1
|
Li M, Wang Z, Ma Z, Wang Y, Jia H, Zhang L, Chen P, Mao Y, Yang Z. Metagenomic analysis reveals microbial drivers of heat resistance in dairy cattle. Anim Microbiome 2025; 7:35. [PMID: 40205588 PMCID: PMC11984055 DOI: 10.1186/s42523-025-00399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
Heat stress poses a significant challenge to dairy cattle, leading to adverse physiological effects, reduced milk yield, impaired reproduction performance and economic losses. This study investigates the role of the rumen microbiome in mediating heat resistance in dairy cows. Using the entropy-weighted TOPSIS method, we classified 120 dairy cows into heat-resistant (HR) and heat-sensitive (HS) groups based on physiological and biochemical markers, including rectal temperature (RT), respiratory rate (RR), salivation index (SI) and serum levels of potassium ion (K+), heat shock protein 70 (HSP70) and cortisol. Metagenomic sequencing of rumen fluid samples revealed distinct microbial compositions and functional profiles between the two groups. HR cows exhibited a more cohesive and functionally stable microbiome, dominated by taxa such as Ruminococcus flavefaciens and Succiniclasticum, which are key players in fiber degradation and short-chain fatty acid production. Functional analysis highlighted the enrichment of the pentose phosphate pathway (PPP) in HR cows, suggesting a metabolic adaptation that enhances oxidative stress management. In contrast, HS cows showed increased activity in the tricarboxylic acid (TCA) cycle, pyruvate metabolism and other energy-intensive pathways, indicating a higher metabolic burden under heat stress. These findings underscore the critical role of the rumen microbiome in modulating heat resistance and suggest potential microbiome-based strategies for improving dairy cattle resilience to climate change.
Collapse
Affiliation(s)
- Mingxun Li
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China.
| | - Zhiwei Wang
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Zheng Ma
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Yangyang Wang
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Haoran Jia
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Lei Zhang
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Peng Chen
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Yongjiang Mao
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Zhangping Yang
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
2
|
Wang Z, Guo M, Liang Y, Zhou F, Zhang H, Li M, Yang Z, Karrow N, Mao Y. Breed-Specific Responses and Ruminal Microbiome Shifts in Dairy Cows Under Heat Stress. Animals (Basel) 2025; 15:817. [PMID: 40150346 PMCID: PMC11939148 DOI: 10.3390/ani15060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Holstein and Jersey cows, as excellent dairy breeds, have their own advantages in milk yield, milk quality, disease resistance, and heat resistance. However, the adaptability and rumen microbiome changes in Holstein and Jersey cows under heat stress are not clear. Therefore, the main objective of this study was to compare the differences in heat tolerance and the changes in the ruminal microbiome in Holstein and Jersey cows under heat stress. The experiment comprised a 7-day thermo-neutral (TN) period and a 7-day heat stress (HS) period. Five Jersey cows and five Holstein cows with similar parity and days in milk were selected, and rumen fluid was collected from five of them each. Compared with the TN period, heat stress increased the respiratory rate (p < 0.05), whereas decreased the milk yield (p < 0.01) in the Holstein and Jersey cows. Also, heat stress increased the rectal temperature (p < 0.01) in the Holstein cows. Jersey cows had a significantly (p < 0.05) lower level of acetic acid, propionic acid, butyric acid, valeric acid, and TVFA during HS compared with the TN period. Furthermore, high-throughput sequencing revealed that the relative abundance of Bacteroidetes and Prevotella increased while the relative abundance of Firmicutes decreased in Holstein cows during the HS period, whereas Christensenellaceae and Clostridium were more abundant in Jersey cows during the HS period than in the TN period. Simultaneously, the dominant fungi in Holstein cows were Ascomycota, Neocallimastigomycota, and Aspergillus. Correlation analysis also provided a link between the significantly altered rumen microbiota and animal production. These results suggest that heat stress has negatively influenced the physiological parameters, milk production, and rumen microbiota of Holstein and Jersey cows. Changes in the rumen fermentation and ruminal microbiome in Holstein cows may be associated with a better adaptation ability to heat stress. Our findings may inform future research to better understand how heat stress affects the physiology and productivity of dairy cattle breeding in southern China and the development of mitigation strategies.
Collapse
Affiliation(s)
- Zichen Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Mengling Guo
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Yan Liang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Fuzhen Zhou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Huiming Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Mingxun Li
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Zhangping Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Niel Karrow
- Center for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Yongjiang Mao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| |
Collapse
|
3
|
Eom JS, Choi Y, Lee SJ, Kim HS, Jo SU, Bae D, Lim DH, Kim ET, Kim SB, Lee SS. Integrated analysis of rumen metabolomics and metataxonomics to understand changes in metabolic and microbial community in Korean native goats under heat stress. Sci Rep 2024; 14:31416. [PMID: 39733052 PMCID: PMC11682336 DOI: 10.1038/s41598-024-83017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.08 ± 1.83 kg) under optimum temperature period (OTP) (HS-free, temperature humidity index (THI): 57.13 ± 3.98) and high temperature period (HTP) (HS-exposed, THI: 80.27 ± 1.22) conditions, to identify changes in key metabolites and the rumen microbiome induced by HS. Compared to the OTP and HTP conditions, metabolomic analysis revealed significant changes in rumen metabolites related to energy and amino acid metabolism, with HTP goats showing potential rumen metabolic biomarkers, such as butyrate, isopropanol, phenylacetate, and 2-oxoisocaproate (P < 0.001). Serum analysis revealed significant changes in energy metabolism and immune response, with HTP goats showing potential metabolic biomarkers, including acetate, betaine, glucuronate, and kynurenine (P < 0.05). Metataxonomic analysis revealed that HS affected the alpha diversity measurements, including the Chao1 estimate (P < 0.05) and evenness (P < 0.05) between OTP and HTP groups. Through the metabolic association of the rumen microbiome with the metabolome, we found that Fibrobacter and Ruminococcus were enriched in HTP and positively correlated with ruminal microbial metabolites, such as acetate. In addition, Prevotellaceae UCG-003, which was denoted as the keynote genus in the HTP, co-occurred with acetate-producing bacteria such as Quinella and Ruminococcus. Furthermore, we identified that Oscillospiraceae UCG-002, an enriched bacterial genus in HTP, showed a positive correlation with functional features, such as biotin and sulfur metabolism. Our study provided fundamental insights into how HS affected the physiology and rumen microbial compositions of goats and how both microbiome and host-dependent mechanisms contributed to these changes. These findings could potentially suggest strategies for mitigating the adverse effects of HS, including changes in the microbial population and energy metabolism in goats.
