang X. Bio-Sourced, High-Performance Carbon Fiber Reinforced Itaconic Acid-Based Epoxy Composites with High Hygrothermal Stability and Durability. Polymers (Basel) 2024; 16:1649. [PMID: 38931999 PMCID: PMC11207418 DOI: 10.3390/polym16121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Thermosetting polymers and composites are a class of high-performance materials with significant industrial applications. However, the widespread use of thermosets and their composites generates large quantities of waste and leads to serious economic and environmental problems, there is a critical need in the elaboration of sustainable composite materials. Here, we propose a method to prepare sustainable carbon fiber reinforced composites with different degrees of greenness by blending environmentally friendly EIA with DGEBA in different ratios, and the properties compared with a well-known commercial petroleum-based epoxy resin. The prepared carbon fiber reinforced polymer (CFRP) composites with different degrees of greenness had excellent dimensional stability under extreme hygrothermal aging. After aging, the green CFRP composite T700/EIA-30 has higher strength and performance retention than that of petroleum-based CFRP composites. The higher hygrothermal stability and durability of EIA-based epoxy resins as compared with BPA-based epoxy resins demonstrated significant evidence to design and develop a novel bio-based epoxy resin with high performance to substitute the petroleum-based epoxy resin.
Collapse
Affiliation(s)
- Kaixuan Xiao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Yuan Fang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Zhaodi Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Nannan Ni
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Ziqian Liu
- Yangtze River Delta Carbon Fiber and Composites Innovation Center, Changzhou 213000, China;
| | - Soochan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (Z.A.)
| | - Zongfu An
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (Z.A.)
| | - Zhiyi Lyu
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea;
| | - Yahong Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Xin Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| |
Collapse
|
8
|
Jiang Y, Li J, Li D, Ma Y, Zhou S, Wang Y, Zhang D. Bio-based hyperbranched epoxy resins: synthesis and recycling. Chem Soc Rev 2024; 53:624-655. [PMID: 38109059 DOI: 10.1039/d3cs00713h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Epoxy resins (EPs), accounting for about 70% of the thermosetting resin market, have been recognized as the most widely used thermosetting resins in the world. Nowadays, 90% of the world's EPs are obtained from the bisphenol A (BPA)-based epoxide prepolymer. However, certain limitations severely impede further applications of this advanced material, such as limited fossil-based resources, skyrocketing oil prices, nondegradability, and a "seesaw" between toughness and strength. In recent years, more and more research has been devoted to the preparation of novel epoxy materials to overcome the compromise between toughness and strength and solve plastic waste problems. Among them, the development of bio-based hyperbranched epoxy resins (HERs) is unique and attractive. Bio-based HERs synthesized from bio-derived monomers can be used as a matrix resin or a toughener resulting in partially or fully bio-based epoxy thermosets. The introduction of a hyperbranched structure can balance the strength and toughness of epoxy thermosets. Here, we especially focused on the recent progress in the development of bio-based HERs, including the monomer design, synthesis approaches, mechanical properties, degradation, and recycling strategies. In addition, we advance the challenges and perspectives to engineering application of bio-based HERs in the future. Overall, this review presents an up-to-date overview of bio-based HERs and guidance for emerging research on the sustainable development of EPs in versatile high-tech fields.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, People's Republic of China
| | - Jiang Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Dan Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Yunke Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Shucun Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Yu Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| |
Collapse
|
9
|
Ebrahimnezhad-Khaljiri H, Ghadi A. Recent advancement in synthesizing bio-epoxy nanocomposites using lignin, plant oils, saccharides, polyphenols, and natural rubbers: A review. Int J Biol Macromol 2024; 256:128041. [PMID: 37979768 DOI: 10.1016/j.ijbiomac.2023.128041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/10/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Due to environmental issues, production costs, and the low recycling capability of conventional epoxy polymers and their composites, many science groups have tried to develop a new type of epoxy polymers, which are compatible with the environment. Considering the precursors, these polymers can be produced from plant oils, saccharides, lignin, polyphenol, and natural resins. The appearance of these bio-polymers caused to introduce a new type of composites, namely bio-epoxy nanocomposites, which can be classified according to the synthesized bio-epoxy, the used nanomaterials, or both. Hence, in this work, various bio-epoxy resins, which have the proper potential for application as a matrix, are completely introduced with the synthesis viewpoint, and their characterized chemical structures are drawn. In the next steps, the bio-epoxy nanocomposites are classified based on the used nanomaterials, which are carbon nanoparticles (carbon nanotubes, graphene nanoplatelets, graphene oxide, reduced graphene oxide, etc.), nano-silica (mesoporous and spherical), cellulose (nanofibers and whiskers), nanoclay and so on. Also, the features of these bio-nanocomposites and their applications are introduced. This review study can be a proper guide for developing a new type of green nanocomposites in the near future.
Collapse
Affiliation(s)
- Hossein Ebrahimnezhad-Khaljiri
- Department of Materials Science and Engineering, Faculty of Engineering, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran.
| | - Aliakbar Ghadi
- Department of Materials Science and Engineering, Faculty of Engineering, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran
| |
Collapse
|
10
|
Adil S, Kumar B, Pham DH, Kim J. Biobased, cellulose long filament-reinforced vanillin-derived epoxy composite for high-performance and flame-retardant applications. Int J Biol Macromol 2024; 256:128411. [PMID: 38016604 DOI: 10.1016/j.ijbiomac.2023.128411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The development of high-strength and intrinsic flame-retardant natural fiber-reinforced green composite (NFRGC) is a landmark for high-performance structural applications. This paper reports a biobased, high-performance, flame-retardant composite material based on diverse bio-resources. Tough and strong cellulose long filaments (CLFs) are combined with vanillin-derived epoxy (VDE) resin to achieve high strength and flame-retardant NFRGC. The green composite was fabricated using a simple hand lay-up and compression molding technique. The green composite showed a noteworthy increment of 100.9 % flexural strength and 346 % flexural modulus compared to the neat VDE resin. Interestingly, despite the highly flammable nature of CLF, the green composite passes a V-0 rating under the UL-94 test, indicating excellent flame-retardant characteristics. Additionally, the green composite demonstrated outstanding hydrophobicity with a water contact angle of 104.2° and good chemical stability in various acidic and organic solvents. The green composite's excellent mechanical and physical properties show its potential for high-strength and flame-retardant structural applications.
Collapse
Affiliation(s)
- Samia Adil
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Bijender Kumar
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Duc H Pham
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Jaehwan Kim
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, South Korea.
| |
Collapse
|
11
|
Capretti M, Giammaria V, Santulli C, Boria S, Del Bianco G. Use of Bio-Epoxies and Their Effect on the Performance of Polymer Composites: A Critical Review. Polymers (Basel) 2023; 15:4733. [PMID: 38139984 PMCID: PMC10747679 DOI: 10.3390/polym15244733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
This study comprehensively examines recent developments in bio-epoxy resins and their applications in composites. Despite the reliability of traditional epoxy systems, the increasing demand for sustainability has driven researchers and industries to explore new bio-based alternatives. Additionally, natural fibers have the potential to serve as environmentally friendly substitutes for synthetic ones, contributing to the production of lightweight and biodegradable composites. Enhancing the mechanical properties of these bio-composites also involves improving the compatibility between the matrix and fibers. The use of bio-epoxy resins facilitates better adhesion of natural composite constituents, addressing sustainability and environmental concerns. The principles and methods proposed for both available commercial and especially non-commercial bio-epoxy solutions are investigated, with a focus on promising renewable sources like wood, food waste, and vegetable oils. Bio-epoxy systems with a minimum bio-content of 20% are analyzed from a thermomechanical perspective. This review also discusses the effect of incorporating synthetic and natural fibers into bio-epoxy resins both on their own and in hybrid form. A comparative analysis is conducted against traditional epoxy-based references, with the aim of emphasizing viable alternatives. The focus is on addressing their benefits and challenges in applications fields such as aviation and the automotive industry.
