1
|
Mercati F, Guelfi G, Bufalari A, Dall’Aglio C, Suvieri C, Cocci P, Palermo FA, Anipchenko P, Capaccia C, Cenci-Goga B, Zerani M, Maranesi M. From Gene to Protein: Unraveling the Reproductive Blueprint of Male Grey Squirrels via Nerve Growth Factor (NGF) and Cognate Receptors. Animals (Basel) 2024; 14:3318. [PMID: 39595370 PMCID: PMC11591181 DOI: 10.3390/ani14223318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The grey squirrel, an invasive species, threatens the Eurasian red squirrel's conservation, particularly in Umbria, Italy. Understanding its reproductive biology is essential to limiting its reproductive success. This study investigates the NGF system and its receptors (NTRK1 and p75NTR) in the testes of male grey squirrels, following prior research on female reproductive biology. NGF plays a role in testicular morphogenesis and spermiogenesis in animals and humans. As part of the LIFE Project U-SAVEREDS, eighteen squirrels were captured and classified into three morphotypes (immature, pubertal, and active spermatogenesis). NGF and its receptors were analyzed using real-time PCR, western blotting, immunohistochemistry, and plasma levels measured via ELISA. NGF qPCR expression levels were significantly higher during puberty compared to the immature and spermatogenesis stages (p < 0.01). Immunohistochemistry revealed NGF in Leydig cells, with stronger staining in pubertal and mature squirrels, while NTRK1 was found in Leydig cells in immature squirrels and germ cells in pubertal and mature ones. NGF receptors were observed in Sertoli cells in pubertal and mature squirrels. Plasma NGF levels showed a significant upregulation in pubertal squirrels (135.80 ± 12 pg/mL) compared to those in the immature (25.60 ± 9.32 pg/mL) and spermatogenesis stages (34.20 ± 6.06 pg/mL), with a p value < 0.01. The co-localization of NGF and its receptors suggests that NGF, produced by Leydig cells, regulates testis development and reproductive success through autocrine or paracrine mechanisms, potentially involving an unidentified pathway.
Collapse
Affiliation(s)
- Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Antonello Bufalari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Cecilia Dall’Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Chiara Suvieri
- Department of Medicine and Surgery, University of Perugia, Piazzale Settimio Gambuli, 1, 06129 Perugia, Italy;
| | - Paolo Cocci
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, Italy; (P.C.); (F.A.P.)
| | - Francesco Alessandro Palermo
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, Italy; (P.C.); (F.A.P.)
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Beniamino Cenci-Goga
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (F.M.); (G.G.); (P.A.); (C.C.); (B.C.-G.); (M.Z.); (M.M.)
| |
Collapse
|
2
|
Mercati F, Guelfi G, Martì MJI, Dall'Aglio C, Calleja L, Caivano D, Marenzoni ML, Capaccia C, Anipchenko P, Palermo FA, Cocci P, Rende M, Zerani M, Maranesi M. Seasonal variation of NGF in seminal plasma and expression of NGF and its cognate receptors NTRK1 and p75NTR in the sex organs of rams. Domest Anim Endocrinol 2024; 89:106877. [PMID: 39068905 DOI: 10.1016/j.domaniend.2024.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Nerve growth factor (NGF) has long been known as the main ovulation-inducing factor in induced ovulation species, however, recent studies suggested the NGF role also in those with spontaneous ovulation. The first aim of this study was to evaluate the presence and gene expression of NGF and its cognate receptors, high-affinity neurotrophic tyrosine kinase 1 receptor (NTRK1) and low-affinity p75 nerve growth factor receptor (p75NTR), in the ram genital tract. Moreover, the annual trend of NGF seminal plasma values was investigated to evaluate the possible relationship between the NGF production variations and the ram reproductive seasonality. The presence and expression of the NGF/receptors system was evaluated in the testis, epididymis, vas deferens ampullae, seminal vesicles, prostate, and bulbourethral glands through immunohistochemistry and real-time PCR (qPCR), respectively. Genital tract samples were collected from 5 adult rams, regularly slaughtered at a local abattoir. Semen was collected during the whole year weekly, from 5 different adult rams, reared in a breeding facility, with an artificial vagina. NGF seminal plasma values were assessed through the ELISA method. NGF, NTRK1 and p75NTR immunoreactivity was detected in all male organs examined. NGF-positive immunostaining was observed in the spermatozoa of the germinal epithelium, in the epididymis and the cells of the secretory epithelium of annexed glands, NTRK1 receptor showed a localization pattern like that of NGF, whereas p75NTR immunopositivity was localized in the nerve fibers and ganglia. NGF gene transcript was highest (p < 0.01) in the seminal vesicles and lowest (p < 0.01) in the testis than in the other tissues. NTRK1 gene transcript was highest (p < 0.01) in the seminal vesicles and lowest (p < 0.05) in all the other tissues examined. Gene expression of p75NTR was highest (p < 0.01) in the seminal vesicles and lowest (p < 0.01) in the testis and bulbourethral glands. NGF seminal plasma concentration was greater from January to May (p < 0.01) than in the other months. This study highlighted that the NGF system was expressed in the tissues of all the different genital tracts examined, confirming the role of NGF in ram reproduction. Sheep are short-day breeders, with an anestrus that corresponds to the highest seminal plasma NGF levels, thus suggesting the intriguing idea that this factor could participate in an inhibitory mechanism of male reproductive activity, activated during the female anestrus.