Collapse
Affiliation(s)
- Jun Sik Eom
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Youyoung Choi
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Sang Kim
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Animal Nutrition and Physiology Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55368, Republic of Korea
| | - Seong Uk Jo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dongryeoul Bae
- Division of Research and Development, TracoWorld Ltd., Gwangmyeong-si, 14348, Republic of Korea
| | - Dong-Hyun Lim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Eun Tae Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Sang Bum Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Sung Sill Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
4
|
Kalaignazhal G, Sejian V, Velayudhan SM, Mishra C, Rebez EB, Chauhan SS, DiGiacomo K, Lacetera N, Dunshea FR. Applications of Next-Generation Sequencing Technologies and Statistical Tools in Identifying Pathways and Biomarkers for Heat Tolerance in Livestock. Vet Sci 2024; 11:616. [PMID: 39728955 DOI: 10.3390/vetsci11120616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
The climate change-associated abnormal weather patterns negatively influences the productivity and performance of farm animals. Heat stress is the major detrimental factor hampering production, causing substantial economic loss to the livestock industry. Therefore, it is important to identify heat-tolerant breeds that can survive and produce optimally in any given environment. To achieve this goal, a clearer understanding of the genetic differences and the underlying molecular mechanisms associated with climate change impacts and heat tolerance are a prerequisite. Adopting next-generation biotechnological and statistical tools like whole transcriptome analysis, whole metagenome sequencing, bisulphite sequencing, genome-wide association studies (GWAS), and selection signatures provides an opportunity to achieve this goal. Through these techniques, it is possible to identify permanent genetic markers for heat tolerance, and by incorporating those markers in marker-assisted breeding selection, it is possible to achieve the target of breeding for heat tolerance in livestock. This review gives an overview of the recent advancements in assessing heat tolerance in livestock using such 'omics' approaches and statistical models. The salient findings from this research highlighted several candidate biomarkers that have the potential to be incorporated into future heat-tolerance studies. Such approaches could revolutionise livestock production in the changing climate scenario and support the food demands of the growing human population.
Collapse
Affiliation(s)
- Gajendirane Kalaignazhal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, Puducherry, India
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, Odisha, India
| | - Veerasamy Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, Puducherry, India
| | | | - Chinmoy Mishra
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, Odisha, India
| | - Ebenezer Binuni Rebez
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, Puducherry, India
| | - Surinder Singh Chauhan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kristy DiGiacomo
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nicola Lacetera
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Frank Rowland Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Huang Q, Xiao Y, Sun P. Rumen-mammary gland axis and bacterial extracellular vesicles: Exploring a new perspective on heat stress in dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:70-75. [PMID: 39628643 PMCID: PMC11612815 DOI: 10.1016/j.aninu.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 12/06/2024]
Abstract
Heat stress poses a significant threat to the global livestock industry, particularly impacting dairy cows due to their higher metabolic heat production and increased susceptibility. The rumen microbiota plays a crucial role in regulating heat stress in dairy cows. Moreover, the rumen-mammary gland axis has been recently unveiled, indicating that rumen bacteria and their metabolites can influence mammary gland health and function. Extracellular vesicles, cell-derived vesicles, are known to carry various biomolecules and mediate intercellular communication and immune modulation. This review proposes the hypothesis that heat stress poses a threat to dairy cows via the rumen-mammary gland axis by regulating rumen microbiota and their secreted extracellular vesicles. It summarizes existing knowledge on bacterial extracellular vesicles and the rumen-mammary gland axis, suggesting that targeting the rumen microbiota and their extracellular vesicles, while enhancing mammary gland health through this axis, could be a promising strategy for preventing and alleviating heat stress in dairy cows. The aim of this review is to offer new insights and guide future research and development efforts concerning heat stress in dairy cows, thereby contributing to a deeper understanding of its pathogenesis and potential interventions.
Collapse
Affiliation(s)
- Qi Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Xiao
- Hebei Yancheng Food Co., Ltd., Baoding 072650, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Shashank CG, Sejian V, Silpa MV, Devaraj C, Madhusoodan AP, Rebez EB, Kalaignazhal G, Sahoo A, Dunshea FR. Climate Resilience in Farm Animals: Transcriptomics-Based Alterations in Differentially Expressed Genes and Stress Pathways. BIOTECH 2024; 13:49. [PMID: 39584906 PMCID: PMC11586948 DOI: 10.3390/biotech13040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
The livestock sector, essential for maintaining food supply and security, encounters numerous obstacles as a result of climate change. Rising global populations exacerbate competition for natural resources, affecting feed quality and availability, heightening livestock disease risks, increasing heat stress, and contributing to biodiversity loss. Although various management and dietary interventions exist to alleviate these impacts, they often offer only short-lived solutions. We must take a more comprehensive approach to understanding how animals adapt to and endure their environments. One such approach is quantifying transcriptomes under different environments, which can uncover underlying pathways essential for livestock adaptation. This review explores the progress and techniques in studies that apply gene expression analysis to livestock production systems, focusing on their adaptation to climate change. We also attempt to identify various biomarkers and transcriptomic differences between species and pure/crossbred animals. Looking ahead, integrating emerging technologies such as spatialomics could further accelerate genetic improvements, enabling more thermoresilient and productive livestock in response to future climate fluctuations. Ultimately, insights from these studies will help optimize livestock production systems by identifying thermoresilient/desired animals for use in precise breeding programs to counter climate change.
