1
|
Virmani A, Roy V, Meshram GG, Sural S. Surgical Antimicrobial Prophylaxis in Orthopedic Implant Surgeries: An Analysis of Practices, Outcomes, and Costs. Indian J Orthop 2025; 59:198-207. [PMID: 39886274 PMCID: PMC11775357 DOI: 10.1007/s43465-024-01303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/19/2024] [Indexed: 02/01/2025]
Abstract
Purpose To characterize various regimens used for surgical antimicrobial prophylaxis (SAP) in patients undergoing orthopedic implant surgeries (OISs). Method A prospective observational study was conducted in patients undergoing OISs to identify various antimicrobial regimens used for SAP. Patients were followed up for a month to detect signs of surgical site infections (SSIs). Risk factors that increase the likelihood of SSIs were determined. Adherence to standard guidelines for SAP was evaluated. Cost analysis and adverse drug reaction (ADR) profiling of each of the regimens used were also done. Results Among the 264 patients included, 11 regimens for SAP were followed. Ceftriaxone + amikacin given for 1-5 days was the most common regimen employed (37.87%). One-day regimens (< 24 h) were more commonly prescribed (34.84%) than all other durations (2-5 days). SSIs were observed in 2.37% of the included patients. Gender, presence of cardiovascular comorbidities, low preoperative Hb, and the choice of antimicrobial regimen selected for SAP were associated with SSIs. The adherence rate to standard guidelines for SAP was 35.5%. In our study, ceftriaxone given for < 24 h was the most cost-effective regimen, with the lowest cost per patient (0.28 USD) and no infections. Procurement of ceftriaxone and amikacin contributed to > 70% of the total cost of SAP. Vomiting, epigastric pain, and thrombophlebitis were the common ADRs observed. Conclusion SAP practices for patients undergoing OISs are highly variable, with low adherence to standard guidelines. Development of evidence-based national and institution-specific guidelines, along with regular antibiotic stewardship activities, could help curb the heterogeneity in SAP practices.
Collapse
Affiliation(s)
- Anurag Virmani
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, 110002 India
| | - Vandana Roy
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, 110002 India
| | - Girish Gulab Meshram
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, 110002 India
| | - Sumit Sural
- Department of Orthopaedics, Maulana Azad Medical College, New Delhi, 110002 India
| |
Collapse
|
2
|
Heo S, Noh M, Kim Y, Park S. Stem Cell-Laden Engineered Patch: Advances and Applications in Tissue Regeneration. ACS APPLIED BIO MATERIALS 2025; 8:62-87. [PMID: 39701826 DOI: 10.1021/acsabm.4c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Stem cell-based therapies are emerging as significant approaches in tissue engineering and regenerative medicine, applicable to both fundamental scientific research and clinical practice. Despite remarkable results in clinical studies, challenges such as poor standardization of graft tissues, limited sources, and reduced functionality have hindered the effectiveness of these therapies. In this review, we summarize the engineering approaches involved in fabricating stem cell assisted patches and the substantial strategies for designing stem cell-laden engineered patches (SCP) to complement the existing stem cell-based therapies. We then outline the potential applications of SCP in advancing tissue regeneration and regenerative medicine. By combining living stem cells with engineered patches, SCP can enhance the functions of both components, particularly for tissue engineering applications. Finally, we addressed current challenges, such as ethical considerations, high costs, and regulatory hurdles and proposed future research directions to overcome these barriers.