Collapse
Affiliation(s)
- Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | | | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy.
| | - Lucía Calleja
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Spain
| | - Domenico Caivano
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Maria Luisa Marenzoni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Francesco Alessandro Palermo
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, Camerino, MC I-62032, Italy
| | - Paolo Cocci
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, Camerino, MC I-62032, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, Perugia 06132, Italy
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| |
Collapse
|
3
|
Maranesi M, Palmioli E, Dall'Aglio C, Marini D, Anipchenko P, De Felice E, Scocco P, Mercati F. Resistin in endocrine pancreas of sheep: Presence and expression related to different diets. Gen Comp Endocrinol 2024; 348:114452. [PMID: 38246291 DOI: 10.1016/j.ygcen.2024.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Resistin (RETN), a recently discovered adipokine, is a cysteine-rich and secretory protein produced by adipocytes. RETN has been detected in several tissues, including human and laboratory animals' pancreas, wherein impairs glucose tolerance and insulin (INS) action and causes INS resistance. This study aims to evaluate the presence and expression of RETN in the pancreas of 15 adult female sheep reared on Apennine pastures, which show a decrease in their nutritional value due to the drought stress linked to the increasing summer aridity. The sheep were divided into 3 groups according to the diet they were subjected to: maximum pasture flowering (MxF) group, maximum pasture dryness (MxD) group, and experimental (Exp) group which received a feed supplementation in addition to the MxD group feeding. Immunohistochemistry and immunofluorescence were performed on formalin-fixed and paraffin-embedded sections of the pancreas to detect the RETN presence and to evaluate the co-localization of RETN with both glucagon (GCG)- and INS-producing cells. In addition, the expression of the three molecules was evaluated also in relation to different diets. RETN was observed only in the endocrine pancreas, showing a wide distribution throughout the pancreatic islets with few negative cells and the RETN producing cells colocalized with both α cells and ß cells. No differences in distribution and immunostaining intensity of RETN, GCG and INS were observed among the three groups. Quantitative PCR showed the expression of RETN, GCG and INS in all tested samples. No significant differences were observed for RETN and GCG among all three groups of sheep. Instead, a high statistically significant expression of INS was detected in the MxF group with respect to the Exp and MxD groups. These results highlight the localization of RETN in GCG- and INS-secreting cells involved in glucose homeostasis suggesting a modulatory role for RETN. Furthermore, the RETN expression is not influenced by food supplementation and thus is not affected by diet.
Collapse
Affiliation(s)
- Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elisa Palmioli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Philosophy, Social Sciences, and Education, PhD Course in "Ethics of Communication, Scientific Research and Technological Innovation" Medical-Health Curriculum, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, IT, Italy.
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Daniele Marini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| |
Collapse
|
4
|
Ratto MH, Paiva L, Carrasco R, Silva ME, Ulloa-Leal C, Ratto VF, Goicochea J. Review: Unveiling the effect of beta-nerve growth factor on the reproductive function in llamas and cows. Animal 2023; 17 Suppl 1:100754. [PMID: 37567661 DOI: 10.1016/j.animal.2023.100754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 08/13/2023] Open
Abstract
The actions of the beta-nerve growth factor (β-NGF) on the neuroendocrine and reproductive system have challenged classical views on the control of reproductive function. After endometrial absorption, β-NGF triggers ovulation and promotes the development of functional corpora lutea in camelids. In this article, we review evidence showing that, in camelids, β-NGF exerts its actions by acting in both the hypothalamus and the ovary. In the hypothalamus, β-NGF may induce gonadotropin-releasing hormone (GnRH) release by interacting with neurons or glial cells expressing receptors for β-NGF. The LH surge occurs under the influence of ovarian estradiol and requires the release of GnRH into the portal vessels to reach the pituitary gland. In the ovary, β-NGF may be promoting the differentiation of follicular to luteal cells by modifying the steroidogenic profile of ovarian follicular cells in both camelids and ruminants. Although the mechanisms for these actions are largely undetermined, we aim to offer an update on the current understanding of the effects of β-NGF controlling reproductive function in camelids and ruminants.
