1
|
Santana T, da Silva A, Bastos M, dos Santos Conceição J, de Souza Khatlab A, Gasparino E, Barbosa L, Brito C, Del Vesco A. Methionine Supplementation of Maternal Diet Improves Hatching Traits, Initial Development, and Performance in Japanese Quail Fed Different Levels of Methionine During Growth. Anim Sci J 2025; 96:e70044. [PMID: 40051288 PMCID: PMC11886033 DOI: 10.1111/asj.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 03/10/2025]
Abstract
This study examined the effects of dietary levels of methionine on lipid and intestinal metabolism in Japanese quail hens and their progeny. The experiment was conducted according to a 3 × 3 factorial design, with three maternal and three progeny diets, as follows: low-methionine (LMET), recommended methionine (MET), and high-methionine (HMET). Methionine supplementation improved reproductive performance during laying (p < 0.05). Intestinal morphometry revealed that MET and HMET diets increased duodenal villus width and crypt depth in hens (p < 0.05). Hens fed the HMET diet showed higher expression of amino acid transport and barrier function genes. Hens fed LMET produced offspring with lower body weight at 15 days of age and lower weight gain (1-15 days of age) than hens fed MET and HMET (p = 0.0002). During the grower phase, chicks fed LMET diet had lower body weight at 15 (p < 0.0001) and 35 (p < 0.0001) days and worse feed conversion ratio (p = 0.0006) than chicks fed MET and HMET. Progeny from MET or HMET hens had improved intestinal histomorphometry. Overall, methionine supplementation of quail diets enhances intestinal function and reproductive performance in hens, improving chick performance in the starter and grower phases.
Collapse
Affiliation(s)
- Thaís Pacheco Santana
- Integrated Graduate Program in Animal ScienceFederal University of SergipeSão CristóvãoSergipeBrazil
| | | | - Marisa Silva Bastos
- Integrated Graduate Program in Animal ScienceFederal University of SergipeSão CristóvãoSergipeBrazil
| | | | | | - Eliane Gasparino
- Department of Animal ScienceState University of MaringáMaringáParanáBrazil
| | | | - Claudson Oliveira Brito
- Integrated Graduate Program in Animal ScienceFederal University of SergipeSão CristóvãoSergipeBrazil
- Department of Animal ScienceFederal University of SergipeSão CristóvãoSergipeBrazil
| | - Ana Paula Del Vesco
- Integrated Graduate Program in Animal ScienceFederal University of SergipeSão CristóvãoSergipeBrazil
- Department of Animal ScienceFederal University of SergipeSão CristóvãoSergipeBrazil
| |
Collapse
|
2
|
Li J, Cui Z, Wei M, Almutairi MH, Yan P. Omics analysis of the effect of cold normal saline stress through gastric gavage on LPS induced mice. Front Microbiol 2023; 14:1256748. [PMID: 38163070 PMCID: PMC10755949 DOI: 10.3389/fmicb.2023.1256748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Cold stress is a significant environmental stimulus that negatively affects the health, production, and welfare of animals and birds. However, the specific effects of cold stimulation combined with lipopolysaccharide (LPS) on the mouse intestine remain poorly understood. Therefore, we designed this research to explore the effect of cold stimulation + LPS on mice intestine via microbiome and microbiota sequencing. Forty-eight mice were randomly divided into four experimental groups (n = 12): Control (CC), LPS-induced (CL), cold normal saline-induced (MC) and LPS + cold normal saline-induced (ML). Our results showed body weight was similar among different groups of mice. However, the body weight of mice in groups CC and CL were slightly higher compared to those in groups MC and ML. The results of gene expressions reflected that CL and ML exposure caused gut injury and barrier dysfunction, as evident by decreased ZO-1, OCCLUDIN (P < 0.01), and CASPASE-1 (P < 0.01) expression in the intestine of mice. Moreover, we found that cold stress induced oxidative stress in LPS-challenged mice by increasing malondialdehyde (MDA) accumulation and decreasing the antioxidant capacity [glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total and antioxidant capacity (T-AOC)]. The cold stress promoted inflammatory response by increased IL-1β in mice treated with cold normal saline + LPS. Whereas, microbiome sequencing revealed differential abundance in four phyla and 24 genera among the mouse groups. Metabolism analysis demonstrated the presence of 4,320 metabolites in mice, with 43 up-regulated and 19 down-regulated in CC vs. MC animals, as well as 1,046 up-regulated and 428 down-regulated in ML vs. CL animals. It is Concluded that cold stress enhances intestinal damage by disrupting the balance of gut microbiota and metabolites, while our findings contribute in improving management practices of livestock in during cold seasons.