Collapse
Affiliation(s)
- Monica Capretti
- School of Science and Technology, Mathematics Division, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (M.C.); (V.G.); (S.B.); (G.D.B.)
| | - Valentina Giammaria
- School of Science and Technology, Mathematics Division, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (M.C.); (V.G.); (S.B.); (G.D.B.)
| | - Carlo Santulli
- School of Science and Technology, Geology Division, University of Camerino, Via Gentile III da Varano 7, 62032 Camerino, Italy
| | - Simonetta Boria
- School of Science and Technology, Mathematics Division, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (M.C.); (V.G.); (S.B.); (G.D.B.)
| | - Giulia Del Bianco
- School of Science and Technology, Mathematics Division, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (M.C.); (V.G.); (S.B.); (G.D.B.)
| |
Collapse
|
12
|
Samyn P, Bosmans J, Cosemans P. Role of Bio-Based and Fossil-Based Reactive Diluents in Epoxy Coatings with Amine and Phenalkamine Crosslinker. Polymers (Basel) 2023; 15:3856. [PMID: 37835905 PMCID: PMC10574921 DOI: 10.3390/polym15193856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The properties of epoxy can be adapted depending on the selection of bio-based diluents and crosslinkers to balance the appropriate viscosity for processing and the resulting mechanical properties for coating applications. This work presents a comprehensive study on the structure-property relationships for epoxy coatings with various diluents of mono-, di-, and bio-based trifunctional glycidyl ethers or bio-based epoxidized soybean oil added in appropriate concentration ranges, in combination with a traditional fossil-based amine or bio-based phenalkamine crosslinker. The viscosity of epoxy resins was already reduced for diluents with simple linear molecular configurations at low concentrations, while higher concentrations of more complex multifunctional diluents were needed for a similar viscosity reduction. The curing kinetics were evaluated through the fitting of data from differential scanning calorimetry to an Arrhenius equation, yielding the lowest activation energies for difunctional diluents in parallel with a balance between viscosity and reactivity. While the variations in curing kinetics with a change in diluent were minor, the phenalkamine crosslinkers resulted in a stronger decrease in activation energy. For cured epoxy resins, the glass transition temperature was determined as an intrinsic parameter that was further related to the mechanical coating performance. Considerable effects of the diluents on coating properties were investigated, mostly showing a reduction in abrasive wear for trifunctional diluents in parallel with the variations in hardness and ductility. The high hydrophobicity for coatings with diluents remained after wear and provided good protection. In conclusion, the coating performance could be related to the intrinsic mechanical properties independently of the fossil- or bio-based origin of diluents and crosslinkers, while additional lubricating properties are presented for vegetable oil diluents.
Collapse
Affiliation(s)
- Pieter Samyn
- Department of Innovations in Circular Economy and Renewable Materials, SIRRIS, 3001 Leuven, Belgium; (J.B.); (P.C.)
| | | | | |
Collapse
|
13
|
Islam MH, Afroj S, Karim N. Toward Sustainable Composites: Graphene-Modified Jute Fiber Composites with Bio-Based Epoxy Resin. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300111. [PMID: 37745826 PMCID: PMC10517308 DOI: 10.1002/gch2.202300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/23/2023] [Indexed: 09/26/2023]
Abstract
Sustainable natural fiber reinforced composites have attracted significant interest due to the growing environmental concerns with conventional synthetic fiber as well as petroleum-based resins. One promising approach to reducing the large carbon footprint of petroleum-based resins is the use of bio-based thermoset resins. However, current fiber-reinforced bio-based epoxy composites exhibit relatively lower mechanical properties such as tensile, flexural strength, and modulus, which limits their wider application. Here the fabrication of high-performance composites using jute fibers is reported, modified with graphene nanoplates (GNP) and graphene oxide (GO), and reinforced with bio-based epoxy resin. It is demonstrated that physical and chemical treatments of jute fibers significantly improve their fiber volume fraction (Vf) and matrix adhesion, leading to enhanced mechanical properties of the resulting Jute/Bio-epoxy (J/BE) composites. Furthermore, the incorporation of GNP and GO further increases the tensile and flexural strength of the J/BE composites. The study reveals the potential of graphene-based jute fiber-reinforced composites with bio-based epoxy resin as a sustainable and high-performance material for a wide range of applications. This work contributes to the development of sustainable composites that have the potential to reduce the negative environmental impact of conventional materials while also offering improved mechanical properties.
Collapse
Affiliation(s)
| | - Shaila Afroj
- Centre for Print ResearchThe University of the West of EnglandBristolBS16 1QYUK
| | - Nazmul Karim
- Centre for Print ResearchThe University of the West of EnglandBristolBS16 1QYUK
| |
Collapse
|
14
|
Uyan M, Celiktas MS. New Approach to Shape Memory Polymer Composite Production Using Alkaline Lignin-Reinforced Epoxy-Based Shape Memory Polymers. ACS OMEGA 2023; 8:15003-15016. [PMID: 37151563 PMCID: PMC10157668 DOI: 10.1021/acsomega.2c07812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023]
Abstract
In the past few decades, there has been continued interest in shape memory polymers (SMPs), and tremendous efforts have been made to develop multifunctional composites of these SMPs to enhance the existing properties of SMPs. Although fossil-based sources are widely used in the production of shape memory polymer composites (SMPCs), the depletion of fossil-based resources and associated environmental problems increase interest toward renewable biobased products synthesized from natural resources. This study aims to produce alkaline lignin-reinforced SMPCs by using alkaline lignin in the SMP matrix. Thermo-mechanical, morphological, and shape memory tests are performed in order to reveal the effect of alkaline lignin usage in the SMP matrix on SMPC production. Differential scanning calorimetry analysis results show that adding alkaline lignin into the SMP matrix with 1 and 3% ratios led to an increase in T g values, while raising the alkaline lignin ratio to 5% decreased the T g value. According to the DMA results, increasing the alkaline lignin ratios caused an increase in the storage modulus of SMPCs, and the best storage modulus value was obtained at the 5% alkaline lignin ratio. The results of the three-point bending test also confirmed the results obtained from the DMA analysis, showing that an increasing alkaline lignin ratio caused an increase in the bending modulus. Scanning electron microscopy analysis showed a rough structure in 1 and 3% alkaline lignin supplementation, while a smoother structure was observed in 5% alkaline lignin supplementation. The smoother structure of the sample containing 5% alkaline lignin indicates that alkaline lignin supplementation exhibits a smoother surface by showing a plasticizing effect. As a result, it was observed that increasing the lignin ratio increased the polymer/alkaline lignin interaction, resulting in a harder structure and an increase in the flexural modulus value.
Collapse
Affiliation(s)
- Merve Uyan
- Solar
Energy Institute, Ege University, Bornova, Izmir 35100, Turkey
- Department
of Mechanical Engineering, University of
Alberta, Edmonton, Alberta T6G 2R3, Canada
| | | |
Collapse
|
15
|
Development of Sustainable High Performance Epoxy Thermosets for Aerospace and Space Applications. Polymers (Basel) 2022; 14:polym14245473. [PMID: 36559840 PMCID: PMC9785596 DOI: 10.3390/polym14245473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
There is an imperative need to find sustainable ways to produce bisphenol A free, high performance thermosets for specific applications such as the space or aerospace areas. In this study, an aromatic tris epoxide, the tris(4-hydroxyphenyl)methane triglycidyl ether (THPMTGE), was selected to generate high crosslinked networks by its copolymerization with anhydrides. Indeed, the prepared thermosets show a gel content (GC) ~99.9% and glass transition values ranged between 167-196 °C. The thermo-mechanical properties examined by DMA analyses reveal the development of very hard materials with E' ~3-3.5 GPa. The thermosets' rigidity was confirmed by Young's moduli values which ranged between 1.25-1.31 GPa, an elongation at break of about 4-5%, and a tensile stress of ~35-45 MPa. The TGA analyses highlight a very good thermal stability, superior to 340 °C. The Limit Oxygen Index (LOI) parameter was also evaluated, showing the development of new materials with good flame retardancy properties.
