1
|
Correa Lopes B, Turck J, Tolbert MK, Giaretta PR, Suchodolski JS, Pilla R. Prolonged storage reduces viability of Peptacetobacter (Clostridium) hiranonis and core intestinal bacteria in fecal microbiota transplantation preparations for dogs. Front Microbiol 2025; 15:1502452. [PMID: 39839105 PMCID: PMC11747423 DOI: 10.3389/fmicb.2024.1502452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Fecal microbiota transplantation (FMT) has been described useful as an adjunct treatment for chronic enteropathy in dogs. Different protocols can be used to prepare and store FMT preparations, however, the effect of these methods on microbial viability is unknown. We aimed (1) to assess the viability of several core intestinal bacterial species by qPCR and (2) to assess Peptacetobacter (Clostridium) hiranonis viability through culture to further characterize bacterial viability in different protocols for FMT preparations. Methods Bacterial abundances were assessed in feces from six healthy dogs by qPCR after propidium monoazide (PMA-qPCR) treatment for selective quantitation of viable bacteria. Conservation methods tested included lyophilization (stored at 4°C and at -20°C) and freezing with glycerol-saline solution (12.5%) and without any cryoprotectant (stored at -20°C). Additionally, the abundance of P. hiranonis was quantified using bacterial culture. Results Using PMA-qPCR, the viability of Faecalibacterium, Escherichia coli, Streptococcus, Blautia, Fusobacterium, and P. hiranonis was reduced in lyophilized fecal samples kept at 4°C and -20°C up to 6 months (p < 0.05). In frozen feces without cryoprotectant, only Streptococcus and E. coli were not significantly reduced for up to 3 months (p > 0.05). Lastly, no differences were observed in the viability of those species in glycerol-preserved samples up to 6 months (p > 0.05). When using culture to evaluate the viability of P. hiranonis, we observed that P. hiranonis abundance was lower in lyophilized samples kept at 4°C than -20°C; and P. hiranonis abundance was higher in glycerol-preserved samples for up to 6 months than in samples preserved without glycerol for up to 3 months. Moreover, the highest abundance of P. hiranonis was observed in glycerol-preserved feces. After 3 months, P. hiranonis was undetectable by culture in 83% (5/6) of the frozen samples without glycerol. Discussion While the lyophilization procedure initially reduced P. hiranonis abundance, P. hiranonis viability was stable thereafter for up to 6 months at -20°C. The higher bacterial viability detected in fecal samples preserved with glycerol confirms the use of this cryoprotectant as a reliable method to keep bacteria alive in the presence of fecal matrix for FMT purposes.
Collapse
Affiliation(s)
- Bruna Correa Lopes
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jonathan Turck
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - M. Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Paula R. Giaretta
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Meireles J, Moraes RFF, Lins D, Oliveira TDS, de Carvalho EB, Rainha K, Ferreira EDO. Dogs in Rio de Janeiro as reservoirs of Clostridioides difficile ribotypes causing CDI in humans. Anaerobe 2024; 90:102917. [PMID: 39393610 DOI: 10.1016/j.anaerobe.2024.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
INTRODUCTION In the past decade, the incidence of community-acquired Clostridioides difficile infection (CA-CDI) has increased, suggesting a role for community reservoirs such as animals in its spread. OBJECTIVE This study aimed to isolate and characterize C. difficile strains from domestic dogs at veterinary clinics to enhance our understanding of C. difficile epidemiology in Rio de Janeiro. MATERIAL AND METHODS For this study 90 stool samples from dogs were collected and cultured in a selective medium (Clostridioides difficile Brucella agar - CDBA) for isolation. Species were identified by MALDI-TOF MS, with confirmation provided by PCR targeting the tpi gene. The antibiotic susceptibility test of the strains was performed using five antibiotics: vancomycin, metronidazole, moxifloxacin, rifampicin, and erythromycin. Strains resistant to metronidazole were further analyzed for the presence of the plasmid pCD-METRO using PCR. The presence of toxin genes (tcdA, tcdB, and cdtB) was investigated, alongside ribotyping and tcdC sequencing analyses. The strains were also tested for biofilm formation and motility. RESULTS C. difficile was isolated in 15.5 % (14/90) of the samples. Among the strains analyzed, 87.71 % (12/14) tested positive for both toxin genes tcdA and tcdB and belonged to ribotypes 106 (10/14) and 014/020 (2/14). The remaining 14.3 % (2/14) were non-toxigenic and were identified as ribotype 010. Regarding the antibiotic profile, 42.85 % (6/14) of the strains exhibited resistance to at least one antibiotic, including vancomycin (1/14) and metronidazole (1/14). The metronidazole-resistant strain was also positive for the plasmid pCD-METRO. All strains exhibited both biofilm formation and motility. Among the 12 toxigenic strains sequenced for the tcdC gene, two exhibited a deletion in the same region as the epidemic strain, NAP1 (RT027). CONCLUSION Our study found some overlap between C. difficile ribotypes isolated from dogs and from cases of CDI in humans, and the C. difficile prevalence was higher in dogs with diarrhea (p = 0.034).