Collapse
Affiliation(s)
- Jing Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Zhang S, Gong R, Zhao N, Zhang Y, Xing L, Liu X, Bao J, Li J. Effect of intermittent mild cold stimulation on intestinal immune function and the anti-stress ability of broilers. Poult Sci 2023; 102:102407. [PMID: 36571877 PMCID: PMC9803957 DOI: 10.1016/j.psj.2022.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
A total of 240 healthy 1-day-old Ross 308 male broilers were randomly divided into 3 groups (CS0 group, CS3 group, and CS6 group), with 5 replicates in each group and 16 broilers in each replicate, in order to evaluate the effects of intermittent mild cold stimulation (IMCS) on the intestinal immune function and anti-cold stress ability of broilers after acute cold stress. The mRNA expression levels of cytokines and Toll-like receptors (TLRs) in the duodenum and jejunum were detected at the end of cold stimulation (36 d), 2 wk after recovery (50 d), and after acute cold stress (Y6). In addition, the mRNA and protein expression levels of heat shock proteins (HSPs) were measured before and after acute cold stress. The experimental data were statistically processed using 1-way ANOVA and Duncan's multiple comparisons. The results showed that the mRNA expression levels of IL2, IL8, IFN γ, TLR7, and TLR21 in the duodenum and IL2 and IFN γ in jejunum were significantly higher in the CS6 group than in the CS0 and CS3 groups at 36 d (P < 0.05). All TLR levels in the jejunum were significantly lower in the CS3 group than in the CS0 and CS6 groups at 36 d (P < 0.05). After 6 h of acute cold stress, in the duodenum, the mRNA expression levels of IL6 and IL8 were significantly decreased in the CS0 and CS6 groups compared to levels at 50 d (P < 0.05), while levels in the CS3 group remained stable (P > 0.05). Compared with 50 d, the expression level of HSP mRNA in the jejunum in the CS3 group was relatively stable compared to that in the CS0 and CS6 groups after acute cold stress (P > 0.05). At the protein level, the HSP60 expression level in the duodenum and HSP40, HSP60, and HSP70 expression levels in the jejunum were significantly higher in the CS3 group than in the CS0 and CS6 groups after acute cold stress (P < 0.05). In conclusion, cold stimulation training at 3℃/3 h lower than the conventional feeding temperature can improve the intestinal immune function and anti-stress ability of broilers.
Collapse
Affiliation(s)
- Shijie Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Rixin Gong
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ning Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaotao Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Gong R, Xing L, Yin J, Ding Y, Liu X, Bao J, Li J. Appropriate cold stimulation changes energy distribution to improve stress resistance in broilers. J Anim Sci 2023; 101:skad185. [PMID: 37279534 PMCID: PMC10276644 DOI: 10.1093/jas/skad185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Appropriate cold stimulation can improve stress resistance in broilers and alleviate the adverse impacts of a cold environment. To investigate the effects of intermittent mild cold stimulation (IMCS) on energy distribution in the livers of broilers, 96 healthy 1-d-old Ross-308 male broilers were randomly divided into the control group (CC) and the cold stimulation group (H5). The CC group was raised at a normal thermal temperature, i.e., 35 °C until 3 d, after which the temperature was dropped gradually by 0.5 °C/d until 20 °C at 33 d. This temperature was maintained until 49 d. The H5 group was raised at the same temperature as the CC group until 14 d (35 to 29.5 °C) and at 3 °C below the temperature of the CC group starting at 0930 hours for 5 h every other day from 15 to 35 d (26 to 17°C). The temperature was returned to 20 °C at 36 d and maintained until 49 d. At 50 d, all broilers were subjected to acute cold stress (ACS) at 10 °C for 6 and 12 h. We found that IMCS had positive effects on production performance. Using transcriptome sequencing of the broiler livers, 327 differentially expressed genes (DEG) were identified, and highly enriched in fatty acid biosynthesis, fatty acid degradation, and the pyruvate metabolism pathway. When compared to the CC group, the mRNA levels of ACAA1, ACAT2, ACSL1, CPT1A, LDHB, and PCK1 in the H5 group were increased at 22 d (P < 0.05). The LDHB mRNA level was upregulated in the H5 group at 29 d compared to the CC group (P < 0.05). After 21 d of IMCS (at 36 d), the mRNA expression levels of ACAT2 and PCK1 were found to be significantly increased in the H5 group compared to the CC group (P < 0.05). Seven days after the IMCS had ended (at 43 d), the mRNA levels of ACAA1, ACAT2, and LDHB in the H5 group were higher than in the CC group (P < 0.05). The mRNA levels of heat shock protein (HSP) 70, HSP90, and HSP110 in the H5 group were higher than in the CC group after 6 h of ACS (P < 0.05). The protein levels of HSP70 and HSP90 in the H5 group were downregulated after 12 h of ACS, compared to the CC group (P < 0.05). These results indicated that IMCS at 3 °C lower than the normal temperature could improve energy metabolism and stress resistance in the livers of broilers, alleviate the damage of short-term ACS on broilers, help broilers adapt to the low temperature, and maintain stable of energy metabolism in the body.