Collapse
|
16
|
Sienkiewicz A, Czub P. A Method of Managing Waste Oak Flour as a Biocomponent for Obtaining Composites Based on Modified Soybean Oil. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217737. [PMID: 36363330 PMCID: PMC9656467 DOI: 10.3390/ma15217737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 05/14/2023]
Abstract
The aim of the present research was the development of a management method for wood-processing waste that was obtained during the production of parquet flooring. Currently mostly useless, such waste mainly ends up in landfills. The oak waste flour was used as a reinforcement material for epoxy biocomposites based on the polyaddition product of epoxidized soybean oil and bisphenol-A (ESBO_BPA). The biofiller was subjected to mercerization, acetylation, and diisocyanate modification to increase the typically poor compatibility between the highly hydrophilic wood fibers and the hydrophobic polymer matrix. Among the analyzed epoxy biocomposites, which contained about 60% raw materials of natural origin, it was found that the best mechanical properties were recorded for cured samples of the ESBO_BPA composition filled with 5 wt % of oak flour mercerized using a 5% solution of NaOH. It was also proven that a higher concentration of alkali deteriorated the mechanical-strengthening properties of the wood filler. The acetylation of the biofiller independently in the best elimination of hydroxyl groups from its structure also removed irregular strips and smoothed its surface. This resulted in a poorer wettability of the oak flour surface by the polymer and consequently an easier pullout of the filler from the polymer matrix and worse mechanical properties of the wood/epoxy composite. To the best of the authors' knowledge, the present research was the first to examine the possibility of the application of parquet flooring post-production wood flour in biomaterials based on a polyaddition product of epoxidized soybean oil and bisphenol-A.
Collapse
|
17
|
Sterligov GK, Rzhevskiy SA, Isaeva DK, Belov NM, Rasskazova MA, Drokin EA, Topchiy MA, Minaeva LI, Babkin AV, Erdni-Goryaev EM, Kepman AV, Asachenko AF. The Physicochemical Characterization of New "Green" Epoxy-Resin Hardener Made from PET Waste. Polymers (Basel) 2022; 14:polym14204456. [PMID: 36298034 PMCID: PMC9610027 DOI: 10.3390/polym14204456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
"Green" thermally stable hardener was synthesized from a PET waste. The rigid molecular linear structure of the new hardener suggests that it will provide the polymer matrix with the necessary physical and mechanical characteristics. It also allows the expectation that cured matrix based on this hardener can provide increased toughness. New hardener was used as a curing agent for three epoxy resins-tetraglycidyl methylenedianiline (TGDMA, 111-117 EEW), diglycidylether of bisphenol A (DGEBA, 170-192 EEW) and solid epoxy resin (SER)-with a medium molecular weight (860-930 EEW) based on DGEBA. The mixtures were found to have the highest Tg for the DGEBA resin, and high of that for TGDMA and SER. According to the DMA analysis for two cured matrices, the hardener proved to be no worse than the standard ones, and made it possible to obtain cured matrices with excellent mechanical properties, which allows us to hope for further application of new hardener cured epoxy matrices in appropriate composite materials at high temperatures.
Collapse
Affiliation(s)
- Grigorii K. Sterligov
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey A. Rzhevskiy
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dilshodakhon K. Isaeva
- Faculty of Chemistry, National Research University Higher School of Economics, 101100 Moscow, Russia
| | - Nikita M. Belov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 11991 Moscow, Russia
| | - Maria A. Rasskazova
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
- Department of Chemistry, M. V. Lomonosov Moscow State University, 11991 Moscow, Russia
| | - Egor A. Drokin
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
- Department of Chemistry, M. V. Lomonosov Moscow State University, 11991 Moscow, Russia
| | - Maxim A. Topchiy
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Lidiya I. Minaeva
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Babkin
- Department of Chemistry, M. V. Lomonosov Moscow State University, 11991 Moscow, Russia
| | | | - Alexey V. Kepman
- Department of Chemistry, M. V. Lomonosov Moscow State University, 11991 Moscow, Russia
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
18
|
Oliaei E, Olsén P, Lindström T, Berglund LA. Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers. Nat Commun 2022; 13:5666. [PMID: 36167843 PMCID: PMC9515094 DOI: 10.1038/s41467-022-33283-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/11/2022] [Indexed: 12/03/2022] Open
Abstract
Unbleached wood fibers and nanofibers are environmentally friendly bio-based candidates for material production, in particular, as reinforcements in polymer matrix biocomposites due to their low density and potential as carbon sink during the materials production phase. However, producing high reinforcement content biocomposites with degradable or chemically recyclable matrices is troublesome. Here, we address this issue with a new concept for facile and scalable in-situ polymerization of polyester matrices based on functionally balanced oligomers in pre-formed lignocellulosic networks. The idea enabled us to create high reinforcement biocomposites with well-dispersed mechanically undamaged fibers or nanocellulose. These degradable biocomposites have much higher mechanical properties than analogs in the literature. Reinforcement geometry (fibers at 30 µm or fibrils at 10–1000 nm diameter) influenced the polymerization and degradation of the polyester matrix. Overall, this work opens up new pathways toward environmentally benign materials in the context of a circular bioeconomy. Cellulose biocomposites from nanocellulose or plant fibers with polymer matrix are often not degradable and suffer from insufficient mechanical properties to replace established materials. Here, the authors demonstrate the fabrication of hydrolytically degradable polymers through in-situ polymerization of new functionally balanced oligomers within high-content lignocellulose reinforcement networks.
Collapse
Affiliation(s)
- Erfan Oliaei
- RISE Bioeconomy and health, Stockholm, Sweden.,Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Peter Olsén
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| | | | - Lars A Berglund
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
19
|
Bio-Based Degradable Poly(ether-ester)s from Melt-Polymerization of Aromatic Ester and Ether Diols. Int J Mol Sci 2022; 23:ijms23168967. [PMID: 36012244 PMCID: PMC9408869 DOI: 10.3390/ijms23168967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Vanillin, as a promising aromatic aldehyde, possesses worthy structural and bioactive properties useful in the design of novel sustainable polymeric materials. Its versatility and structural similarity to terephthalic acid (TPA) can lead to materials with properties similar to conventional poly(ethylene terephthalate) (PET). In this perspective, a symmetrical dimethylated dialkoxydivanillic diester monomer (DEMV) derived from vanillin was synthesized via a direct-coupling method. Then, a series of poly(ether-ester)s were synthesized via melt-polymerization incorporating mixtures of phenyl/phenyloxy diols (with hydroxyl side-chains in the 1,2-, 1,3- and 1,4-positions) and a cyclic diol, 1,4-cyclohexanedimethanol (CHDM). The polymers obtained had high molecular weights (Mw = 5.3–7.9 × 104 g.mol−1) and polydispersity index (Đ) values of 1.54–2.88. Thermal analysis showed the polymers are semi-crystalline materials with melting temperatures of 204–240 °C, and tunable glass transition temperatures (Tg) of 98–120 °C. Their 5% decomposition temperature (Td,5%) varied from 430–315 °C, which endows the polymers with a broad processing window, owing to their rigid phenyl rings and trans-CHDM groups. These poly(ether-ester)s displayed remarkable impact strength and satisfactory gas barrier properties, due to the insertion of the cyclic alkyl chain moieties. Ultimately, the synergistic influence of the ester and ether bonds provided better control over the behavior and mechanism of in vitro degradation under passive and enzymatic incubation for 90 days. Regarding the morphology, scanning electron microscopy (SEM) imaging confirmed considerable surface degradation in the polymer matrices of both polymer series, with weight losses reaching up to 35% in enzymatic degradation, which demonstrates the significant influence of ether bonds for biodegradation.