Collapse
Affiliation(s)
- Marcelo H Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Paiva
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo Carrasco
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada
| | - Mauricio E Silva
- Departamento de Medicina Veterinaria y Salud Publica, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Cesar Ulloa-Leal
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Vicente F Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Goicochea
- Departamento de Cirugía y Biotecnología Reproductiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizán, Huánuco, Perú
| |
Collapse
|
5
|
The Effect of Interaction NGF/p75NTR in Sperm Cells: A Rabbit Model. Cells 2022; 11:cells11061035. [PMID: 35326486 PMCID: PMC8947739 DOI: 10.3390/cells11061035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Nerve Growth Factor (NGF) plays an important role in the reproductive system through its receptor’s interaction (p75NTR). This paper aims to analyze the impact of NGF p75NTR in epididymal and ejaculated rabbit semen during in vitro sperm storage. Methods: Semen samples from 10 adult rabbit bucks were collected four times (n = 40) and analyzed. NGF was quantified in seminal plasma, and the basal expression of p75NTR in sperm was established (time 0). Moreover, we evaluated p75NTR, the apoptotic rates, and the main sperm parameters, at times 2–4 and 6 h with or without the administration of exogenous NGF. Results: Based on the level of p75NTR, we defined the threshold value (25.6%), and sperm were divided into High (H) and Normal (N). During sperm storage, p75NTR of H samples significantly modulated some relevant sperm parameters. Specifically, comparing H samples with N ones, we observed a reduction in motility and non-capacitated cell number, together with an increased percentage of dead and apoptotic cells. Notably, the N group showed a reduction in dead and apoptotic cells after NGF treatment. Conversely, the NGF administration on H sperm did not change either the percentage of dead cells or the apoptotic rate. Conclusion: The concentration of p75NTR on ejaculated sperm modulates many semen outcomes (motility, apoptosis, viability) through NGF interaction affecting the senescence of sperm.
Collapse
|
6
|
Abumaghaid MM, Abdelazim AM, Belali TM, Alhujaily M, Saadeldin IM. Shuttle Transfer of mRNA Transcripts via Extracellular Vesicles From Male Reproductive Tract Cells to the Cumulus–Oocyte Complex in Rabbits (Oryctolagus cuniculus). Front Vet Sci 2022; 9:816080. [PMID: 35372562 PMCID: PMC8968341 DOI: 10.3389/fvets.2022.816080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
Semen is known to contain an ovulation-inducing factor (identified as a nerve growth factor, NGF) that shows a significant increase in ovulation after semen deposition in induced ovulatory species. However, the interplay between the male reproductive tract cells and oocyte maturation through messenger RNA (mRNA) cargo is yet to be investigated. Extracellular vesicles (EVs) from the primary culture of rabbit prostate (pEVs), epididymis (eEVs), and testis (tEVs) were isolated to examine their contents for several mRNA transcripts through relative quantitative PCR (RT-qPCR). The expressions of NGF, neurotrophin (NTF3), vascular endothelial growth factor A (VEGFA), A disintegrin and metalloprotease 17 (ADAM17), midkine (MDK), kisspeptin (KISS1), and gonadotrophin-releasing hormone (GNRH1) were examined in isolated EVs. EVs were characterized through transmission electron microscopy. EV uptake by cumulus cell culture was confirmed through microscopic detection of PKH26-stained EVs. Furthermore, the effects of pEVs, eEVs, and tEVs were compared with NGF (10, 20, and 30 ng/ml) supplementation on oocyte in vitro maturation (IVM) and transcript expression. KISS1, NTF3, MDK, ADAM17, GAPDH, and ACTB were detected in all EV types. GNRH1 was detected in tEVs. NGF was detected in pEVs, whereas VEGFA was detected in eEVs. pEVs, eEVs, and 20 ng/ml NGF showed the highest grade of cumulus expansion, followed by tEVs and 10 ng/ml NGF. Control groups and 30 ng/ml NGF showed the least grade of cumulus expansion. Similarly, first polar body (PB) extrusion was significantly increased in oocytes matured with eEVs, pEVs, tEVs, NGF20 (20 ng/ml NGF), NGF10 (10 ng/ml NGF), control, and NGF30 (30 ng/ml NGF). Additionally, the expression of NGFR showed a 1.5-fold increase in cumulus cells supplemented with eEVs compared with the control group, while the expression of PTGS2 (COX2) and NTRK showed 3-fold and 5-fold increase in NGF20-supplemented cumulus-oocyte complexes (COCs), respectively. Oocyte PMP15 expression showed a 1.8-fold increase in IVM medium supplemented with eEVs. Additionally, oocyte NGFR and NTRK expressions were drastically increased in IVM medium supplemented with pEVS (3.2- and 1.6-fold, respectively) and tEVs (4- and 1.7-fold, respectively). This is the first report to examine the presence of mRNA cargo in the EVs of male rabbit reproductive tract cells that provides a model for the stimulation of female rabbits after semen deposition.