Collapse
Affiliation(s)
- Rixin Gong
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingwen Yin
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuqing Ding
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaotao Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
5
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. RNA-seq and LC-MS/MS analysis of antiviral effects mediated by cold stress and stress hormone corticosterone in chicken DF-1 cells. Vet Microbiol 2022; 275:109580. [DOI: 10.1016/j.vetmic.2022.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
|
6
|
Liu X, Li S, Zhao N, Xing L, Gong R, Li T, Zhang S, Li J, Bao J. Effects of Acute Cold Stress after Intermittent Cold Stimulation on Immune-Related Molecules, Intestinal Barrier Genes, and Heat Shock Proteins in Broiler Ileum. Animals (Basel) 2022; 12:3260. [PMID: 36496781 PMCID: PMC9739716 DOI: 10.3390/ani12233260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Cold stress will have a negative impact on animal welfare and health. In order to explore the effect of intermittent cold stimulation training on the cold resistance of broilers. Immune-related and intestinal barrier genes were detected before and after acute cold stress (ACS), aiming to find an optimal cold stimulation training method. A total of 240 1-day-old Ross broilers (Gallus) were divided into three groups (G1, G2, and G3), each with 5 replicates (16 chickens each replicate). The broilers of G1 were raised at normal temperature, while the broilers of G2 and G3 were treated with cold stimulation at 3 °C lower than the G1 for 3 h and 6 h from 15 to 35 d, respectively, at one-day intervals. At 50 d, the ambient temperature for all groups was reduced to 10 °C for six hours. The results demonstrated that before ACS, IL6, IL17, TLR21, and HSP40 mRNA levels in G3 were apparently down-regulated (p < 0.05), while IL8 and Claudin-1 mRNA levels were significantly up-regulated compared with G1 (p < 0.05). After ACS, IL2, IL6, and IL8 expression levels in G3 were lower than those in G2 (p < 0.05). Compared to G2, Claudin-1, HSP90 mRNA levels, HSP40, and HSP70 protein levels were increased in G3 (p < 0.05). The mRNA levels of TLR5, Mucin2, and Claudin-1 in G2 and IL6, IL8, and TLR4 in G3 were down-regulated after ACS, while IL2, IL6, and IL17 mRNA levels in G2 and HSP40 protein levels in G3 were up-regulated after ACS (p < 0.05). Comprehensive investigation shows that cold stimulation at 3 °C lower than the normal feeding temperature for six hours at one day intervals can enhanced immune function and maintain the stability of intestinal barrier function to lessen the adverse effects on ACS in broilers.