Collapse
|
20
|
Zhang Y, Li J, Wu X, Wang D, Zhou S, Han S, Wang H, Sun F. Simultaneously reinforcing and toughening of shape-memory epoxy resin with carboxylated lignosulfonate: Facile preparation and effect mechanism. Int J Biol Macromol 2022; 217:243-254. [PMID: 35835301 DOI: 10.1016/j.ijbiomac.2022.07.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/28/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022]
Abstract
To improve the compatibility and reactivity of lignosulfonate (LS) with epoxy oligomers, the LS was firstly functionalized with anhydride via the carboxylation reaction. The carboxylated lignosulfonate (CLS) reinforced epoxy resin with excellent mechanical and shape memory performance was prepared facilely via distributing the CLS into the combined epoxy monomers of DGEBA and PEGDGE with the aid of water, rather than using the normal organic solvents. The incorporated CLS promoted the curing reaction of epoxy resin. A typical sea-island structure was formed in the cured sample at the CLS content of 5 phr, exhibiting the highest increases in tensile strength, modulus, elongation at break and toughness by 23.8 %, 18.2 %, 217 % and 113 %, respectively, relative to neat epoxy. Interestingly, the incorporation of CLS at a proper amount led to the simultaneous strengthening and toughing effects on cured epoxy resin, which could be attributed to the rigid structure of CLS covalently introduced in the epoxy resin network and the heterogeneous structure formed in the epoxy matrix. The rigid CLS component also restrained the movement of chain segments, consequently, the mechanical stability was enhanced and the fast shape recovery rate of epoxy resin network was slowed down to some extent.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| | - Jiaoman Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinxing Wu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Dongyue Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Shengnan Zhou
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuaibo Han
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Hui Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Fangli Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
21
|
Matykiewicz D, Skórczewska K. Characteristics and Application of Eugenol in the Production of Epoxy and Thermosetting Resin Composites: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4824. [PMID: 35888291 PMCID: PMC9321166 DOI: 10.3390/ma15144824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 12/22/2022]
Abstract
The review article presents an analysis of the properties of epoxy and thermosetting resin composites containing eugenol derivatives. Moreover, eugenol properties were characterized using thermogravimeters (TGA) and Fourier-transform infrared spectroscopy (FTIR). The aim of this work was to determine the possibility of using eugenol derivatives in polymer composites based on thermoset resins, which can be used as eco-friendly high-performance materials. Eugenol has been successfully used in the production of epoxy composites as a component of coupling agents, epoxy monomers, flame retardants, curing agents, and modifiers. In addition, it reduced the negative impact of thermoset composites on the environment and, in some cases, enabled their biodegradation. Eugenol-based silane coupling agent improved the properties of natural filler epoxy composites. Moreover, eugenol flame retardant had a positive effect on the fire resistance of the epoxy resin. In turn, eugenol glycidyl ether (GE) was used as a diluent of epoxy ester resins during the vacuum infusion process of epoxy composites with the glass fiber. Eugenol-based epoxy resin was used to make composites with carbon fiber with enhanced thermomechanical properties. Likewise, resins such as bismaleimide resin, phthalonitrile resin, and palm oil-based resin have been used for the production of composites with eugenol derivatives.
Collapse
Affiliation(s)
- Danuta Matykiewicz
- Faculty of Mechanical Engineering, Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
| | - Katarzyna Skórczewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
22
|
Schirmeister CG, Mülhaupt R. Closing the Carbon Loop in the Circular Plastics Economy. Macromol Rapid Commun 2022; 43:e2200247. [PMID: 35635841 DOI: 10.1002/marc.202200247] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/07/2022] [Indexed: 11/06/2022]
Abstract
Today, plastics are ubiquitous in everyday life, problem solvers of modern technologies, and crucial for sustainable development. Yet the surge in global demand for plastics of the growing world population has triggered a tidal wave of plastic debris in the environment. Moving from a linear to a zero-waste and carbon-neutral circular plastic economy is vital for the future of the planet. Taming the plastic waste flood requires closing the carbon loop through plastic reuse, mechanical and molecular recycling, carbon capture, and use of the greenhouse gas carbon dioxide. In the quest for eco-friendly products, plastics do not need to be reinvented but tuned for reuse and recycling. Their full potential must be exploited regarding energy, resource, and eco efficiency, waste prevention, circular economy, climate change mitigation, and lowering environmental pollution. Biodegradation holds promise for composting and bio-feedstock recovery, but it is neither the Holy Grail of circular plastics economy nor a panacea for plastic littering. As an alternative to mechanical downcycling, molecular recycling enables both closed-loop recovery of virgin plastics and open-loop valorization, producing hydrogen, fuels, refinery feeds, lubricants, chemicals, and carbonaceous materials. Closing the carbon loop does not create a Perpetuum Mobile and requires renewable energy to achieve sustainability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carl G Schirmeister
- Freiburg Materials Research Center and Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104, Freiburg, Germany
| | - Rolf Mülhaupt
- Sustainability Center, University of Freiburg, Ecker-Str. 4, D-79104, Freiburg, Germany
| |
Collapse
|
23
|
Long J, Li C, Li Y. Enhancement of Mechanical and Bond Properties of Epoxy Adhesives Modified by SiO 2 Nanoparticles with Active Groups. Polymers (Basel) 2022; 14:polym14102052. [PMID: 35631934 PMCID: PMC9143029 DOI: 10.3390/polym14102052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 01/27/2023] Open
Abstract
In order to improve the mechanical and bond properties of epoxy adhesives for their wide scope of applications, modified epoxy adhesives were produced in this study with SiO2 nanoparticles of 20 nm in size, including inactive groups, NH2 active groups, and C4H8 active groups. The mechanical properties of specimens were examined, and an investigation was conducted into the effects of epoxy adhesive modified by three kinds of SiO2 nanoparticles on the bond properties of carbon fiber reinforced polymer and steel (CFRP/steel) double lap joints. According to scanning electron microscopy (SEM), the distribution effect in epoxy adhesive of SiO2 nanoparticles modified by active groups was better than that of inactive groups. When the mass fraction of SiO2-C4H8 nanoparticles was 0.05%, the tensile strength, tensile modulus, elongation at break, bending strength, flexural modulus, and impact strength of the epoxy adhesives reached their maximum, which were 47.63%, 44.81%, 57.31%, 62.17%, 33.72%, 78.89%, and 68.86% higher than that of the EP, respectively, and 8.45%, 9.52%, 9.24%, 20.22%, 17.76%, 20.18%, and 12.65% higher than that of the inactive groups of SiO2 nanoparticles, respectively. The SiO2 nanoparticles modified with NH2 or C4H8 active groups were effective in improving the ultimate load-bearing capacity and bond properties of epoxy adhesives glued to CFRP/steel double lap joints, thus increasing the strain and interface shear stress peak value of the CFRP surface.