Collapse
Affiliation(s)
- Chikamagalore Gopalakrishna Shashank
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | - Veerasamy Sejian
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, India;
| | | | - Chinnasamy Devaraj
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | | | - Ebenezer Binuni Rebez
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, India;
| | - Gajendirane Kalaignazhal
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, India;
| | - Artabandhu Sahoo
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | - Frank Rowland Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
- Faculty of Biological Science, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
7
|
Son AR, Kim SH, Islam M, Miguel M, Naing YP, Lee SS. Effect of organic mineral supplementation in reducing oxidative stress in Holstein calves during short-term heat stress and recovery conditions. J Anim Sci Biotechnol 2023; 14:156. [PMID: 38129915 PMCID: PMC10740304 DOI: 10.1186/s40104-023-00961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND This study investigated the effects of inorganic and organic minerals on physiological responses, oxidative stress reduction, and rumen microbiota in Holstein bull calves (123.81 ± 9.76 kg; 5 months old) during short-term heat stress (HS) and recovery periods. Eight Holstein calves were randomly assigned to four treatment groups: no mineral supplementation (Con), inorganic minerals (IM), organic minerals (OM), and high-concentration organic minerals (HOM) and two thermal environments (HS and recovery) using 4 × 2 factorial arrangement in a crossover design of four periods of 35 d. Calves were maintained in a temperature-controlled barn. The experimental period consisted of 14 d of HS, 14 d of recovery condititon, and a 7-d washing period. RESULTS Body temperature and respiration rate were higher in HS than in the recovery conditions (P < 0.05). Selenium concentration in serum was high in the HOM-supplemented calves in both HS (90.38 μg/dL) and recovery periods (102.00 μg/dL) (P < 0.05). During the HS period, the serum cortisol was 20.26 ng/mL in the HOM group, which was 5.60 ng/mL lower than in the control group (P < 0.05). The total antioxidant status was the highest in the OM group (2.71 mmol Trolox equivalent/L), followed by the HOM group during HS, whereas it was highest in the HOM group (2.58 mmol Trolox equivalent/L) during the recovery period (P < 0.05). Plasma malondialdehyde and HSP70 levels were decreased by HOM supplementation during the HS and recovery periods, whereas SOD and GPX levels were not significantly affected (P > 0.05). The principal coordinate analysis represented that the overall rumen microbiota was not influenced by mineral supplementation; however, temperature-induced microbial structure shifts were indicated (PERMANOVA: P < 0.05). At the phylum level, Firmicutes and Actinobacteria decreased, whereas Fibrobacteres, Spirochaetes, and Tenericutes increased (P < 0.05), under HS conditions. The genus Treponema increased under HS conditions, while Christensenella was higher in recovery conditions (P < 0.05). CONCLUSION HOM supplementation during HS reduced cortisol concentrations and increased total antioxidant status in Holstein bull calves, suggesting that high organic mineral supplementation may alleviate the adverse effects of HS.
Collapse
Affiliation(s)
- A-Rang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Korea
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Korea
| | - Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Korea
- Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Michelle Miguel
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Korea
| | - Ye Pyae Naing
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Korea.
| |
Collapse
|
8
|
Torres Manno MA, Gizzi FO, Martín M, Espariz M, Magni C, Blancato VS. Metagenomic approach to infer rumen microbiome derived traits of cattle. World J Microbiol Biotechnol 2023; 39:250. [PMID: 37439894 DOI: 10.1007/s11274-023-03694-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Ruminants enable the conversion of indigestible plant material into animal consumables, including dairy products, meat, and valuable fibers. Microbiome research is gaining popularity in livestock species because it aids in the knowledge of illnesses and efficiency processes in animals. In this study, we use WGS metagenomic data to thoroughly characterize the ruminal ecosystem of cows to infer positive and negative livestock traits determined by the microbiome. The rumen of cows from Argentina were described by combining different gene biomarkers, pathways composition and taxonomic information. Taxonomic characterization indicated that the two major phyla were Bacteroidetes and Firmicutes; in third place, Proteobacteria was highly represented followed by Actinobacteria; Prevotella, and Bacteroides were the most abundant genera. Functional profiling of carbohydrate-active enzymes indicated that members of the Glycoside Hydrolase (GH) class accounted for 52.2 to 55.6% of the total CAZymes detected, among them the most abundant were the oligosaccharide degrading enzymes. The diversity of GH families found suggested efficient hydrolysis of complex biomass. Genes of multidrug, macrolides, polymyxins, beta-lactams, rifamycins, tetracyclines, and bacitracin resistance were found below 0.12% of relative abundance. Furthermore, the clustering analysis of genera and genes that correlated to methane emissions or feed efficiency, suggested that the cows analysed could be regarded as low methane emitters and clustered with high feed efficiency reference animals. Finally, the combination of bioinformatic analyses used in this study can be applied to assess cattle traits difficult to measure and guide enhanced nutrition and breeding methods.
Collapse
Affiliation(s)
- Mariano A Torres Manno
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - Fernán O Gizzi
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - UNR, Rosario, Argentina
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF) - Municipalidad de Granadero Baigorria, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF) - Municipalidad de Granadero Baigorria, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- Biotecnología de los Alimentos, LCTA, FBioyF-UNR, Suipacha 590, Rosario, Argentina
| | - Víctor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina.