Collapse
Affiliation(s)
- Seyeong Heo
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Minhyeok Noh
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Yeonseo Kim
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Sunho Park
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
3
|
Guliy OI, Evstigneeva SS. Bacterial Communities and Their Role in Bacterial Infections. Front Biosci (Elite Ed) 2024; 16:36. [PMID: 39736004 DOI: 10.31083/j.fbe1604036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 12/31/2024]
Abstract
Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important. Rapid and accurate detection of bacterial pathogens is paramount in healthcare, food safety, and environmental monitoring. Here, we analyze biofilm composition and describe the main groups of pathogens whose presence in a microbial community leads to infection (Staphylococcus aureus, Enterococcus spp., Cutibacterium spp., bacteria of the HACEK, etc.). Particular attention is paid to bacterial communities that can lead to the development of device-associated infections, damage, and disruption of the normal functioning of medical devices, such as cardiovascular implants, biliary stents, neurological, orthopedic, urological and penile implants, etc. Special consideration is given to tissue-located bacterial biofilms in the oral cavity, lungs and lower respiratory tract, upper respiratory tract, middle ear, cardiovascular system, skeletal system, wound surface, and urogenital system. We also describe methods used to analyze the bacterial composition in biofilms, such as microbiologically testing, staining, microcolony formation, cellular and extracellular biofilm components, and other methods. Finally, we present ways to reduce the incidence of biofilm-caused infections.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
4
|
Singh AV, Chandrasekar V, Prabhu VM, Bhadra J, Laux P, Bhardwaj P, Al-Ansari AA, Aboumarzouk OM, Luch A, Dakua SP. Sustainable bioinspired materials for regenerative medicine: balancing toxicology, environmental impact, and ethical considerations. Biomed Mater 2024; 19:060501. [PMID: 39389102 DOI: 10.1088/1748-605x/ad85bb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
The pursuit of sustainable bioinspired materials for regenerative medicine demands a nuanced balance between scientific advancement, ethical considerations, and environmental consciousness. This abstract encapsulates a comprehensive perspective paper exploring the intricate dynamics of toxicology, environmental impact, and ethical concerns within the realm of bioinspired materials. As the landscape of regenerative medicine evolves, ensuring the biocompatibility and safety of these materials emerges as a pivotal challenge. Our paper delves into the multidimensional aspects of toxicity assessment, encompassing cytotoxicity, genotoxicity, and immunotoxicity analyses. Additionally, we shed light on the complexities of evaluating the environmental impact of bioinspired materials, discussing methodologies such as life cycle assessment, biodegradability testing, and sustainable design approaches. Amid these scientific endeavors, we emphasize the paramount importance of ethical considerations in bioinspired material development, navigating the intricate web of international regulations and ethical frameworks guiding medical materials. Furthermore, our abstract underscores the envisioned future directions and challenges in toxicology techniques, computational modeling, and holistic evaluation, aiming for a comprehensive understanding of the synergistic interplay between sustainable bioinspired materials, toxicity assessment, environmental stewardship, and ethical deliberation.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | | | - Varsha M Prabhu
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
| | - Jolly Bhadra
- Qatar University Young Research centre (QUYRC) Qatar University 2053, Doha, Qatar
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Preeti Bhardwaj
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | | | - Omar M Aboumarzouk
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Clinical Advancement Department, Hamad Medicial Corporation, Doha 3050, Qatar
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Sarada Prasad Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Clinical Advancement Department, Hamad Medicial Corporation, Doha 3050, Qatar
| |
Collapse
|
5
|
Costa B, Alves PM, Fonseca DR, Campos F, Monteiro AC, Shahrour H, Gomes A, Costa F, Gomes P, Martínez-de-Tejada G, Monteiro C, Martins MCL. Dhvar5-chitosan nanogels and their potential to improve antibiotics activity. Int J Biol Macromol 2024; 277:134059. [PMID: 39038581 DOI: 10.1016/j.ijbiomac.2024.134059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/28/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Infection is one of the main causes of orthopedic implants failure, with antibiotic-resistant bacteria playing a crucial role in this outcome. In this work, antimicrobial nanogels were developed to be applied in situ as implant coating to prevent orthopedic-device-related infections. To that regard, a broad-spectrum antimicrobial peptide, Dhvar5, was grafted onto chitosan via thiol-norbornene "photoclick" chemistry. Dhvar5-chitosan nanogels (Dhvar5-NG) were then produced using a microfluidic system. Dhvar5-NG (1010 nanogels (NG)/mL) with a Dhvar5 concentration of 6 μg/mL reduced the burden of the most critical bacteria in orthopedic infections - methicillin-resistant Staphylococcus aureus (MRSA) - after 24 h in medium supplemented with human plasma proteins. Transmission electron microscopy showed that Dhvar5-NG killed bacteria by membrane disruption and cytoplasm release. No signs of cytotoxicity against a pre-osteoblast cell line were verified upon incubation with Dhvar5-NG. To further explore therapeutic alternatives, the potential synergistic effect of Dhvar5-NG with antibiotics was evaluated against MRSA. Dhvar5-NG at a sub-minimal inhibitory concentration (109 NG/mL) demonstrated synergistic effect with oxacillin (4-fold reduction: from 2 to 0.5 μg/mL) and piperacillin (2-fold reduction: from 2 to 1 μg/mL). This work supports the use of Dhvar5-NG as adjuvant of antibiotics to the prevention of orthopedic devices-related infections.