Collapse
Affiliation(s)
- Jiejie Long
- School of Civil Engineering and Architecture, Changsha University of Science and Technology, No. 960 Wanjiali Road, Changsha 410114, China;
| | - Chuanxi Li
- School of Civil Engineering and Architecture, Changsha University of Science and Technology, No. 960 Wanjiali Road, Changsha 410114, China;
- Correspondence: (C.L.); (Y.L.)
| | - You Li
- School of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China
- Correspondence: (C.L.); (Y.L.)
| |
Collapse
|
24
|
Zhi M, Yang X, Fan R, Yue S, Zheng L, Liu Q, He Y. A comprehensive review of reactive flame-retardant epoxy resin: fundamentals, recent developments, and perspectives. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Thermal decomposition behavior and flame retardancy of bioepoxies, their blends and composites: A comprehensive review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Preparing high ratio of trans/trans 2,2-bis(4-hydroxycyclohexyl)propane isomer by one-dimensional nickel-palladium catalyst. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Vegetable Oil-Based Resins Reinforced with Spruce Bark Powder and with Its Hydrochar Lignocellulosic Biomass. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A bio-based polymeric matrix was developed by the copolymerization of a vegetable oil-based epoxy, epoxidized linseed oil (ELO), with dodecenyl succinic anhydride (DDSA). To obtain eco-friendly bio-composites, this matrix was combined with a natural filler: spruce bark powder (SB) with its hydrochar (HC) in various proportions ranged from 1 to 30 wt.%. The reactivities of these formulations were studied by DSC analysis that highlighted that both fillers have a high catalytic effect on the ELO–DDSA crosslinking reaction. The complementary studies by TGA, DMA, tensile tests, water absorption and Shore tests had shown that both HC and SB bring improvements to the mechanical properties of the composites, fulfilling multiple roles: (i) Both act as co-reactants in the copolymerization mechanism; (ii) HC acts as reinforcement, consolidating the network and providing stiffness and rigidity; and (iii) SB acts as plasticizer for reducing the brittle character of the epoxy resins.
Collapse
|
28
|
Komartin RS, Balanuca B, Necolau MI, Cojocaru A, Stan R. Composite Materials from Renewable Resources as Sustainable Corrosion Protection Coatings. Polymers (Basel) 2021; 13:polym13213792. [PMID: 34771350 PMCID: PMC8588247 DOI: 10.3390/polym13213792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
Epoxidized linseed oil (ELO) and kraft lignin (LnK) were used to obtain new sustainable composites as corrosion protection layers through a double-curing procedure involving UV radiation and thermal curing to ensure homogeneous distribution of the filler. The crosslinked structures were confirmed by Fourier-transform infrared spectrometry (FTIR), by comparative monitorization of the absorption band at 825 cm-1, attributed to the stretching vibration of epoxy rings. Thermal degradation behavior under N2 gas indicates that the higher LnK content, the better thermal stability of the composites (over 30 °C of Td10% for ELO + 15% LnK), while for the experiment under air-oxidant atmosphere, the lower LnK content (5%) conducted to the more thermo-stable material. Dynamic-mechanic behavior and water affinity of the new materials were also investigated. The increase of the Tg values with the increase of the LnK content (20 °C for the composite with 15% LnK) denote the reinforcement effect of the LnK, while the surface and bulk water affinity were not dramatically affected. All the obtained composites were tested as carbon steel corrosion protection coatings, resulting in significant increase of corrosion inhibition efficiency (IE) of 140-380%, highlighting the great potential of the bio-based ELO-LnK composites as a future perspective for industrial application.
Collapse
Affiliation(s)
- Raluca Sanda Komartin
- Department of Organic Chemistry “C. Nenitescu”, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (R.S.K.); (B.B.)
| | - Brindusa Balanuca
- Department of Organic Chemistry “C. Nenitescu”, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (R.S.K.); (B.B.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Madalina Ioana Necolau
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Anca Cojocaru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Raluca Stan
- Department of Organic Chemistry “C. Nenitescu”, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (R.S.K.); (B.B.)
- Correspondence:
| |
Collapse
|
29
|
Gonçalves F, Ferreira P, Alves P. Synthesis and characterization of itaconic-based epoxy resin: Chemical and thermal properties of partially biobased epoxy resins. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Structural Adhesives Tapes Based on a Solid Epoxy Resin and Multifunctional Acrylic Telomers. Polymers (Basel) 2021; 13:polym13203561. [PMID: 34685319 PMCID: PMC8539131 DOI: 10.3390/polym13203561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
Thermally curable pressure-sensitive structural adhesives tapes (SATs) were compounded using a solid epoxy resin and multifunctional acrylic telomer solutions (MATs) prepared by a thermally initiated telomerization process in an epoxy diluent containing two kinds of telogens (CBr4 or CBrCl3). Dynamic viscosity, K-value, and volatile mater content in MATs (i.e., MAT-T with CBr4, MAT-B with CBrCl3) were investigated in relation to telogen type and content. The influence of MATs on the self-adhesive features and curing behavior of UV-crosslinked tapes as well as on the shear strength of thermally cured aluminum–SAT–aluminum joints was investigated as well. Increasing the telogen dose (from 5 to 15 wt. parts) caused significant improvement in the adhesion (+315% and +184%), tack (+147% and +298%), and cohesion (+414% and +1716%) of SATs based on MAT-T and MAT-B, respectively. Additionally, MATs with high telogen content (especially the MAT-T-type) improved the resistance of cured joints to aviation fuel, humidity, and elevated temperature. The highest overlap shear strength values were registered for SATs based on MATs containing 7.5 wt. parts of CBr4 (16.7 MPa) or 10 wt. parts of CBrCl3 (15.3 MPa).
Collapse
|
31
|
Preparation and Evaluation of Epoxy Resin Prepared from the Liquefied Product of Cotton Stalk. Processes (Basel) 2021. [DOI: 10.3390/pr9081417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Liquefaction of waste lignocellulosic biomass is a viable technology for replacing fossil fuels and meeting sustainable development goals. In this study, bio-based epoxy resins were prepared from polyhydric-alcohol-liquefied cotton stalk by glycidyl etherification. The cotton stalk was liquefied in a polyethylene glycol/glycerol cosolvent under H2SO4 catalysis. Epon 828 and cotton-stalk-based epoxy resins could be cured using methylhexahydrophthalic anhydride as the curing agent, and the curing process was exothermic. The thermal properties and tensile strength of cured resins were investigated to examine the effect of adding cotton-stalk-based resin on the performance of the copolymerized epoxy resin. Further, the liquefied-cotton-stalk-based epoxy resin was blended with Epon 828 at different ratios (10, 20, and 30 mass%) and cured with a curing agent in the presence of 2-methylimidazole catalyst. An increase in the peak temperature and a reduction in the heat of curing and activation energy of the Epon 828 epoxy resin was observed with increasing content of the cotton-stalk-based epoxy resin. The tensile strength (35.4 MPa) and elastic modulus (1.5 GPa) of the highly crosslinked cotton-stalk-based epoxy resin were equivalent to those of the petroleum-based epoxy resin Epon 828.
Collapse
|
32
|
Towards a Circular Economy in the Aviation Sector Using Eco-Composites for Interior and Secondary Structures. Results and Recommendations from the EU/China Project ECO-COMPASS. AEROSPACE 2021. [DOI: 10.3390/aerospace8050131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fiber reinforced polymers play a crucial role as enablers of lightweight and high performing structures to increase efficiency in aviation. However, the ever-increasing awareness for the environmental impacts has led to a growing interest in bio-based and recycled ‘eco-composites’ as substitutes for the conventional synthetic constituents. Recently, the international collaboration of Chinese and European partners in the ECO-COMPASS project provided an assessment of different eco-materials and technologies for their potential application in aircraft interior and secondary composite structures. This project summary reports the main findings of the ECO-COMPASS project and gives an outlook to the next steps necessary for introducing eco-composites as an alternative solution to fulfill the CLEAN SKY target.