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF) - Municipalidad de Granadero Baigorria, Universidad Nacional de Rosario (UNR), Rosario, Argentina.
- Biotecnología de los Alimentos, LCTA, FBioyF-UNR, Suipacha 590, Rosario, Argentina.
| |
Collapse
|
9
|
Zhao C, Shen B, Huang Y, Kong Y, Tan P, Zhou Y, Yang J, Xu C, Wang J. Effects of Chromium Propionate and Calcium Propionate on Lactation Performance and Rumen Microbiota in Postpartum Heat-Stressed Holstein Dairy Cows. Microorganisms 2023; 11:1625. [PMID: 37512797 PMCID: PMC10383091 DOI: 10.3390/microorganisms11071625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Chromium propionate (Cr-Pro) and calcium propionate (Ca-Pro) are widely applied in dairy production, especially in the alleviation of heat stress (HS). HS can reduce the abundance of rumen microbiota and the lactation performance of dairy cows. The present work mainly focused on evaluating the effects of Cr-Pro and Ca-Pro on the performance, ruminal bacterial community, and stress of postpartum HS dairy cows as well as identifying the differences in their mechanisms. Fifteen multiparous postpartum Holstein cows with equivalent weights (694 ± 28 kg) and milk yields (41.2 ± 1.21 kg/day) were randomly divided into three groups: control (CON), Cr-Pro (CRPR), and Ca-Pro (CAPR). The control cows received the basal total mixed ration (TMR) diet, while the CRPR group received TMR with 3.13 g/day of Cr-Pro, and the CAPR group received TMR with 200 g/day of Ca-Pro. The rumen microbial 16S rRNA was sequenced using the Illumina NovaSeq platform along with the measurement of ruminal volatile fatty acids (VFAs) and milking performance. Cr-Pro and Ca-Pro improved lactation performance, increased the rumen VFA concentration, and altered the rumen microbiota of the HS dairy cows. Cr-Pro significantly improved the milk yield (p < 0.01). The richness and diversity of the microbial species significantly increased after feeding on Ca-Pro (p < 0.05). Gene function prediction revealed increased metabolic pathways and biological-synthesis-related function in the groups supplemented with Cr-Pro and Ca-Pro. Our results indicate that the application of Cr-Pro or Ca-Pro can provide relief for heat stress in dairy cows through different mechanisms, and a combination of both is recommended for optimal results in production.
Collapse
Affiliation(s)
- Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Bingyu Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yi Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jiaqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
Eom JS, Park DS, Lee SJ, Gu BH, Lee SJ, Lee SS, Kim SH, Kim BW, Lee SS, Kim M. Metabolomic and transcriptomic study to understand changes in metabolic and immune responses in steers under heat stress. ANIMAL NUTRITION 2022; 11:87-101. [PMID: 36189376 PMCID: PMC9483736 DOI: 10.1016/j.aninu.2022.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/22/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
Heat stress (HS) damages livestock by adversely affecting physiological and immunological functions. However, fundamental understanding of the metabolic and immunological mechanisms in animals under HS remains elusive, particularly in steers. To understand the changes on metabolic and immune responses in steers under HS condition, we performed RNA-sequencing and proton nuclear magnetic resonance spectroscopy-based metabolomics on HS-free (THI value: 64.92 ± 0.56) and HS-exposed (THI value: 79.13 ± 0.56) Jersey steer (n = 8, body weight: 559.67 ± 32.72 kg). This study clarifies the metabolic changes in 3 biofluids (rumen fluid, serum, and urine) and the immune responses observed in the peripheral blood mononuclear cells of HS-exposed steers. This integrated approach allowed the discovery of HS-sensitive metabolic and immunological pathways. The metabolomic analysis indicated that HS-exposed steers showed potential HS biomarkers such as isocitrate, formate, creatine, and riboflavin (P < 0.05). Among them, there were several integrative metabolic pathways between rumen fluid and serum. Furthermore, HS altered mRNA expression and immune-related signaling pathways. A meta-analysis revealed that HS decreased riboflavin metabolism and the expression of glyoxylate and dicarboxylate metabolism-related genes. Moreover, metabolic pathways, such as the hypoxia-inducible factor-1 signaling pathway, were downregulated in immune cells by HS (P < 0.05). These findings, along with the datasets of pathways and phenotypic differences as potential biomarkers in steers, can support more in-depth research to elucidate the inter-related metabolic and immunological pathways. This would help suggest new strategies to ameliorate the effects of HS, including disease susceptibility and metabolic disorders, in Jersey steers.
Collapse
Affiliation(s)
- Jun Sik Eom
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Da Som Park
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sang Jin Lee
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Byeong-Woo Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sung Sill Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Corresponding authors.
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
- Corresponding authors.
| |
Collapse
|
11
|
Son AR, Kim SH, Islam M, Oh SJ, Paik MJ, Lee SS, Lee SS. Higher Concentration of Dietary Selenium, Zinc, and Copper Complex Reduces Heat Stress-Associated Oxidative Stress and Metabolic Alteration in the Blood of Holstein and Jersey Steers. Animals (Basel) 2022; 12:ani12223104. [PMID: 36428332 PMCID: PMC9686896 DOI: 10.3390/ani12223104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
This study investigated the influence of high concentrations of dietary minerals on reducing heat stress (HS)-associated oxidative stress and metabolic alterations in the blood of Holstein and Jersey steers. Holstein steers and Jersey steers were separately maintained under a 3 × 3 Latin square design during the summer conditions. For each trial, the treatments included Control (Con; fed basal TMR without additional mineral supplementation), NM (NRC recommended mineral supplementation group; [basal TMR + (Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm) as DM basis]), and HM (higher than NRC recommended mineral supplementation group; [basal TMR + (Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm) as DM basis]). Blood samples were collected at the end of each 20-day feeding trial. In both breeds, a higher superoxide dismutase concentration (U/mL) along with lower HSP27 (μg/L) and HSP70 (μg/L) concentrations were observed in both mineral-supplemented groups compared to the Con group (p < 0.05). The HM group had significantly higher lactic acid levels in Jersey steers (p < 0.05), and tended to have higher alanine levels in Holstein steers (p = 0.051). Based on star pattern recognition analysis, the levels of succinic acid, malic acid, γ-linolenic acid, 13-methyltetradecanoic acid, and tyrosine decreased, whereas palmitoleic acid increased with increasing mineral concentrations in both breeds. Different treatment groups of both breeds were separated according to the VIP scores of the top 15 metabolites through PLS−DA analysis; however, their metabolic trend was mostly associated with the glucose homeostasis. Overall, the results suggested that supplementation with a higher-than-recommended concentration of dietary minerals rich in organic Se, as was the case in the HM group, would help to prevent HS-associated oxidative stress and metabolic alterations in Holstein and Jersey steers.