Collapse
Affiliation(s)
- Xiaotao Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ning Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Rixin Gong
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shijie Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Guo Y, Liu T, Li W, Zhang W, Cai C, Lu C, Gao P, Cao G, Li B, Guo X, Yang Y. Effects of Low-Ambient-Temperature Stimulation on Modifying the Intestinal Structure and Function of Different Pig Breeds. Animals (Basel) 2022; 12:ani12202740. [PMID: 36290125 PMCID: PMC9597737 DOI: 10.3390/ani12202740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Low ambient temperature resulted in the body’s cold stress response, while local wild boars in the middle-temperate zone performed better than commercial pigs. Therefore, three breeds—Large White (LW) pigs, a local Mashen (MS) pig breed and Jinfen White (JFW) pigs, a hybrid breed from wild boar—were investigated in an artificial climate chamber. The results implicated that low-ambient-temperature stimulation increased trypsin activity in duodenal chyme and promoted inflammatory response in Mashen pigs. The cold-resistance mechanism of MS pigs should be explored to reduce hogs’ stress caused by low-ambient-temperature stimulation. Abstract Ambient temperature (Ta) fluctuation is a key factor affecting the growth performance and economic returns of pigs. However, whether the response of intestinal structure and function are related to pig breeds in low Ta has not been investigated yet. In this study, Large White (LW) pigs, Jinfen White (JFW) pigs and Mashen (MS) pigs were raised in artificial climate chambers under normal Ta (25 °C) and low Ta (4 °C) for 96 h. Afterwards, the decrease in body temperature and complete blood counts (CBC) of all pigs were measured. Hematoxylin–eosin, immunohistochemical staining, qPCR and ELISA were used to investigate their intestinal mucosa integrity and inflammatory response. The results showed that MS pigs could maintain a normal body temperature and villus structure after 4 °C stimulation compared with those of LW and JFW pigs. Villus height and villus height/crypt depth of MS pigs were significantly higher than those of LW and JFW pigs at 4 °C. Low-Ta stimulation increased the digestion of carbohydrates of all pigs. Meanwhile, low Ta enhanced the activity of lipase in LW pigs and increased trypsin activity in MS and JFW pigs. Furthermore, low-Ta stimulation significantly downregulated the protein of tight junction and upregulated the mRNA expression of inflammatory cytokines in MS pigs. MS pigs also showed stronger spleen immune function at 4 °C. These results indicated that the local MS pig breed had stronger intestinal function in low Ta by producing a stronger inflammatory response, which lays the foundation for further study on the mechanism of cold tolerance in pigs.
Collapse
|
8
|
Hu YQ, Niu TT, Xu JM, Peng L, Sun QH, Huang Y, Zhou J, Ding YQ. Negative air ion exposure ameliorates depression-like behaviors induced by chronic mild stress in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62626-62636. [PMID: 35411516 PMCID: PMC9464145 DOI: 10.1007/s11356-022-20144-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/04/2022] [Indexed: 04/15/2023]
Abstract
The presence of negative air ions (NAI) is suggested to be a beneficial factor in improving psychological status and used in treating depression as an alternative approach. However, more biological evidence from animal models is needed to ensure the effects of NAI on the mood regulation, through which can facilitate identification of possible underlying mechanisms. In this study, the chronic mild stress (CMS) protocol was used to induce depressive-like behaviors in mice, and the effects of NAI exposure on CMS-induced depression-like behaviors were examined. Thirty-day NAI exposure prevented the CMS-induced depression-like behaviors as shown by the restoration of sucrose preference and reduced immobility time in the tail suspension test. In addition, the elevation of serous corticosterone was present in CMS-treated mice but not existed in those with the NAI exposure. Furthermore, we observed altered ratios of some cytokines secreted by type 1 T helper (Th1) cells and Th2 cells in CMS-treated mice, but it could be restored after NAI exposure. In conclusion, NAI intervention is able to ameliorate CMS-induced depression-like behaviors in mice, and this effect is associated with the alteration of corticosterone and functional rebalance between Th1 and Th2 cells.
Collapse
Affiliation(s)
- Yun-Qing Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ting-Ting Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Jian-Ming Xu
- Shanghai Typhoon Institute, CMA, No. 166 Puxi Road, Shanghai, 200030, People's Republic of China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, No. 166 Puxi Road, Shanghai, 200030, People's Republic of China
| | - Li Peng
- Shanghai Typhoon Institute, CMA, No. 166 Puxi Road, Shanghai, 200030, People's Republic of China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, No. 166 Puxi Road, Shanghai, 200030, People's Republic of China
| | - Qing-Hua Sun
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, People's Republic of China
| | - Ying Huang
- Department of Laboratory Animal Science, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ji Zhou
- Shanghai Typhoon Institute, CMA, No. 166 Puxi Road, Shanghai, 200030, People's Republic of China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, No. 166 Puxi Road, Shanghai, 200030, People's Republic of China
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, No. 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, People's Republic of China.