Collapse
Affiliation(s)
- B Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - P M Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - D R Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - F Campos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - A C Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - H Shahrour
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - A Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - F Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - P Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - G Martínez-de-Tejada
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - C Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M C L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
6
|
Bakalakos M, Ampadiotaki MM, Vlachos C, Stylianakis A, Sipsas N, Pneumaticos S, Vlamis J. Advancing Diagnostic Techniques for Implant-Related Infections: the Synergistic Effect of Sonication and Dithiothreitol. MAEDICA 2024; 19:561-565. [PMID: 39553358 PMCID: PMC11565132 DOI: 10.26574/maedica.2024.19.3.561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
PURPOSE Implant-related infections represent a significant complication contributing to increased morbidity and mortality. Determining the microbial agent causing the infection is crucial for successful treatment. Despite the incidence of periprosthetic joint infections (PJIs) rising over time, no diagnostic test with 100% sensitivity is available to identify these infections accurately. The present study aims to determine whether combining sonication with Dithiothreitol (DTT) enhances the accuracy and sensitivity in diagnosing implant-related infections. METHODS Specifically, the present study included 30 patients, who underwent implant removal due to suspicion of infection. Implants were divided into two segments: one was processed using the sonication method and the other one by combining DTT and sonication. RESULTS The mean +/-SD was 81.17 +/- 67.53 CFU/mL for the sonication group and 109.7 +/-62.78 CFU/mL for the combination group. CONCLUSION The results of our study indicate that the combination of DTT and sonication increases the colony count by about 28.53 CFU/mL, which enhances the possibility of detecting orthopaedic implant associated infections.
Collapse
Affiliation(s)
- Matthaios Bakalakos
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, Greece
| | | | - Christos Vlachos
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, Greece
| | | | - Nikolaos Sipsas
- Infectious Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiros Pneumaticos
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, Greece
| | - John Vlamis
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, Greece
| |
Collapse
|
7
|
Blondel M, Machet C, Wildemann B, Abidine Y, Swider P. Mechanobiology of bacterial biofilms: Implications for orthopedic infection. J Orthop Res 2024; 42:1861-1869. [PMID: 38432991 DOI: 10.1002/jor.25822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Postoperative bacterial infections are prevalent complications in both human and veterinary orthopedic surgery, particularly when a biofilm develops. These infections often result in delayed healing, early revision, permanent functional loss, and, in severe cases, amputation. The diagnosis and treatment pose significant challenges, and bacterial biofilm further amplifies the therapeutic difficulty as it confers protection against the host immune system and against antibiotics which are usually administered as a first-line therapeutic option. However, the inappropriate use of antibiotics has led to the emergence of numerous multidrug-resistant organisms, which largely compromise the already imperfect treatment efficiency. In this context, the study of bacterial biofilm formation allows to better target antibiotic use and to evaluate alternative therapeutic strategies. Exploration of the roles played by mechanical factors on biofilm development is of particular interest, especially because cartilage and bone tissues are reactive environments that are subjected to mechanical load. This review delves into the current landscape of biofilm mechanobiology, exploring the role of mechanical factors on biofilm development through a multiscale prism starting from bacterial microscopic scale to reach biofilm mesoscopic size and finally the macroscopic scale of the fracture site or bone-implant interface.