Collapse
Affiliation(s)
- A-Rang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
- Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Song-Jin Oh
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea
| | - Sung-Sill Lee
- Institute of Agriculture and Life Science and University-Centered Laboratory, Gyeongsang National University, Jinju 52828, Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
- Correspondence: ; Tel./Fax: +82-61-750-3237
| |
Collapse
|
12
|
Czech B, Szyda J, Wang K, Luo H, Wang Y. Fecal microbiota and their association with heat stress in Bos taurus. BMC Microbiol 2022; 22:171. [PMID: 35790909 PMCID: PMC9254560 DOI: 10.1186/s12866-022-02576-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Background Humans have been influencing climate changes by burning fossil fuels, farming livestock, and cutting down rainforests, which has led to global temperature rise. This problem of global warming affects animals by causing heat stress, which negatively affects their health, biological functions, and reproduction. On the molecular level, it has been proved that heat stress changes the expression level of genes and therefore causes changes in proteome and metabolome. The importance of a microbiome in many studies showed that it is considered as individuals’ “second genome”. Physiological changes caused by heat stress may impact the microbiome composition. Results In this study, we identified fecal microbiota associated with heat stress that was quantified by three metrics – rectal temperature, drooling, and respiratory scores represented by their Estimated Breeding Values. We analyzed the microbiota from 136 fecal samples of Chinese Holstein cows through a 16S rRNA gene sequencing approach. Statistical modeling was performed using a negative binomial regression. The analysis revealed the total number of 24 genera and 12 phyla associated with heat stress metrics. Rhizobium and Pseudobutyrivibrio turned out to be the most significant genera, while Acidobacteria and Gemmatimonadetes were the most significant phyla. Phylogenetic analysis revealed that three heat stress indicators quantify different metabolic ways of animals’ reaction to heat stress. Other studies already identified that those genera had significantly increased abundance in mice exposed to stressor-induced changes. Conclusions This study provides insights into the analysis of microbiome composition in cattle using heat stress measured as a continuous variable. The bacteria highly associated with heat stress were highlighted and can be used as biomarkers in further microbiological studies.
Collapse
|
13
|
Park T, Ma L, Gao S, Bu D, Yu Z. Heat stress impacts the multi-domain ruminal microbiota and some of the functional features independent of its effect on feed intake in lactating dairy cows. J Anim Sci Biotechnol 2022; 13:71. [PMID: 35701804 PMCID: PMC9199214 DOI: 10.1186/s40104-022-00717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Heat stress (HS) affects the ruminal microbiota and decreases the lactation performance of dairy cows. Because HS decreases feed intake, the results of previous studies were confounded by the effect of HS on feed intake. This study examined the direct effect of HS on the ruminal microbiota using lactating Holstein cows that were pair-fed and housed in environmental chambers in a 2 × 2 crossover design. The cows were pair-fed the same amount of identical total mixed ration to eliminate the effect of feed or feed intake. The composition and structure of the microbiota of prokaryotes, fungi, and protozoa were analyzed using metataxonomics and compared between two thermal conditions: pair-fed thermoneutrality (PFTN, thermal humidity index: 65.5) and HS (87.2 for daytime and 81.8 for nighttime). Results The HS conditions altered the structure of the prokaryotic microbiota and the protozoal microbiota, but not the fungal microbiota. Heat stress significantly increased the relative abundance of Bacteroidetes (primarily Gram-negative bacteria) while decreasing that of Firmicutes (primarily Gram-positive bacteria) and the Firmicutes-to-Bacteroidetes ratio. Some genera were exclusively found in the heat-stressed cows and thermal control cows. Some co-occurrence and mutual exclusion between some genera were also found exclusively for each thermal condition. Heat stress did not significantly affect the overall functional features predicted using the 16S rRNA gene sequences and ITS1 sequences, but some enzyme-coding genes altered their relative abundance in response to HS. Conclusions Overall, HS affected the prokaryotes, fungi, and protozoa of the ruminal microbiota in lactating Holstein cows to a different extent, but the effect on the structure of ruminal microbiota and functional profiles was limited when not confounded by the effect on feed intake. However, some genera and co-occurrence were exclusively found in the rumen of heat-stressed cows. These effects should be attributed to the direct effect of heat stress on the host metabolism, physiology, and behavior. Some of the “heat-stress resistant” microbes may be useful as potential probiotics for cows under heat stress. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00717-z.
Collapse
Affiliation(s)
- Tansol Park
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.,Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Shengtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China. .,CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, Beijing, 100193, People's Republic of China.