Collapse
|
33
|
Kumar B, Agumba DO, Pham DH, Latif M, Dinesh, Kim HC, Alrobei H, Kim J. Recent Research Progress on Lignin-Derived Resins for Natural Fiber Composite Applications. Polymers (Basel) 2021; 13:1162. [PMID: 33916412 PMCID: PMC8038635 DOI: 10.3390/polym13071162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
By increasing the environmental concerns and depletion of petroleum resources, bio-based resins have gained interest. Recently, lignin, vanillin (4-hydroxy-3-methoxybenzaldehyde), and divanillin (6,6'-dihydroxy-5,5'-dimethoxybiphenyl-3,3'-dicarbaldehyde)-based resins have attracted attention due to the low cost, environmental benefits, good thermal stability, excellent mechanical properties, and suitability for high-performance natural fiber composite applications. This review highlights the recent use of lignin, vanillin, and divanillin-based resins with natural fiber composites and their synthesized processes. Finally, discussions are made on the curing kinetics, mechanical properties, flame retardancy, and bio-based resins' adhesion property.
Collapse
Affiliation(s)
- Bijender Kumar
- Creative Research Center for Nanocellulose Future Composites, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea; (B.K.); (D.O.A.); (D.H.P.); (M.L.); (D.); (H.C.K.)
| | - Dickens O. Agumba
- Creative Research Center for Nanocellulose Future Composites, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea; (B.K.); (D.O.A.); (D.H.P.); (M.L.); (D.); (H.C.K.)
| | - Duc H. Pham
- Creative Research Center for Nanocellulose Future Composites, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea; (B.K.); (D.O.A.); (D.H.P.); (M.L.); (D.); (H.C.K.)
| | - Muhammad Latif
- Creative Research Center for Nanocellulose Future Composites, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea; (B.K.); (D.O.A.); (D.H.P.); (M.L.); (D.); (H.C.K.)
| | - Dinesh
- Creative Research Center for Nanocellulose Future Composites, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea; (B.K.); (D.O.A.); (D.H.P.); (M.L.); (D.); (H.C.K.)
| | - Hyun Chan Kim
- Creative Research Center for Nanocellulose Future Composites, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea; (B.K.); (D.O.A.); (D.H.P.); (M.L.); (D.); (H.C.K.)
| | - Hussein Alrobei
- Department of Mechanical Engineering, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Jaehwan Kim
- Creative Research Center for Nanocellulose Future Composites, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea; (B.K.); (D.O.A.); (D.H.P.); (M.L.); (D.); (H.C.K.)
| |
Collapse
|
34
|
The properties and suitability of commercial bio‐based epoxies for use in fiber‐reinforced composites. J Appl Polym Sci 2021. [DOI: 10.1002/app.50417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Comparison of Rheological Behaviour of Bio-Based and Synthetic Epoxy Resins for Making Ecocomposites. FLUIDS 2021. [DOI: 10.3390/fluids6010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, the rheological behaviour of a petroleum-based epoxy (EL2 laminating epoxy) was compared with the Super Sap CLR clear bio-resin epoxy. The focus of the work was on the viscous and viscoelastic performance of these epoxy resins. Rheological tests were carried out at 15, 30, and 60 min after the mixing of the pure epoxies and the hardeners at a constant temperature of 25 °C. The results obtained from the rheometer tests showed that the viscosity of both epoxy systems decreased with increasing shear rate, which is typical behaviour of a shear thinning fluid. Regarding the oscillatory rheology tests, the viscoelastic properties of both epoxy resins were studied within their linear viscoelastic region (LVER) by amplitude sweep test, which was also carried out 15, 30, and 60 min after mixing the epoxies with the hardeners. It was noticed that the petroleum-based epoxy possessed a more significant LVER relative to the bio-based resin. Finally, the storage modulus (G′), the loss modulus (G″), and the phase angle were extracted, and these parameters were investigated over low and high frequencies. From the test results, we observed that both epoxy resins showed a liquid-like viscoelastic behaviour due to their phase angle values, which were always between 45° and 90°, and by the general tendency of the G″ predominance over G′ at low and high frequencies.
Collapse
|
36
|
Noè C, Hakkarainen M, Sangermano M. Cationic UV-Curing of Epoxidized Biobased Resins. Polymers (Basel) 2020; 13:E89. [PMID: 33379390 PMCID: PMC7795534 DOI: 10.3390/polym13010089] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
Epoxy resins are among the most important building blocks for fabrication of thermosets for many different applications thanks to their superior thermo-mechanical properties and chemical resistance. The recent concerns on the environmental problems and the progressive depletion of petroleum feedstocks have drawn the research interest in finding biobased alternatives. Many curing techniques can be used to obtain the final crosslinked thermoset networks. The UV-curing technology can be considered the most environmentally friendly because of the absence of volatile organic compound (VOC) emissions and mild curing conditions. This review provides an overview of the state of the art of bio-based cationic UV-curable epoxy resins. Particular focus has been given to the sources of the bio-based epoxy monomers and the applications of the obtained products.
Collapse
Affiliation(s)
- Camilla Noè
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, C.so Duca Degli Abruzzi 24, 10129 Torino, Italy;
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden;
| | - Marco Sangermano
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, C.so Duca Degli Abruzzi 24, 10129 Torino, Italy;
| |
Collapse
|
37
|
Tran TN, Di Mauro C, Malburet S, Graillot A, Mija A. Dual Cross-linking of Epoxidized Linseed Oil with Combined Aliphatic/Aromatic Diacids Containing Dynamic S-S Bonds Generating Recyclable Thermosets. ACS APPLIED BIO MATERIALS 2020; 3:7550-7561. [PMID: 35019496 DOI: 10.1021/acsabm.0c00788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The end-of-life of thermoset materials is a real issue that confronts our society, and the strategy of introducing dynamic reversible bonds can be a sustainable solution to overcome this problem. This study shows an efficient way to produce biobased and recyclable thermosets, for a circular use. To reduce the production costs linked to energy and duration, an improved curing process is proposed by combining aromatic and aliphatic diacid hardeners containing dynamic S-S bonds. The work demonstrates the increased reactivity of epoxidized vegetable oil reacted with the two diacids. The structural evolutions during the exchange reactions that allow the recyclability were followed by Fourier transformed-infrared and nuclear magnetic resonance spectroscopies, high-performance liquid chromatography, and mass spectroscopy. The curing process was studied by differential scanning calorimetry and kinetic study.
Collapse
Affiliation(s)
- Thi-Nguyet Tran
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272-CNRS, 28 Avenue Valrose, 06108 Nice Cedex 2, France
| | - Chiara Di Mauro
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272-CNRS, 28 Avenue Valrose, 06108 Nice Cedex 2, France
| | - Samuel Malburet
- Specific Polymers, 150 Avenue des Cocardières, Zac Via Domitia, 34160 Castries, France
| | - Alain Graillot
- Specific Polymers, 150 Avenue des Cocardières, Zac Via Domitia, 34160 Castries, France
| | - Alice Mija
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272-CNRS, 28 Avenue Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
38
|
Bahrami M, Abenojar J, Martínez MÁ. Recent Progress in Hybrid Biocomposites: Mechanical Properties, Water Absorption, and Flame Retardancy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5145. [PMID: 33203190 PMCID: PMC7696046 DOI: 10.3390/ma13225145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Bio-based composites are reinforced polymeric materials in which one of the matrix and reinforcement components or both are from bio-based origins. The biocomposite industry has recently drawn great attention for diverse applications, from household articles to automobiles. This is owing to their low cost, biodegradability, being lightweight, availability, and environmental concerns over synthetic and nonrenewable materials derived from limited resources like fossil fuel. The focus has slowly shifted from traditional biocomposite systems, including thermoplastic polymers reinforced with natural fibers, to more advanced systems called hybrid biocomposites. Hybridization of bio-based fibers/matrices and synthetic ones offers a new strategy to overcome the shortcomings of purely natural fibers or matrices. By incorporating two or more reinforcement types into a single composite, it is possible to not only maintain the advantages of both types but also alleviate some disadvantages of one type of reinforcement by another one. This approach leads to improvement of the mechanical and physical properties of biocomposites for extensive applications. The present review article intends to provide a general overview of selecting the materials to manufacture hybrid biocomposite systems with improved strength properties, water, and burning resistance in recent years.
