1
|
Meletiadis A, Romano A, Moroni B, Di Nicola MR, Montemurro V, Pitti M, Pezzolato M, Bozzetta E, Sciuto S, Acutis PL. A Case of Food-Borne Salmonellosis in a Corn Snake ( Pantherophis guttatus) after a Feeder Mouse Meal. Animals (Basel) 2024; 14:1722. [PMID: 38929341 PMCID: PMC11200982 DOI: 10.3390/ani14121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Reptiles are usually asymptomatic carriers of Salmonella, with the manifestation of typical clinical signs of acute forms in adult and non-immunocompromised animals being considered exceptions. In the present case, an adult male corn snake (Pantherophis guttatus) was found dead due to septic shock 48 h after consuming a feeder mouse purchased online. The snake's tissue samples and faeces were cultured for bacteria isolation. Microbiological examinations of the snake and mouse livers revealed the presence of Salmonella enterica subsp. enterica serovar Midway. A whole-genome analysis of these two isolates showed a high correlation between them: they belonged to the strain type ST-357 for the classic MLST scheme and to the strain type ST 171322 for the cgMLST scheme. Also, a virulence gene analysis revealed the presence of stdB and STM3026 genes. This report conveys a case of food-borne salmonellosis in a pet snake, transmitted from a feeder mouse, likely responsible for the snake's death due to septic shock. It highlights the relevance of feeder mice as a source of Salmonella infections in snakes and the associated risks to human health.
Collapse
Affiliation(s)
- Arianna Meletiadis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (A.R.); (B.M.); (V.M.); (M.P.); (M.P.); (E.B.); (S.S.); (P.L.A.)
| | - Angelo Romano
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (A.R.); (B.M.); (V.M.); (M.P.); (M.P.); (E.B.); (S.S.); (P.L.A.)
| | - Barbara Moroni
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (A.R.); (B.M.); (V.M.); (M.P.); (M.P.); (E.B.); (S.S.); (P.L.A.)
| | - Matteo Riccardo Di Nicola
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology and Zoological Medicine, Wildlife Health Ghent, Ghent University, 9820 Merelbeke, Belgium;
| | - Vittoria Montemurro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (A.R.); (B.M.); (V.M.); (M.P.); (M.P.); (E.B.); (S.S.); (P.L.A.)
| | - Monica Pitti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (A.R.); (B.M.); (V.M.); (M.P.); (M.P.); (E.B.); (S.S.); (P.L.A.)
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (A.R.); (B.M.); (V.M.); (M.P.); (M.P.); (E.B.); (S.S.); (P.L.A.)
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (A.R.); (B.M.); (V.M.); (M.P.); (M.P.); (E.B.); (S.S.); (P.L.A.)
| | - Simona Sciuto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (A.R.); (B.M.); (V.M.); (M.P.); (M.P.); (E.B.); (S.S.); (P.L.A.)
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (A.R.); (B.M.); (V.M.); (M.P.); (M.P.); (E.B.); (S.S.); (P.L.A.)