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Heat Stress Induces Shifts in the Rumen Bacteria and Metabolome of Buffalo. Animals (Basel) 2022; 12:ani12101300. [PMID: 35625146 PMCID: PMC9137813 DOI: 10.3390/ani12101300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Exposure to the stress (HS) negatively affects physiology, performance, reproduction and welfare of buffalo. However, the mechanisms by which HS negatively affects rumen bacteria and its associated metabolism in buffalo are not well known yet. This study aimed to gain insight into the adaption of bacteria and the complexity of the metabolome in the rumen of six buffalo during HS using 16S rDNA and gas chromatography metabolomics analyses. HS increased respiratory rate (p < 0.05) and skin temperature (p < 0.01), and it decreased the content of acetic acid (p < 0.05) and butyric acid (p < 0.05) in the rumen. Omics sequencing revealed that the relative abundances of Lachnospirales, Lachnospiraceae, Lachnospiraceae_NK3A20_group and Clostridia_UCG-014 were significantly (p < 0.01) higher under HS than non-heat stress conditions. Several bacteria at different levels, such as Lactobacillales, Streptococcus, Leuconostocaceae and Leissella, were significantly (p < 0.05) more abundant in the rumen of the non-heat stress than HS condition. Thirty-two significantly different metabolites closely related to HS were identified (p < 0.05). Metabolic pathway analysis revealed four key pathways: D-Alanine metabolism; Lysine degradation, Tropane; piperidine and pyridine alkaloid biosynthesis; and Galactose metabolism. In summary, HS may negatively affected rumen fermentation efficiency and changed the composition of rumen community and metabolic function.
Collapse
|
15
|
Wang Z, Liu L, Pang F, Zheng Z, Teng Z, Miao T, Fu T, Rushdi HE, Yang L, Gao T, Lin F, Liu S. Novel insights into heat tolerance using metabolomic and high-throughput sequencing analysis in dairy cows rumen fluid. Animal 2022; 16:100478. [PMID: 35247705 DOI: 10.1016/j.animal.2022.100478] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Heat stress influences rumen fermentative processes with effects on the physiology and production of dairy cows. However, the underlying relationship between rumen microbiota and its associated metabolism with heat tolerance in cows have not been extensively described yet. Therefore, the main objective of this study was to investigate differential heat resistance in Holstein cows using rumen bacterial and metabolome analyses. We performed both principal component analysis and membership function analysis to select seven heat-tolerant (HT) and seven heat-sensitive (HS) cows. Under heat stress conditions, the HT cows had a significantly (P < 0.05) higher propionic acid content than the HS cows; while measures of the respiratory rate, acetic, and butyric acid in the HT cows were significantly (P < 0.05) lower compared with the HS cows. Also, the HT cows showed lower (P < 0.01) rectal temperature and acetic acid to propionic acid ratio than the HS group of cows. Omics sequencing revealed that the relative abundances of Muribaculaceae, Rikenellaceae, Acidaminococcaceae, Christensenellaceae, Rikenellaceae_RC9_gut_group, Succiniclasticum, Ruminococcaceae_NK4A214_group and Christensenellaceae_R-7_group were significantly (P < 0.01) higher in the HT cows; whereas Prevotellaceae, Prevotella_1, Ruminococcaceae_UCG-014, and Shuttleworthia were significantly (P < 0.01) lower in HT cows compared to HS cows. Substances mainly involved in carbohydrate metabolism, including glycerol, mannitol, and maltose, showed significantly higher content in the HT cows (P < 0.05) compared to that in the HS cows. Simultaneously, distinct metabolites were significantly correlated with differential bacteria, suggesting that glycerol, mannitol, and maltose could serve as potential biomarkers for determining heat resistance that require further study. Overall, distinct changes in the rumen microbiota and metabolomics in the HT cows may be associated with a better adaptability to heat stress. These findings suggest their use as diagnostic tools of heat tolerance in dairy cattle breeding schemes.
Collapse
Affiliation(s)
- Z Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - L Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - F Pang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Z Zheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Z Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| | - T Miao
- Henan Huahua Niu Dairy Co., Ltd, Zhengzhou, People's Republic of China
| | - T Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - H E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - L Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - T Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - F Lin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - S Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
16
|
Kim SH, Ramos SC, Valencia RA, Cho YI, Lee SS. Heat Stress: Effects on Rumen Microbes and Host Physiology, and Strategies to Alleviate the Negative Impacts on Lactating Dairy Cows. Front Microbiol 2022; 13:804562. [PMID: 35295316 PMCID: PMC8919045 DOI: 10.3389/fmicb.2022.804562] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress (HS) in dairy cows causes considerable losses in the dairy industry worldwide due to reduced animal performance, increased cases of metabolic disorders, altered rumen microbiome, and other health problems. Cows subjected to HS showed decreased ruminal pH and acetate concentration and an increased concentration of ruminal lactate. Heat-stressed cows have an increased abundance of lactate-producing bacteria such as Streptococcus and unclassified Enterobacteriaceae, and soluble carbohydrate utilizers such as Ruminobacter, Treponema, and unclassified Bacteroidaceae. Cellulolytic bacteria, especially Fibrobacteres, increase during HS due to a high heat resistance. Actinobacteria and Acetobacter, both acetate-producing bacteria, decreased under HS conditions. Rumen fermentation functions, blood parameters, and metabolites are also affected by the physiological responses of the animal during HS. Isoleucine, methionine, myo-inositol, lactate, tryptophan, tyrosine, 1,5-anhydro-D-sorbitol, 3-phenylpropionic acid, urea, and valine decreased under these conditions. These responses affect feed consumption and production efficiency in milk yield, growth rate, and reproduction. At the cellular level, activation of heat shock transcription factor (HSF) (located throughout the nucleus and the cytoplasm) and increased expression of heat shock proteins (HSPs) are the usual responses to cope with homeostasis. HSP70 is the most abundant HSP family responsible for the environmental stress response, while HSF1 is essential for increasing cell temperature. The expression of bovine lymphocyte antigen and histocompatibility complex class II (DRB3) is downregulated during HS, while HSP90 beta I and HSP70 1A are upregulated. HS increases the expression of the cytosolic arginine sensor for mTORC1 subunits 1 and 2, phosphorylation of mammalian target of rapamycin and decreases the phosphorylation of Janus kinase-2 (a signal transducer and activator of transcription factor-5). These changes in physiology, metabolism, and microbiomes in heat-stressed dairy cows require urgent alleviation strategies. Establishing control measures to combat HS can be facilitated by elucidating mechanisms, including proper HS assessment, access to cooling facilities, special feeding and care, efficient water systems, and supplementation with vitamins, minerals, plant extracts, and probiotics. Understanding the relationship between HS and the rumen microbiome could contribute to the development of manipulation strategies to alleviate the influence of HS. This review comprehensively elaborates on the impact of HS in dairy cows and introduces different alleviation strategies to minimize HS.