Collapse
Affiliation(s)
- Júlia Meireles
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, IMPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Lins
- Clínica Veterinária Vet Staff, Leblon, Rio de Janeiro, Brazil
| | | | | | - Kelly Rainha
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, IMPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane de O Ferreira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, IMPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Sulaiman JE, Thompson J, Qian Y, Vivas EI, Diener C, Gibbons SM, Safdar N, Venturelli OS. Elucidating human gut microbiota interactions that robustly inhibit diverse Clostridioides difficile strains across different nutrient landscapes. Nat Commun 2024; 15:7416. [PMID: 39198411 PMCID: PMC11358386 DOI: 10.1038/s41467-024-51062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The human gut pathogen Clostridioides difficile displays substantial inter-strain genetic variability and confronts a changeable nutrient landscape in the gut. We examined how human gut microbiota inter-species interactions influence the growth and toxin production of various C. difficile strains across different nutrient environments. Negative interactions influencing C. difficile growth are prevalent in an environment containing a single highly accessible resource and sparse in an environment containing C. difficile-preferred carbohydrates. C. difficile toxin production displays significant community-context dependent variation and does not trend with growth-mediated inter-species interactions. C. difficile strains exhibit differences in interactions with Clostridium scindens and the ability to compete for proline. Further, C. difficile shows substantial differences in transcriptional profiles in co-culture with C. scindens or Clostridium hiranonis. C. difficile exhibits massive alterations in metabolism and other cellular processes in co-culture with C. hiranonis, reflecting their similar metabolic niches. C. hiranonis uniquely inhibits the growth and toxin production of diverse C. difficile strains across different nutrient environments and robustly ameliorates disease severity in mice. In sum, understanding the impact of C. difficile strain variability and nutrient environments on inter-species interactions could help improve the effectiveness of anti-C. difficile strategies.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaron Thompson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugenio I Vivas
- Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian Diener
- Institute for Systems Biology, Seattle, WA, USA
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, William S. Middleton Veterans Hospital Madison, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Kaga C, Kakiyama S, Hokkyo A, Ogata Y, Shibata J, Nagahara T, Nakazawa M, Nakagawa T, Tsujimoto H, Chambers JK, Uchida K, Matsumoto S, Kobayashi T, Tomiyasu H, Mizusawa N. Characterization of faecal microbiota and serum inflammatory markers in dogs diagnosed with chronic enteropathy or small-cell lymphoma: a pilot study. Sci Rep 2024; 14:19387. [PMID: 39169196 PMCID: PMC11339456 DOI: 10.1038/s41598-024-69923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Dogs diagnosed with chronic enteropathy (CE) or small-cell lymphoma (SCL) exhibit marked differences in faecal microbiota and organic acid profiles compared with healthy dogs, as well as immune abnormalities in intestinal mucosal tissue. However, few studies have analysed trace organic acids, such as succinic acid, which have been suggested to be associated with IBD in humans. Therefore, in this study, we compared the faecal microbiota and organic acid profiles as well as serum inflammatory markers between dogs with disease (n = 11; 6 with CE and 5 with SCL) and healthy controls (n = 16). We also performed machine learning and correlation analysis to obtain more detailed insights into the characteristics of affected dogs. These results revealed that dogs with CE and SCL had lower levels of Erysipelotrichaceae (e.g. Turicibacter and Allobaculum), exhibited abnormalities in the succinic acid metabolism (i.e. succinic acid accumulation and decreased levels of Phascolarctobacterium as succinic acid-utilising bacteria) and increased levels of pathobiont bacteria such as Escherichia-Shigella. Additionally, the presence of Dubosiella was significantly negatively correlated with Canine Inflammatory Bowel Disease Activity Index scores. These findings are expected to aid the development of microbiome-based medications and/or supplements, although further verification is needed.
Collapse
Affiliation(s)
- Chiaki Kaga
- Yakult Central Institute, Kunitachi-shi, Tokyo, Japan.