| |
Collapse
|
2
|
Pees M, Brockmann M, Steiner N, Marschang RE. Salmonella in reptiles: a review of occurrence, interactions, shedding and risk factors for human infections. Front Cell Dev Biol 2023; 11:1251036. [PMID: 37822870 PMCID: PMC10562597 DOI: 10.3389/fcell.2023.1251036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Salmonella are considered a part of the normal reptile gut microbiota, but have also been associated with disease in reptiles. Reptile-associated salmonellosis (RAS) can pose a serious health threat to humans, especially children, and an estimated 6% of human sporadic salmonellosis cases have been attributed to direct or indirect contact with reptiles, although the exact number is not known. Two literature searches were conducted for this review. The first evaluated reports of the prevalence of Salmonella in the intestinal tracts of healthy reptiles. Salmonella were most commonly detected in snakes (56.0% overall), followed by lizards (36.9%) and tortoises (34.2%), with lower detection rates reported for turtles (18.6%) and crocodilians (9%). Reptiles in captivity were significantly more likely to shed Salmonella than those sampled in the wild. The majority of Salmonella strains described in reptiles belonged to subspecies I (70.3%), followed by subspecies IIIb (29.7%) and subspecies II (19.6%). The second literature search focused on reports of RAS, revealing that the highest number of cases was associated with contact with turtles (35.3%), followed by lizards (27.1%) and snakes (20.0%). Reptiles associated with RAS therefore did not directly reflect prevalence of Salmonella reported in healthy representatives of a given reptile group. Clinical symptoms associated with RAS predominantly involved the gastrointestinal tract, but also included fever, central nervous symptoms, problems with circulation, respiratory symptoms and others. Disease caused by Salmonella in reptiles appears to be dependent on additional factors, including stress, inadequate husbandry and hygiene, and other infectious agents. While it has been suggested that reptile serovars may cause more severe disease than human-derived strains, and some data is available on invasiveness of individual strains in cell culture, limited information is available on potential mechanisms influencing invasiveness and immune evasion in reptiles and in RAS. Strategies to mitigate the spread of Salmonella through reptiles and to reduce RAS focus mostly on education and hygiene, and have often been met with some success, but additional efforts are needed. Many aspects regarding Salmonella in reptiles remain poorly understood, including the mechanisms by which Salmonella persist in reptile hosts without causing disease.
Collapse
Affiliation(s)
- Michael Pees
- Department of Small Mammal, Reptile and Avian Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Natalie Steiner
- Department of Small Mammal, Reptile and Avian Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
| | | |
Collapse
|
3
|
Dégi J, Herman V, Radulov I, Morariu F, Florea T, Imre K. Surveys on Pet-Reptile-Associated Multi-Drug-Resistant Salmonella spp. in the Timișoara Metropolitan Region-Western Romania. Antibiotics (Basel) 2023; 12:1203. [PMID: 37508299 PMCID: PMC10376298 DOI: 10.3390/antibiotics12071203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The number of reptiles owned as pets has risen worldwide. Additionally, urban expansion has resulted in more significant human encroachment and interactions with the habitats of captive reptiles. Between May and October 2022, 48 reptiles from pet shops and 69 from households were sampled in the Timișoara metropolitan area (western Romania). Three different sample types were collected from each reptile: oral cavity, skin, and cloacal swabs. Salmonella identification was based on ISO 6579-1:2017 (Annex D), a molecular testing method (invA gene target), and strains were serotyped in accordance with the Kauffman-White-Le-Minor technique; the antibiotic susceptibility was assessed according to Decision 2013/652. This study showed that 43.28% of the pet reptiles examined from households and pet shops carried Salmonella spp. All of the strains isolated presented resistance to at least one antibiotic, and 79.32% (23/29) were multi-drug-resistant strains, with the most frequently observed resistances being to gentamicin, nitrofurantion, tobramycin, and trimethoprim-sulfamethoxazole. The findings of the study undertaken by our team reveal that reptile multi-drug-resistant Salmonella is present. Considering this aspect, the most effective way of preventing multi-drug-resistant Salmonella infections requires stringent hygiene control in reptile pet shops as well as ensuring proper animal handling once the animals leave the pet shop and are introduced into households.