Collapse
Affiliation(s)
- Mosleh M. Abumaghaid
- Department of Laboratory Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
- *Correspondence: Mosleh M. Abumaghaid
| | - Aaser M. Abdelazim
- Department of Basic Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Tareg M. Belali
- Department of Laboratory Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Muhanad Alhujaily
- Department of Laboratory Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Islam M. Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Islam M. Saadeldin
| |
Collapse
|
7
|
Mattioli S, Maranesi M, Castellini C, Dal Bosco A, Arias-Álvarez M, Lorenzo PL, Rebollar PG, García-García RM. Physiology and modulation factors of ovulation in rabbit reproduction management. WORLD RABBIT SCIENCE 2021. [DOI: 10.4995/wrs.2021.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Rabbit is an induced ovulatory species, so ovulation takes place after mating. Traditionally, exogenous and synthetic hormonal factors (administered by intramuscular and intravaginal route) such as GnRH and analogues, or different physical procedures (i.e. stimulation by intravaginal cannula) have been used to induce ovulation in females when artificial insemination is applied in rabbit farms. Restriction and public rejection of the use of hormones is leading to the study of the seminal plasma components with potential action on ovulation induction. The aim of the present review is to collect and summarise the strategies used in recent years to trigger ovulation and improve rabbit fertility management with respect to more animal-friendly manipulation methods. Furthermore, special attention has been paid to the use of a semen component (as endogen molecule) such as beta nerve growth factor (β-NGF) in male and female rabbit reproductive physiology. This neurotrophin and its receptors (TrKA and p75NTR) are abundantly distributed in both male and female rabbit reproductive tracts, and it seems to have an important physiological role in sperm maturation and behaviour (velocity, apoptosis and capacitation), as well as a modulatory factor of ovulation. Endogen β-NGF is diluted in the seminal doses with the extenders; hence it could be considered an innovative and alternative strategy to avoid the current exogenous (by intramuscular route) and stressful hormonal treatments used in ovulation induction. Their addition in seminal dose could be more physiological and improve animal welfare in rabbit farms.
Collapse
|
8
|
Maranesi M, Boiti C, Zerani M. Nerve Growth Factor (NGF) and Animal Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:277-287. [PMID: 34453306 DOI: 10.1007/978-3-030-74046-7_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stimuli that lead to the release of gonadotropin-releasing hormone (GnRH) and pituitary gonadotropins and, consequently, ovulation in mammals fall into two broad categories. In the first, high plasma oestrogen concentrations induce the events that trigger ovulation, a characteristic of spontaneous ovulators. In the second, nerve stimuli occurring during mating reach the hypothalamus and trigger the release of GnRH and ovulation with a neuroendocrine reflex that characterizes induced ovulators.In this review, we will give an overview of the distribution of NGF and its expression in the different tissues of the male accessory sex glands, the main sites of NGF production. Next, we will highlight the role of NGF in sperm function and its potential cryopreserving role in artificial insemination techniques. Finally, we will evaluate the functions of NGF in ovulation, particularly in induced ovulators. Overall, the information obtained so far indicates that NGF is widely distributed in organs that regulate the reproductive activity, in both males and females. In spontaneous ovulators, NGF exerts mainly a luteotrophic action, while, in induced ovulators it is the main ovulation-inducing factor. A better understanding of the role of NGF in reproduction would be of great interest, since it could help finding innovative therapeutic aids to improve mammalian fertility.
Collapse
Affiliation(s)
- Margherita Maranesi
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, PG, Italy.
| | - Cristiano Boiti
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, PG, Italy
| | - Massimo Zerani
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, PG, Italy
| |
Collapse
|