| | | | - Atsuko Hokkyo
- Yakult Central Institute, Kunitachi-shi, Tokyo, Japan
| | - Yuzuru Ogata
- Yakult Central Institute, Kunitachi-shi, Tokyo, Japan
| | - Junko Shibata
- Yakult Central Institute, Kunitachi-shi, Tokyo, Japan
| | - Takuro Nagahara
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Maho Nakazawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taisuke Nakagawa
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
5
|
Stübing H, Suchodolski JS, Reisinger A, Werner M, Hartmann K, Unterer S, Busch K. The Effect of Metronidazole versus a Synbiotic on Clinical Course and Core Intestinal Microbiota in Dogs with Acute Diarrhea. Vet Sci 2024; 11:197. [PMID: 38787169 PMCID: PMC11125899 DOI: 10.3390/vetsci11050197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The usefulness of antibiotics in dogs with acute diarrhea (AD) is controversial. It is also unclear what effect metronidazole has on potential enteropathogens such as Clostridium perfringens and Escherichia coli. Thus, the aim of this study was to evaluate the effect of metronidazole vs. a synbiotic on the clinical course and core intestinal bacteria of dogs with AD. Twenty-seven dogs with AD were enrolled in this prospective, randomized, blinded clinical trial and treated with either metronidazole (METg) or a synbiotic (SYNg; E. faecium DSM 10663; NCIMB 10415/4b170). The Canine Acute Diarrhea Severity (CADS) index was recorded daily for eleven days. Bacteria were quantified using qPCR. Data were analyzed using mixed models with repeated measures. A higher concentration of E. coli was observed in the METg group vs. the SYNg group on Day 6 (p < 0.0001) and Day 30 (p = 0.01). Metronidazole had no effect on C. perfringens. C. hiranonis was significantly lower in the METg group than in the SYNg group on Days 6 and 30 (p < 0.0001; p = 0.0015). No significant differences were observed in CADS index, fecal consistency, or defecation frequency between treatment groups (except for the CADS index on one single day). In conclusion, metronidazole negatively impacts the microbiome without affecting clinical outcomes. Thus, synbiotics might be a preferred treatment option for dogs with AD.
Collapse
Affiliation(s)
- Helene Stübing
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, 80539 Munich, Germany (K.H.); (K.B.)
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77840, USA;
| | - Andrea Reisinger
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, 80539 Munich, Germany (K.H.); (K.B.)
| | - Melanie Werner
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland (S.U.)
| | - Katrin Hartmann
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, 80539 Munich, Germany (K.H.); (K.B.)
| | - Stefan Unterer
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland (S.U.)
| | - Kathrin Busch
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, 80539 Munich, Germany (K.H.); (K.B.)
| |
Collapse
|
6
|
Sulaiman JE, Thompson J, Qian Y, Vivas EI, Diener C, Gibbons SM, Safdar N, Venturelli OS. Elucidating human gut microbiota interactions that robustly inhibit diverse Clostridioides difficile strains across different nutrient landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589383. [PMID: 38659900 PMCID: PMC11042340 DOI: 10.1101/2024.04.13.589383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The human gut pathogen Clostridioides difficile displays extreme genetic variability and confronts a changeable nutrient landscape in the gut. We mapped gut microbiota inter-species interactions impacting the growth and toxin production of diverse C. difficile strains in different nutrient environments. Although negative interactions impacting C. difficile are prevalent in environments promoting resource competition, they are sparse in an environment containing C. difficile-preferred carbohydrates. C. difficile strains display differences in interactions with Clostridium scindens and the ability to compete for proline. C. difficile toxin production displays substantial community-context dependent variation and does not trend with growth-mediated inter-species interactions. C. difficile shows substantial differences in transcriptional profiles in the presence of the closely related species C. hiranonis or C. scindens. In co-culture with C. hiranonis, C. difficile exhibits massive alterations in metabolism and other cellular processes, consistent with their high metabolic overlap. Further, Clostridium hiranonis inhibits the growth and toxin production of diverse C. difficile strains across different nutrient environments and ameliorates the disease severity of a C. difficile challenge in a murine model. In sum, strain-level variability and nutrient environments are major variables shaping gut microbiota interactions with C. difficile.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaron Thompson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugenio I. Vivas
- Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, William S. Middleton Veterans Hospital Madison, Madison, WI, USA
| | - Ophelia S. Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Sung CH, Marsilio S, Pilla R, Wu YA, Cavasin JP, Hong MP, Suchodolski JS. Temporal Variability of the Dominant Fecal Microbiota in Healthy Adult Cats. Vet Sci 2024; 11:31. [PMID: 38250937 PMCID: PMC10819787 DOI: 10.3390/vetsci11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
While shifts in gut microbiota have been studied in diseased states, the temporal variability of the microbiome in cats has not been widely studied. This study investigated the temporal variability of the feline dysbiosis index (DI) and the abundance of core bacterial groups in healthy adult cats. The secondary aim was to evaluate the relationship between the fecal abundance of Clostridium hiranonis and the fecal concentrations of unconjugated bile acids. A total of 142 fecal samples collected from 17 healthy cats were prospectively included: nine cats with weekly collection over 3 weeks (at least four time points), five cats with monthly collection over 2 months (three time points), and three cats with additional collections for up to 10 months. The DI remained stable within the reference intervals over two months for all cats (Friedman test, p > 0.2), and 100% of the DI values (n = 142) collected throughout the study period remained within the RI. While some temporal individual variation was observed for individual taxa, the magnitude was minimal compared to cats with chronic enteropathy and antibiotic exposure. Additionally, the abundance of Clostridium hiranonis was significantly correlated with the percentage of fecal primary bile acids, supporting its role as a bile acid converter in cats.
Collapse
Affiliation(s)
- Chi-Hsuan Sung
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Sina Marsilio
- UC Davis School of Veterinary Medicine, Department of Veterinary Medicine and Epidemiology, University of California, Davis, CA 95616, USA
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Yu-An Wu
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Joao Pedro Cavasin
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Min-Pyo Hong
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| |
Collapse
|