Collapse
Affiliation(s)
- Mohsen Bahrami
- Materials Science and Engineering and Chemical Engineering Department, University Carlos III de Madrid, 28911 Leganes, Spain; (J.A.); (M.Á.M.)
| | | | | |
Collapse
|
39
|
|
40
|
Wan J, Zhao J, Zhang X, Fan H, Zhang J, Hu D, Jin P, Wang DY. Epoxy thermosets and materials derived from bio-based monomeric phenols: Transformations and performances. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101287] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Nikafshar S, Fang Z, Nejad M. Development of a Novel Curing Accelerator-Blowing Agent for Formulating Epoxy Rigid Foam Containing Aminated-Lignin. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Saeid Nikafshar
- Department of Forestry, Michigan State University, 480 Wilson Rd, East Lansing, Michigan 48824, United States
| | - Zhen Fang
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, Michigan 48824, United States
- Great Lakes Bioenergy Research Center, Michigan State University, 164 Food Safety and Toxicology Building, East Lansing, Michigan 48824, United States
| | - Mojgan Nejad
- Department of Forestry, Michigan State University, 480 Wilson Rd, East Lansing, Michigan 48824, United States
- Chemical Engineering and Materials Science, Michigan State University, 428 S Shaw Ln, East Lansing, Michigan 48824, United States
| |
Collapse
|
42
|
Gouveia JR, Garcia GES, Antonino LD, Tavares LB, dos Santos DJ. Epoxidation of Kraft Lignin as a Tool for Improving the Mechanical Properties of Epoxy Adhesive. Molecules 2020; 25:molecules25112513. [PMID: 32481588 PMCID: PMC7321300 DOI: 10.3390/molecules25112513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Owing to its chemical structure, wide availability and renewable nature, lignin is a promising candidate for the partial replacement of fossil-based raw material in the synthesis of epoxy resins. Its poor compatibility has been reported to be one of the main drawbacks in this domain. On the other hand, a well-established modification method for lignin epoxidation has been used for many years for the improvement of lignin compatibility. However, the extent of the effect of lignin epoxidation on the improvement of bio-based epoxy mechanical properties, applied as adhesives, is still an open question in the literature. In this context, a pristine and industrial grade kraft lignin (AKL) was reacted with epichlorohydrin to yield epoxidized lignin (E-AKL) in this work. Afterwards, AKL or E-AKL were separately blended with petroleum-based epoxy resin at 15 and 30 wt% and cured with a commercial amine. The adhesive curing kinetic was evaluated using a novel technique for thermal transition characterization, Temperature Modulated Optical Refractometry (TMOR); the results showed that the incorporation of AKL reduces the crosslinking rate, and that this effect is overcome by lignin modification. Mechanical tests revealed an improvement of impact and practical adhesion strength for samples containing 15 wt% of E-AKL. These results elucidate the effect of lignin epoxidation on the application of lignin-based epoxy adhesives, and might support the further development and application of these bio-based materials.
Collapse
Affiliation(s)
- Julia R. Gouveia
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo André 09210-580, Brazil; (J.R.G.); (G.E.S.G.); (L.D.A.); (L.B.T.)
| | - Guilherme E. S. Garcia
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo André 09210-580, Brazil; (J.R.G.); (G.E.S.G.); (L.D.A.); (L.B.T.)
| | - Leonardo Dalseno Antonino
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo André 09210-580, Brazil; (J.R.G.); (G.E.S.G.); (L.D.A.); (L.B.T.)
| | - Lara B. Tavares
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo André 09210-580, Brazil; (J.R.G.); (G.E.S.G.); (L.D.A.); (L.B.T.)
| | - Demetrio J. dos Santos
- Nanoscience and Advanced Materials Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo André 09210-580, Brazil; (J.R.G.); (G.E.S.G.); (L.D.A.); (L.B.T.)
- Materials Engineering Graduate Program (PPG-Nano), Federal University of ABC (UFABC), Santo André 09210-580, Brazil
- Correspondence:
| |
Collapse
|
43
|
Tran TN, Mauro CD, Graillot A, Mija A. Chemical Reactivity and the Influence of Initiators on the Epoxidized Vegetable Oil/Dicarboxylic Acid System. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02700] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Thi-Nguyet Tran
- Université Côte d’Azur, Institut de Chimie de Nice, UMR 7272 - CNRS, 28 Avenue Valrose, 06108 Nice Cedex 2, France
| | - Chiara Di Mauro
- Université Côte d’Azur, Institut de Chimie de Nice, UMR 7272 - CNRS, 28 Avenue Valrose, 06108 Nice Cedex 2, France
| | - Alain Graillot
- Specific Polymers, 150 Avenue des Cocardières, Zac Via Domitia, 34160 Castries, France
| | - Alice Mija
- Université Côte d’Azur, Institut de Chimie de Nice, UMR 7272 - CNRS, 28 Avenue Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
44
|
Mechanical and Flame-Retardant Properties of Nanocomposite Based on Epoxy Resin Combined with Epoxidized Linseed Oil, Which Has the Presence of Nanoclay and MWCNTs. J CHEM-NY 2020. [DOI: 10.1155/2020/2353827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
One of the main disadvantages of epoxy resins is brittleness and flammability, which is one of the biggest threats and the reason for limiting advanced applications. In this study, Epikote 240 (EP) epoxy resin was plasticized with epoxidized flaxseed oil (ELO) at different concentrations (EP/ELO ratios 95/5; 90/10; 85/15; 80/20; 75/25). Then, nanoclay additives and MWCNTs are simultaneously dispersed into the EP/ELO blend by using ultrasonic vibration. The dispersion of ELO and nanoclay additives (nanoclay and MWCNTs) in epoxy resin is observed by using the scanning electron microscope in combination with the XRD method. The effect of ELO, nanoadditives on mechanical properties, and flame retardants is assessed by tensile strength, flexural strength, compressive strength, impact resistance, UL 94HB method, and limiting oxygen index. Experimental results have shown that the mixing ratio of 90/10 w/w is the ratio for good compatibility, high mechanical properties, and fire retardation compared with other ratios. When adding MWCNTs as well as nanoclay I.30E to Epikote 240 epoxy, the mechanical strength and fire resistance have changed greatly: tensile strength of 85.45 MPa, flexural strength of 116.32 MPa, compressive strength of 189.25 MPa, impact resistance Izod of 24.37 kJ/m2, and fire resistance reached at V1.