- Department of Laboratory Animal Science, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
9
|
Fu Y, Zhang S, Zhao N, Xing L, Li T, Liu X, Bao J, Li J. Effect of mild intermittent cold stimulation on thymus immune function in broilers. Poult Sci 2022; 101:102073. [PMID: 36058173 PMCID: PMC9450148 DOI: 10.1016/j.psj.2022.102073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
This study aims to assess the effect of intermittent and mild cold stimulation (IMCS) on thymus function and the ability of 1-day-old male Ross 308 broilers to withstand cold. Four hundred broilers were reared under normal and mild cold temperatures at 3°C below the normal feeding temperature and were subjected to acute cold stress (ACS) at 10°C on d 50 at 7 am for 6 h, 12 h, and 24 h. We determined the expression levels of toll-like receptors (TLRs), cytokines and avian β-defencins (AvBDs), encoding genes in thymus of broilers at 22, 36, 43, and 50 d of age, and the serum ACTH and cortisol (CORT) levels at 50 d of age. At D22 and D36, the mRNA expression levels of TLRs and AvBDs genes in CS groups were generally significantly decreased (P < 0.05). The lowest expression levels were found in birds submitted to intermittent and mild cold stimulation training for 5 h (CS5 group) on d 22 and 36 of development (P < 0.05). At D43 and D49 after IMCS, mRNA expression levels of most TLRs and AvBDs were significantly lower than those in CC group (P < 0.05), and that mRNA expression levels of all TLRs and most AvBDs in CS5 group had the same change trend with age as those in CC group (P > 0.05). At D22 and D36, mRNA expression levels of different cytokines in each CS groups were different (P < 0.05). mRNA expression levels of IL-2, IL-4, IL-6, IL-8, IL-17, and IFN-α all reached the highest values in the CS5 group at D36 (P < 0.05). The levels of ACTH and CORT in all IMCS-treated birds changed in varying degrees after ACS, but there was no significant change in CS5 group (P > 0.05). Collectively, different cold stimulation schemes could modulate thymus immune function of broilers by maintaining homeostasis and enhancing cold resistance. In particular, the optimal cold adaptation scheme was at 3°C below the conventional feeding temperature for 5 h.
Collapse
|
10
|
Bovenhuis H, Berghof TVL, Visker MHPW, Arts JAJ, Visscher J, van der Poel JJ, Parmentier HK. Divergent selection for natural antibodies in poultry in the presence of a major gene. Genet Sel Evol 2022; 54:24. [PMID: 35313798 PMCID: PMC8939063 DOI: 10.1186/s12711-022-00715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background Natural antibodies (NAb) are antibodies that are present in a healthy individual without requiring previous exposure to an exogenous antigen. Selection for high NAb levels might contribute to improved general disease resistance. Our aim was to analyse the genetic background of NAb based on a divergent selection experiment in poultry, and in particular the effect of a polymorphism in the TLR1A gene. Methods The study population consisted of a base population from a commercial pure-bred elite white leghorn layer line and seven generations of birds from a High and Low selection line. Birds were selected for total KLH-binding NAb titer (IgTotal). An enzyme-linked immunosorbent assay was performed to determine NAb titers in blood plasma for IgTotal and the antibody isotypes IgM and IgG. NAb titers were available for 10,878 birds. Genotypes for a polymorphism in TLR1A were determined for chickens in generations 5, 6 and 7. The data were analysed using mixed linear animal models. Results The heritability estimate for IgM was 0.30 and higher than that for IgG and IgTotal (0.12). Maternal environmental effects explained 2 to 3% of the phenotypic variation in NAb. Selection for IgTotal resulted in a genetic difference between the High and Low line of 2.4 titer points (5.1 genetic standard deviation) in generation 7. For IgM, the selection response was asymmetrical and higher in the Low than the High line. The frequency of the TLR1A C allele was 0.45 in the base population and 0.66 and 0.04 in generation 7 of the High and Low line, respectively. The TLR1A polymorphism had large and significant effects on IgTotal and IgM. Estimated genotypic effects suggest full dominance of the TLR1A C allele. Significant TLR1A by generation interactions were detected for IgM and IgTotal. Conclusions The effect of a polymorphism in the TLR1A gene on IgTotal and IgM NAb was confirmed. Furthermore, we provide experimental verification of changes in allele frequencies at a major gene with dominant gene action on a quantitative trait that is subjected to mass selection. TLR1A by generation interactions indicate sensitivity to environmental factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00715-9.