Collapse
Affiliation(s)
- János Dégi
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I", 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I", 300645 Timisoara, Romania
| | - Isidora Radulov
- Faculty of Agriculture, University of Life Sciences "King Mihai I", 300645 Timisoara, Romania
| | - Florica Morariu
- Department of Animal Production Engineering, Faculty of Bioengineering of Animal Recourses, University of Life Sciences "King Mihai I", 300645 Timisoara, Romania
| | - Tiana Florea
- Department of Dermatology, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I", 300645 Timisoara, Romania
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I", 300645 Timisoara, Romania
| |
Collapse
|
4
|
Galgano M, Mrenoshki D, Pellegrini F, Capozzi L, Cordisco M, Del Sambro L, Trotta A, Camero M, Tempesta M, Buonavoglia D, Laricchiuta P, Catella C, Pratelli A, Buonavoglia A, Corrente M. Antibacterial and Biofilm Production Inhibition Activity of Thymus vulgaris L. Essential Oil against Salmonella spp. Isolates from Reptiles. Pathogens 2023; 12:804. [PMID: 37375494 DOI: 10.3390/pathogens12060804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Salmonellosis is an infectious disease affecting both animals and humans. Antimicrobial resistant (AMR) and biofilm-producing Salmonella spp., frequently detected in reptiles (who can then act as asymptomatic carriers for warm-blooded animals), have developed resistance to biocides; this represents a warning for the emergence of biocide/antimicrobial cross-resistance. The aim of this study was to evaluate the efficacy of Thymus vulgaris L. essential oil (TEO) in inhibiting bacterial growth and biofilm production of Salmonella spp., which had been isolated from wild reptiles housed in a Zoo in Italy. The resistance profile against different classes of antibiotics showed that all the isolates were susceptible to the tested antibiotics, despite the presence of several AMR genes. All the isolates were also tested with aqueous solutions of TEO at different dilutions (5% to 0.039%). Interestingly, TEO proved effective both in inhibiting bacterial growth at low dilutions, with MIC and MBC values ranging between 0.078% and 0.312%, and in inhibiting biofilm production, with values ranging from 0.039% to 0.156%. TEO demonstrated effective bioactivity against the biofilm producer Salmonella spp., proving to be a valid disinfectant for the prevention of salmonellosis from reptiles, a possible source of infection for humans exposed to the reptiles' environment.
Collapse
Affiliation(s)
- Michela Galgano
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Daniela Mrenoshki
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Loredana Capozzi
- Istituto Zooprofilattico della Puglia e della Basilicata, Contrada San Pietro Piturno, 70017 Putignano, BA, Italy
| | - Marco Cordisco
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Laura Del Sambro
- Istituto Zooprofilattico della Puglia e della Basilicata, Contrada San Pietro Piturno, 70017 Putignano, BA, Italy
| | - Adriana Trotta
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Domenico Buonavoglia
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, 70010 Valenzano, BA, Italy
| | | | - Cristiana Catella
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Alessio Buonavoglia
- Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Zamboni 33, 40126 Bologna, BO, Italy
| | - Marialaura Corrente
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, 70010 Valenzano, BA, Italy
| |
Collapse
|
5
|
Porto YD, Fogaça FHDS, Andrade AO, da Silva LKS, Lima JP, da Silva JL, Vieira BS, Cunha Neto A, Figueiredo EEDS, Tassinari WDS. Salmonella spp. in Aquaculture: An Exploratory Analysis (Integrative Review) of Microbiological Diagnoses between 2000 and 2020. Animals (Basel) 2022; 13:27. [PMID: 36611639 PMCID: PMC9817981 DOI: 10.3390/ani13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to characterize, through descriptive statistics, data from scientific articles selected in a systematic integrative review that performed a microbiological diagnosis of Salmonella spp. in aquaculture. Data were obtained from research articles published in the BVS, Scielo, Science Direct, Scopus and Web of Science databases. The selected studies were published between 2000 and 2020 on samples of aquaculture animal production (fish, shrimp, bivalve mollusks, and other crustaceans) and environmental samples of aquaculture activity (farming water, soil, and sediments). After applying the exclusion criteria, 80 articles were selected. Data such as country of origin, categories of fish investigated, methods of microbiological diagnosis of Salmonella spp., sample units analyzed and most reported serovars were mined. A textual analysis of the word cloud and by similarity and descending hierarchical classification with the application of Reinert's algorithm was performed using R® and Iramuteq® software. The results showed that a higher percentage of the selected articles came from Asian countries (38.75%). Fish was the most sampled category, and the units of analysis of the culture water, muscle and intestine were more positive. The culture isolation method is the most widespread, supported by more accurate techniques such as PCR. The most prevalent Salmonella serovars reported were S. Typhimurium, S. Weltevreden and S. Newport. The textual analysis showed a strong association of the terms "Salmonella", "fish" and "water", and the highest hierarchical class grouped 25.4% of the associated text segments, such as "aquaculture", "food" and "public health". The information produced characterizes the occurrence of Salmonella spp. in the aquaculture sector, providing an overview of recent years. Future research focusing on strategies for the control and prevention of Salmonella spp. in fish production are necessary and should be encouraged.