Collapse
|
45
|
Guzmán D, Santiago D, Serra À, Ferrando F. Novel Bio-Based Epoxy Thermosets Based on Triglycidyl Phloroglucinol Prepared by Thiol-Epoxy Reaction. Polymers (Basel) 2020; 12:polym12020337. [PMID: 32033354 PMCID: PMC7077446 DOI: 10.3390/polym12020337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 02/01/2020] [Indexed: 12/02/2022] Open
Abstract
The pure trifunctional glycidyl monomer from phloroglucinol (3EPO-Ph) was synthesized and used as feedstock in the preparation of novel bio-based thermosets by thiol-epoxy curing. The monomer was crosslinked with different commercially available thiols: tetrafunctional thiol (PETMP), trifunctional thiol (TTMP) and an aromatic dithiol (TBBT) as curing agents in the presence of a base. As catalyst, two different commercial catalysts: LC-80 and 4-(N,N-dimethylamino) pyridine (DMAP) and a synthetic catalyst, imidazolium tetraphenylborate (base generator, BG) were employed. The curing of the reactive mixtures was studied by using DSC and the obtained materials by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). The results revealed that only the formulations catalyzed by BG showed a latent character. Already prepared thermosetting materials showed excellent thermal, thermomechanical and mechanical properties, with a high transparency. In addition to that, when compared with the diglycidyl ether of bisphenol A (DGEBA)/PETMP material, the thermosets prepared from the triglycidyl derivative of phloroglucinol have better final characteristics and therefore this derivative can be considered as a partial or total renewable substitute of DGEBA in technological applications.
Collapse
Affiliation(s)
- Dailyn Guzmán
- Eurecat–Chemical Technology Unit, c/Marcel·lí Domingo 2, Edif. N5, 43007 Tarragona, Spain;
- Correspondence:
| | - David Santiago
- Eurecat–Chemical Technology Unit, c/Marcel·lí Domingo 2, Edif. N5, 43007 Tarragona, Spain;
| | - Àngels Serra
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, Edif. N4, 43007 Tarragona, Spain;
| | - Francesc Ferrando
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| |
Collapse
|
46
|
Nguyen Q, Nguyen N, Rios de Anda A, Nguyen V, Versace D, Langlois V, Naili S, Renard E. Photocurable bulk epoxy resins based on resorcinol derivative through cationic polymerization. J Appl Polym Sci 2020. [DOI: 10.1002/app.49051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Quoc‐Bao Nguyen
- Institut de Chimie et des Matériaux Paris‐Est, UMR 7182 CNRS ‐ Université Paris‐Est Créteil Thiais France
- Laboratoire Modélisation et Simulation Multi‐EchelleUMR 8208 CNRS ‐ Université Paris‐Est Créteil Cedex France
| | - Nhu‐Hai Nguyen
- Institut de Chimie et des Matériaux Paris‐Est, UMR 7182 CNRS ‐ Université Paris‐Est Créteil Thiais France
- Laboratoire Modélisation et Simulation Multi‐EchelleUMR 8208 CNRS ‐ Université Paris‐Est Créteil Cedex France
| | - Agustín Rios de Anda
- Institut de Chimie et des Matériaux Paris‐Est, UMR 7182 CNRS ‐ Université Paris‐Est Créteil Thiais France
| | - Vu‐Hieu Nguyen
- Laboratoire Modélisation et Simulation Multi‐EchelleUMR 8208 CNRS ‐ Université Paris‐Est Créteil Cedex France
| | - Davy‐Louis Versace
- Institut de Chimie et des Matériaux Paris‐Est, UMR 7182 CNRS ‐ Université Paris‐Est Créteil Thiais France
| | - Valérie Langlois
- Institut de Chimie et des Matériaux Paris‐Est, UMR 7182 CNRS ‐ Université Paris‐Est Créteil Thiais France
| | - Salah Naili
- Laboratoire Modélisation et Simulation Multi‐EchelleUMR 8208 CNRS ‐ Université Paris‐Est Créteil Cedex France
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris‐Est, UMR 7182 CNRS ‐ Université Paris‐Est Créteil Thiais France
| |
Collapse
|
47
|
Tran TN, Mauro CD, Graillot A, Mija A. Monitoring the structure–reactivity relationship in epoxidized perilla and safflower oil thermosetting resins. Polym Chem 2020. [DOI: 10.1039/d0py00688b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reactivity of epoxidized perilla oil and epoxidized safflower oil with two aromatic dicarboxylic acids was studied. The presence of S–S bonding at the β position of the carboxylic group increases the reactivity of the acidic proton toward epoxy ring opening.
Collapse
Affiliation(s)
- Thi-Nguyet Tran
- Université Côte d'Azur
- Institut de Chimie de Nice
- 06108 Nice Cedex 2
- France
| | - Chiara Di Mauro
- Université Côte d'Azur
- Institut de Chimie de Nice
- 06108 Nice Cedex 2
- France
| | | | - Alice Mija
- Université Côte d'Azur
- Institut de Chimie de Nice
- 06108 Nice Cedex 2
- France
| |
Collapse
|
48
|
Zhang Y, Ling Q, Lu X, Fang Q, Sun F. Rheology, morphological evolution, thermal, and mechanical properties of epoxy modified with polysulfone and cellulose nanofibers. J Appl Polym Sci 2019. [DOI: 10.1002/app.48628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yan Zhang
- School of Engineering, and Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High‐efficiency UtilizationZhejiang A&F University Hangzhou 311300 China
| | - Qiuhui Ling
- School of Engineering, and Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High‐efficiency UtilizationZhejiang A&F University Hangzhou 311300 China
| | - Xueting Lu
- School of Engineering, and Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High‐efficiency UtilizationZhejiang A&F University Hangzhou 311300 China
| | - Qun Fang
- School of Engineering, and Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High‐efficiency UtilizationZhejiang A&F University Hangzhou 311300 China
| | - Fangli Sun
- School of Engineering, and Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High‐efficiency UtilizationZhejiang A&F University Hangzhou 311300 China
| |
Collapse
|
49
|
Hollande L, Do Marcolino I, Balaguer P, Domenek S, Gross RA, Allais F. Preparation of Renewable Epoxy-Amine Resins With Tunable Thermo-Mechanical Properties, Wettability and Degradation Abilities From Lignocellulose- and Plant Oils-Derived Components. Front Chem 2019; 7:159. [PMID: 30972325 PMCID: PMC6445855 DOI: 10.3389/fchem.2019.00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/04/2019] [Indexed: 11/30/2022] Open
Abstract
One-hundred percent renewable triphenol—GTF—(glycerol trihydroferulate) and novel bisphenols—GDFx–(glycerol dihydroferulate) were prepared from lignocellulose-derived ferulic acid and vegetal oil components (fatty acids and glycerol) using highly selective lipase-catalyzed transesterifications. Estrogenic activity tests revealed no endocrine disruption for GDFx bisphenols. Triethyl-benzyl-ammonium chloride (TEBAC) mediated glycidylation of all bis/triphenols, afforded innocuous bio-based epoxy precursors GDFxEPO and GTF-EPO. GDFxEPO were then cured with conventional and renewable diamines, and some of them in presence of GTF-EPO. Thermo-mechanical analyses (TGA, DSC, and DMA) and degradation studies in acidic aqueous solutions of the resulting epoxy-amine resins showed excellent thermal stabilities (Td5% = 282–310°C), glass transition temperatures (Tg) ranging from 3 to 62°C, tunable tan α, and tunable degradability, respectively. It has been shown that the thermo-mechanical properties, wettability, and degradability of these epoxy-amine resins, can be finely tailored by judiciously selecting the diamine nature, the GTF-EPO content, and the fatty acid chain length.
Collapse
Affiliation(s)
- Louis Hollande
- URD ABI, CEBB, AgroParisTech, Pomacle, France.,UMR GENIAL, AgroParisTech, INRA, Université Paris-Saclay, Massy, France
| | | | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, Val d'Aurelle, Montpellier, France
| | - Sandra Domenek
- UMR GENIAL, AgroParisTech, INRA, Université Paris-Saclay, Massy, France
| | - Richard A Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | |
Collapse
|
50
|
Special Issue “ECO-COMPASS: Ecological and Multifunctional Composites for Application in Aircraft Interior and Secondary Structures”. AEROSPACE 2019. [DOI: 10.3390/aerospace6020017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Today, composite aircraft structural parts are mainly made of man-made materials, such as carbon and glass fibres and epoxy resin [...]
Collapse
|