Collapse
Affiliation(s)
- Henk Bovenhuis
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| | - Tom V L Berghof
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.,Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.,Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Strasse 1, 85354, Freising, Germany
| | - Marleen H P W Visker
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Joop A J Arts
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Jeroen Visscher
- Hendrix Genetics Research Technology & Service B.V, P.O. Box 114, 5830 AC, Boxmeer, The Netherlands
| | - Jan J van der Poel
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Henk K Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
11
|
Sedghi M, Mohammadi I, Sarrami Z, Ghasemi R, Azarfar A. Effects of a yeast cell wall product on the performance of broiler chickens and PGC-1α, TLR4, IL-10 and PPARγ genes expression. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2021.2025161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Sedghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Ishmael Mohammadi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Zahra Sarrami
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Razie Ghasemi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Arash Azarfar
- Department of Animal Science, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| |
Collapse
|
12
|
Intermittent mild cold stimulation improves the immunity and cold resistance of spleens in broilers. Poult Sci 2021; 100:101492. [PMID: 34695632 PMCID: PMC8554259 DOI: 10.1016/j.psj.2021.101492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023] Open
Abstract
In order to investigate the effect of intermittent mild cold stimulation (IMCS) on immune function of spleens and adaptability to cold stress in broilers, 400 healthy 1-day-old Ross-308 chickens were divided into 5 groups: CC (control) reared in normal thermal environment from 1 to 49 d; CS3, CS4, CS5, and CS6 (treatments) raised at 3°C below the temperature of CC for 3, 4, 5, or 6 h at 1-d intervals from 15 to 35 d, respectively. Subsequently, CS3-6 was raised at 20°C from 36 to 49 d. At 50 d, all groups were exposed to acute cold stress (ACS) for 12 h. The spleen immunity index at 22, 29, 36, 43, and 49 d, expression levels of toll-like receptors (TLRs), cytokines and immunoglobulins at 22, 43, and 49 d and heat shock proteins (HSPs) before and after ACS at 50 d were examined. The spleen index of broilers aged 22 to 49 d did not differ between CS and CC (P > 0.05), and the spleen index of CS5 was higher than that of CS3 at 49 d (P < 0.05). The mRNA levels of TLR5, TLR15, TLR21, and IL-2 in CS3, TLR3, TLR4, TLR15, TLR21, IL-2, IL-6, and IFN-ϒ in CS4, TLR1, TLR3, TLR4, TLR21, IL-2, IFN-a, IFN-ϒ, IgA, and IgG in CS6, but all TLRs, immunoglobulins and cytokines except IFN-ϒ in CS5 differential expressed stably compared with CC at 43 and 49 d (P < 0.05). Compared with Pre-ACS, the mRNA levels of HSP60, HSP70, and HSP90 were upregulated in CS after ACS (P < 0.05). Except for HSP90 mRNA and HSP70 protein in CS6, and HSP90 protein in CS3, the levels of HSPs after ACS in all treatment groups were higher than those in CC (P < 0.05), and the highest HSPs levels after ACS were found in CS5. We concluded that IMCS could enhance immunity of spleens and adaptability to ACS in broilers, besides CS5 was the optimal program.
Collapse
|
13
|
Kuang J, Xu P, Shi Y, Yang Y, Liu P, Chen S, Zhou C, Li G, Zhuang Y, Hu R, Hu G, Guo X. Nephropathogenic Infectious Bronchitis Virus Infection Altered the Metabolome Profile and Immune Function of the Bursa of Fabricius in Chicken. Front Vet Sci 2021; 7:628270. [PMID: 33553290 PMCID: PMC7858655 DOI: 10.3389/fvets.2020.628270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Infectious bronchitis is a highly contagious, acute viral respiratory disease of chickens, regardless of the strain, and its infection may lead to considerable economic losses to the poultry industry. New nephropathogenic infectious bronchitis virus (NIBV) strains have increasingly emerged in recent years; hence, evaluating their infection-influenced immune function changes and the alteration of metabolite profiling is important. Initially, chickens were randomly distributed into two groups: the control group (Con) and the disease group (Dis). Here, the partial cytokines were examined, and the metabolome alterations of the bursa of Fabricius (BF) in NIBV infections in chickens were profiled by gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS). The results revealed that the NIBV infection promotes the mRNA expression of inflammatory cytokines. Metabolic profile analysis indicated that clustering differed between the two groups and there were 75 significantly different metabolites detected between the two groups, suggesting that the host metabolism was significantly changed by NIBV infection. Notably, the following 12 metabolites were identified as the potential biomarkers: 3-phenyllactic acid, 2-deoxytetronic acid, aminomalonic acid, malonamide 5, uric acid, arachidonic acid, 2-methylglutaric acid, linoleic acid, ethanolamine, stearic acid, N-alpha-acetyl-l-ornithine, and O-acetylserine. Furthermore, the results of the correlation analysis showed that a strong correlation existed between metabolic biomarkers and inflammatory cytokines. Our results describe an immune and metabolic profile for the BF of chickens when infected with NIBV and provide new biomarkers of NIBV infection as potential targets and indicators of indicating therapeutic efficacy.
Collapse
Affiliation(s)
- Jun Kuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Puzhi Xu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yitian Yang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shupeng Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|