Collapse
Affiliation(s)
- Yuri Duarte Porto
- Department of Animal Parasitology, Institute of Veterinary, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, Brazil
| | | | - Adriana Oliveira Andrade
- Department of Mathematics, Institute of Exact Sciences, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, Brazil
| | | | - Janine Passos Lima
- Brazilian Agricultural Research Corporation, Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, Brazil
| | - Jorge Luiz da Silva
- Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), São Vicente da Serra 78106-000, Brazil
| | - Bruno Serpa Vieira
- Department of Veterinary Medicine, Federal University of Uberlândia (UFU), Uberlândia 38410-337, Brazil
| | - Adelino Cunha Neto
- Department of Food and Nutrition, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, Brazil
| | | | - Wagner de Souza Tassinari
- Department of Mathematics, Institute of Exact Sciences, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, Brazil
| |
Collapse
|
6
|
Dec M, Zając M, Puchalski A, Szczepaniak K, Urban-Chmiel R. Pet Reptiles in Poland as a Potential Source of Transmission of Salmonella. Pathogens 2022; 11:1125. [PMID: 36297182 PMCID: PMC9610186 DOI: 10.3390/pathogens11101125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 07/30/2023] Open
Abstract
Reptiles are considered a potential source of Salmonella transmission to humans. The aim of this research was to determine the incidence of Salmonella in pet reptiles in Poland and to examine Salmonella isolates with regard to their biochemical characteristics, serotype, antimicrobial susceptibility, and pathogenic and zoonotic potential. The research material consisted of 67 reptile faeces samples. The taxonomic affiliation of the Salmonella isolates was determined by MALDI-TOF mass spectrometry, biochemical analyses, and serotyping; whole genome sequencing (WGS) analysis was performed on three isolates whose serotype could not be determined by agglutination. The antimicrobial susceptibility of the Salmonella isolates was determined by the broth dilution method, and in the case of some antimicrobials by the disk diffusion method. The pathogenic and zoonotic potential of the identified serotypes was estimated based on available reports and case studies. The presence of Salmonella was confirmed in 71.6% of faecal samples, with the highest incidence (87.1%) recorded for snakes, followed by lizards (77.8%) and turtles (38.9%). All isolates (n = 51) belonged to the species S. enterica, predominantly to subspecies I (66.7%) and IIIb (25.5%). Among these, 25 serotypes were identified, including 10 that had previously been confirmed to cause reptile-associated salmonellosis (RAS). Salmonella isolates were susceptible to all antimicrobial substances used except streptomycin, to which 9.8% of the strains showed resistance. None of the strains contained corresponding resistance genes. The study demonstrates that pet reptiles kept in Poland are a significant reservoir of Salmonella and contribute to knowledge of the characteristics of reptilian Salmonella strains. Due to the risk of salmonellosis, contact with these animals requires special hygiene rules.