Collapse
Affiliation(s)
- Seon Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sonny C. Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Raniel A. Valencia
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
- Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Muñoz, Philippines
| | - Yong Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
17
|
Oke OE, Uyanga VA, Iyasere OS, Oke FO, Majekodunmi BC, Logunleko MO, Abiona JA, Nwosu EU, Abioja MO, Daramola JO, Onagbesan OM. Environmental stress and livestock productivity in hot-humid tropics: Alleviation and future perspectives. J Therm Biol 2021; 100:103077. [PMID: 34503814 DOI: 10.1016/j.jtherbio.2021.103077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Tropical environments are characterized by persistently high temperature and relative humidity and the harsh environmental conditions pose a serious limitation on the optimal performance of the animals raised in this region. Heat stress causes deleterious effects on welfare, immunology and physiology of farm animals with a resultant impact on their productivity as the use of body resources is re-organized and the metabolic priorities of animals shift away from production, growth, health and reproduction. It is imperative to understand the mechanisms involved in the thermoregulation of animals under tropical conditions in order to develop appropriate strategies for their improvement. This review focuses on the available data on the increasing global temperature and the adverse impact of tropical conditions on animals' adaptive mechanism affected during thermal stress on production performance, intestinal and ileal microbiome, physiological responses, antioxidant system, metabolic responses, cellular and molecular response, adaptive mechanism strategies to heat stress and also strategies to palliate environmental stress on livestock under humid tropical conditions including environmental manipulation, genetic opportunity, epigenetic and feeding modification. Overall, the present review has identified the disturbance in the physiological indices of tropical livestock and the need for concerted efforts in ameliorating the adverse impacts of high ambient temperature aggravated by high humidity on livestock in tropical environments. Further research is needed on genotype-by-environment interaction on the thermotolerance of different livestock species in the tropics.
Collapse
Affiliation(s)
- O E Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria.
| | - V A Uyanga
- Depart of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong, China
| | - O S Iyasere
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - F O Oke
- Department of Agricultural Economics and Farm Management, Federal University of Agriculture, Abeokuta, Nigeria
| | - B C Majekodunmi
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Logunleko
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - J A Abiona
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - E U Nwosu
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Abioja
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - J O Daramola
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - O M Onagbesan
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
18
|
Islam M, Kim SH, Son AR, Ramos SC, Jeong CD, Yu Z, Kang SH, Cho YI, Lee SS, Cho KK, Lee SS. Seasonal Influence on Rumen Microbiota, Rumen Fermentation, and Enteric Methane Emissions of Holstein and Jersey Steers under the Same Total Mixed Ration. Animals (Basel) 2021; 11:1184. [PMID: 33924248 PMCID: PMC8074768 DOI: 10.3390/ani11041184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/16/2023] Open
Abstract
Seasonal effects on rumen microbiome and enteric methane (CH4) emissions are poorly documented. In this study, 6 Holstein and 6 Jersey steers were fed the same total mixed ration diet during winter, spring, and summer seasons under a 2 × 3 factorial arrangement for 30 days per season. The dry matter intake (DMI), rumen fermentation characteristics, enteric CH4 emissions and rumen microbiota were analyzed. Holstein had higher total DMI than Jersey steers regardless of season. However, Holstein steers had the lowest metabolic DMI during summer, while Jersey steers had the lowest total DMI during winter. Jersey steers had higher CH4 yields and intensities than Holstein steers regardless of season. The pH was decreased, while ammonia nitrogen concentration was increased in summer regardless of breed. Total volatile fatty acids concentration and propionate proportions were the highest in winter, while acetate and butyrate proportion were the highest in spring and in summer, respectively, regardless of breed. Moreover, Holstein steers produced a higher proportion of propionate, while Jersey steers produced a higher proportion of butyrate regardless of season. Metataxonomic analysis of rumen microbiota showed that operational taxonomic units and Chao 1 estimates were lower and highly unstable during summer, while winter had the lowest Shannon diversity. Beta diversity analysis suggested that the overall rumen microbiota was shifted according to seasonal changes in both breeds. In winter, the rumen microbiota was dominated by Carnobacterium jeotgali and Ruminococcus bromii, while in summer, Paludibacter propionicigenes was predominant. In Jersey steers, Capnocytophaga cynodegmi, Barnesiella viscericola and Flintibacter butyricus were predominant, whereas in Holstein steers, Succinivibrio dextrinosolvens and Gilliamella bombicola were predominant. Overall results suggest that seasonal changes alter rumen microbiota and fermentation characteristics of both breeds; however, CH4 emissions from steers were significantly influenced by breeds, not by seasons.