Collapse
Affiliation(s)
- Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Magdalena Zając
- Department of Microbiology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Andrzej Puchalski
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Klaudiusz Szczepaniak
- Department of Parasitology and Fish Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| |
Collapse
|
7
|
Marin C, Martín-Maldonado B, Cerdà-Cuéllar M, Sevilla-Navarro S, Lorenzo-Rebenaque L, Montoro-Dasi L, Manzanares A, Ayats T, Mencía-Gutiérrez A, Jordá J, González F, Rojo-Solís C, Barros C, García-Párraga D, Vega S. Antimicrobial Resistant Salmonella in Chelonians: Assessing Its Potential Risk in Zoological Institutions in Spain. Vet Sci 2022; 9:vetsci9060264. [PMID: 35737316 PMCID: PMC9230454 DOI: 10.3390/vetsci9060264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022] Open
Abstract
Salmonella is mostly noted as a food-borne pathogen, but contact with chelonians has also been reported as a source of infection. Moreover, high levels of antimicrobial resistance (AMR) have been reported in Salmonella isolated from wild and captive reptiles. The aim of this study was to assess the occurrence of Salmonella AMR carriage by chelonians admitted to two zoological institutions in Spain, characterizing the isolates to assess the Salmonella AMR epidemiology in wildlife. To this end, 152 chelonians from nine species were sampled upon their arrival at the zoological nuclei. Salmonella identification was based on ISO 6579-1:2017 (Annex D), isolates were serotyped and their AMR analysed according to the EU Decision 2013/652. Moreover, the genetic relationship of the isolates was assessed by pulsed-field gel electrophoresis (PFGE). Results showed 19% (29/152) of the chelonians positive to Salmonella, all of them tortoises. For all isolates, 69% (20/29) were resistant and 34% (10/29) multidrug-resistant (MDR) strains. PFGE clustered isolates according to the serovar, confirming a low genetic diversity. In conclusion, this study shows a high presence of MDR Salmonella strains in tortoises at their entry into zoological nuclei. This condition highlights the need to establish Salmonella detection protocols for the entry of animals into these centres.
Collapse
Affiliation(s)
- Clara Marin
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Alfara del Patriarca, Spain; (S.S.-N.); (L.L.-R.); (L.M.-D.); (J.J.); (S.V.)
- Grupo Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain; (B.M.-M.); (A.M.-G.); (F.G.)
- Correspondence:
| | - Bárbara Martín-Maldonado
- Grupo Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain; (B.M.-M.); (A.M.-G.); (F.G.)
- Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Deparment of Veterinary Medicine, School of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Marta Cerdà-Cuéllar
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.C.-C.); (A.M.); (T.A.)
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Sandra Sevilla-Navarro
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Alfara del Patriarca, Spain; (S.S.-N.); (L.L.-R.); (L.M.-D.); (J.J.); (S.V.)
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Les Alqueries, Spain
| | - Laura Lorenzo-Rebenaque
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Alfara del Patriarca, Spain; (S.S.-N.); (L.L.-R.); (L.M.-D.); (J.J.); (S.V.)
| | - Laura Montoro-Dasi
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Alfara del Patriarca, Spain; (S.S.-N.); (L.L.-R.); (L.M.-D.); (J.J.); (S.V.)
| | - Alicia Manzanares
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.C.-C.); (A.M.); (T.A.)
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Teresa Ayats
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.C.-C.); (A.M.); (T.A.)
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Aida Mencía-Gutiérrez
- Grupo Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain; (B.M.-M.); (A.M.-G.); (F.G.)
- Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
| | - Jaume Jordá
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Alfara del Patriarca, Spain; (S.S.-N.); (L.L.-R.); (L.M.-D.); (J.J.); (S.V.)
| | - Fernando González
- Grupo Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain; (B.M.-M.); (A.M.-G.); (F.G.)
- Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
| | - Carlos Rojo-Solís
- Oceanogràfic Veterinary Services, Avanqua Oceanogàfic S.L., C/Eduardo Primo Yúfera (Científic) nº1B, 46013 Valencia, Spain; (C.R.-S.); (C.B.); (D.G.-P.)
| | - Carlos Barros
- Oceanogràfic Veterinary Services, Avanqua Oceanogàfic S.L., C/Eduardo Primo Yúfera (Científic) nº1B, 46013 Valencia, Spain; (C.R.-S.); (C.B.); (D.G.-P.)
| | - Daniel García-Párraga
- Oceanogràfic Veterinary Services, Avanqua Oceanogàfic S.L., C/Eduardo Primo Yúfera (Científic) nº1B, 46013 Valencia, Spain; (C.R.-S.); (C.B.); (D.G.-P.)
| | - Santiago Vega
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Alfara del Patriarca, Spain; (S.S.-N.); (L.L.-R.); (L.M.-D.); (J.J.); (S.V.)
- Grupo Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain; (B.M.-M.); (A.M.-G.); (F.G.)
| |
Collapse
|