Collapse
Affiliation(s)
- Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
- Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - A-Rang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Sonny C. Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Chang-Dae Jeong
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Seung Ha Kang
- Faculty of Medicine, Diamantina Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Yong-Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Sung-Sill Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju 52828, Korea;
| | - Kwang-Keun Cho
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea;
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| |
Collapse
|
19
|
Joo SS, Lee SJ, Park DS, Kim DH, Gu BH, Park YJ, Rim CY, Kim M, Kim ET. Changes in Blood Metabolites and Immune Cells in Holstein and Jersey Dairy Cows by Heat Stress. Animals (Basel) 2021; 11:ani11040974. [PMID: 33807443 PMCID: PMC8065422 DOI: 10.3390/ani11040974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary As global temperatures rise, thermal stress can be a major problem affecting cows. If they are subjected to heat stress, they are likely to exhibit abnormal metabolic reactions and affect their immune system. However, the relationship between metabolism and immunity during thermal stress and these crosstalk mechanisms remain unclear. Therefore, the aim of this study was to understand the changes in blood immune cell response with the physiological metabolism changes of Holstein and Jersey cows through the biochemistry and flow cytometry branches under thermal stress conditions. We found that various blood metabolites were reduced in both Holsteins and Jerseys by heat stress conditions. There were breed-specific variations in the immune cell population in Holstein and Jersey cows under different environmental conditions. The main findings of this study provide information on the metabolism and immunity changes of two types of cow under heat stress, broadening the potential relationship of these changes. Abstract Owing to increasing global temperatures, heat stress is a major problem affecting dairy cows, and abnormal metabolic responses during heat stress likely influence dairy cow immunity. However, the mechanism of this crosstalk between metabolism and immunity during heat stress remains unclear. We used two representative dairy cow breeds, Holstein and Jersey, with distinct heat-resistance characteristics. To understand metabolic and immune responses to seasonal changes, normal environmental and high-heat environmental conditions, we assessed blood metabolites and immune cell populations. In biochemistry analysis from sera, we found that variety blood metabolites were decreased in both Holstein and Jersey cows by heat stress. We assessed changes in immune cell populations in peripheral blood mononuclear cells (PBMCs) using flow cytometry. There were breed-specific differences in immune-cell population changes. Heat stress only increased the proportion of B cells (CD4–CD21+) and heat stress tended to decrease the proportion of monocytes (CD11b+CD172a+) in Holstein cows. Our findings expand the understanding of the common and specific changes in metabolism and immune response of two dairy cow breeds under heat stress conditions.
Collapse
Affiliation(s)
- Sang Seok Joo
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea; (S.S.J.); (S.J.L.); (D.S.P.); (Y.J.P.); (C.Y.R.)
| | - Sang Jin Lee
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea; (S.S.J.); (S.J.L.); (D.S.P.); (Y.J.P.); (C.Y.R.)
| | - Da Som Park
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea; (S.S.J.); (S.J.L.); (D.S.P.); (Y.J.P.); (C.Y.R.)
| | - Dong Hyeon Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea;
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Yei Ju Park
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea; (S.S.J.); (S.J.L.); (D.S.P.); (Y.J.P.); (C.Y.R.)
| | - Chae Yun Rim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea; (S.S.J.); (S.J.L.); (D.S.P.); (Y.J.P.); (C.Y.R.)
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea; (S.S.J.); (S.J.L.); (D.S.P.); (Y.J.P.); (C.Y.R.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
- Correspondence: (M.K.) and (E.T.K.); Tel.: +82-55-350-5516 (M.K.)
| | - Eun Tae Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea;
- Correspondence: (M.K.) and (E.T.K.); Tel.: +82-55-350-5516 (M.K.)
| |
Collapse
|
20
|
Common and Differential Dynamics of the Function of Peripheral Blood Mononuclear Cells between Holstein and Jersey Cows in Heat-Stress Environment. Animals (Basel) 2020; 11:ani11010019. [PMID: 33374309 PMCID: PMC7824059 DOI: 10.3390/ani11010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Seasonal change, particularly changing to hot and humid season, has a negative effect on dairy cows in various ways, including productivity, reproduction, metabolism, and immunity. In high-temperature and humid weather, dairy cows are vulnerable to diseases by weakened immune system. However, the cause of this has not been fully described. Therefore, this study aims to understand changes of specific gene expression and immune pathways based on transcriptome analysis from peripheral blood mononuclear cells of Holstein and Jersey dairy cows between normal and heat-stress environmental conditions. We observed that the two breeds of dairy cow have common and different immune shifts according to the changes of temperature and humidity condition. Overall, the findings of this study improve the understanding of the underlying mechanisms by which seasonal changes affect dairy cow immunity. Abstract Heat stress has been reported to affect the immunity of dairy cows. However, the mechanisms through which this occurs are not fully understood. Two breeds of dairy cow, Holstein and Jersey, have distinct characteristics, including productivity, heat resistance, and disease in high-temperature environments. The objective of this study is to understand the dynamics of the immune response of two breeds of dairy cow to environmental change. Ribonucleic acid sequencing (RNA-seq) results were analyzed to characterize the gene expression change of peripheral blood mononuclear cells (PBMCs) in Holstein and Jersey cows between moderate temperature-humidity index (THI) and high THI environmental conditions. Many of the differentially expressed genes (DEGs) identified are associated with critical immunological functions, particularly phagocytosis, chemokines, and cytokine response. Among the DEGs, CXCL3 and IL1A were the top down-regulated genes in both breeds of dairy cow, and many DEGs were related to antimicrobial immunity. Functional analysis revealed that cytokine and chemokine response-associated pathways in both Holstein and Jersey PBMCs were the most important pathways affected by the THI environmental condition. However, there were also breed-specific genes and pathways that altered according to THI environmental condition. Collectively, there were both common and breed-specific altered genes and pathways in Holstein and Jersey cows. The findings of this study expand our understanding of the dynamics of immunity in different breeds of dairy cow between moderate THI and high THI environmental conditions.
Collapse
|