Collapse
Affiliation(s)
- Margaux Blondel
- Small Animal Surgery Department, Lyon University, VetAgro Sup, Marcy l'Etoile, France
| | - Camille Machet
- National Veterinary School of Toulouse, Toulouse, France
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Yara Abidine
- Institut de Mécanique des Fluides (IMFT), CNRS & Toulouse University, Toulouse, France
| | - Pascal Swider
- Institut de Mécanique des Fluides (IMFT), CNRS & Toulouse University, Toulouse, France
| |
Collapse
|
8
|
Zhao Y, Mannala GK, Youf R, Rupp M, Alt V, Riool M. Development of a Galleria mellonella Infection Model to Evaluate the Efficacy of Antibiotic-Loaded Polymethyl Methacrylate (PMMA) Bone Cement. Antibiotics (Basel) 2024; 13:692. [PMID: 39199992 PMCID: PMC11350861 DOI: 10.3390/antibiotics13080692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Prosthetic joint infections (PJIs) can have disastrous consequences for patient health, including removal of the device, and placement of cemented implants is often required during surgery to eradicate PJIs. In translational research, in vivo models are widely used to assess the biocompatibility and antimicrobial efficacy of antimicrobial coatings and compounds. Here, we aim to utilize Galleria mellonella implant infection models to assess the antimicrobial activity of antibiotic-loaded bone cement (ALBC) implants. Therefore, we used commercially available bone cement loaded with either gentamicin alone (PALACOS R+G) or with a combination of gentamicin and vancomycin (COPAL G+V), compared to bone cement without antibiotics (PALACOS R). Firstly, the in vitro antimicrobial activity of ALBC was determined against Staphylococcus aureus. Next, the efficacy of ALBC implants was analyzed in both the G. mellonella hematogenous and early-stage biofilm implant infection model, by monitoring the survival of larvae over time. After 24 h, the number of bacteria on the implant surface and in the tissue was determined. Larvae receiving dual-loaded COPAL G+V implants showed higher survival rates compared to implants loaded with only gentamicin (PALACOS R+G) and the control implants without antibiotics (PALACOS R). In conclusion, G. mellonella larvae infection models with antibiotic-loaded bone cements are an excellent option to study (novel) antimicrobial approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (Y.Z.); (G.K.M.); (R.Y.); (M.R.); (V.A.)
| |
Collapse
|
9
|
Bakalakos M, Vlachos C, Ampadiotaki MM, Stylianakis A, Sipsas N, Pneumaticos S, Vlamis J. Role of Dithiothreitol in Detection of Orthopaedic Implant-Associated Infections. J Pers Med 2024; 14:334. [PMID: 38672961 PMCID: PMC11050915 DOI: 10.3390/jpm14040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Orthopaedic implant-associated infections (OIAIs) represent a notable complication of contemporary surgical procedures, exerting a considerable impact on patient outcomes and escalating healthcare expenditures. Prompt diagnosis holds paramount importance in managing OIAIs, with sonication widely acknowledged as the preferred method for detecting biofilm-associated infections. Recently, dithiothreitol (DTT) has emerged as a potential substitute for sonication, owing to its demonstrated ability to impede biofilm formation. This study aimed to compare the efficacy of DTT with sonication in identifying microorganisms within implants. Conducted as a prospective cohort investigation, the study encompassed two distinct groups: patients with suspected infections undergoing implant removal (Group A) and those slated for hardware explantation (Group B). Hardware segments were assessed for biofilm-related microorganisms using both sonication and DTT, with a comparative analysis of the two methods. A total of 115 patients were enrolled. In Group A, no statistically significant disparity was observed between DTT and sonication. DTT exhibited a sensitivity of 89.47% and specificity of 96.3%. Conversely, in Group B, both DTT and sonication fluid cultures yielded negative results in all patients. Consequently, this investigation suggests that DTT holds comparable efficacy to sonication in detecting OIAIs, offering a novel, cost-effective, and readily accessible diagnostic modality for identifying implant-associated infections.
Collapse
Affiliation(s)
- Matthaios Bakalakos
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (C.V.); (S.P.); (J.V.)
| | - Christos Vlachos
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (C.V.); (S.P.); (J.V.)
| | | | | | - Nikolaos Sipsas
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, School of Medicine, 11527 Athens, Greece
| | - Spiros Pneumaticos
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (C.V.); (S.P.); (J.V.)
| | - John Vlamis
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (C.V.); (S.P.); (J.V.)
| |
Collapse
|
10
|
Lei Z, Liang H, Sun W, Chen Y, Huang Z, Yu B. A biodegradable PVA coating constructed on the surface of the implant for preventing bacterial colonization and biofilm formation. J Orthop Surg Res 2024; 19:175. [PMID: 38459593 PMCID: PMC10921624 DOI: 10.1186/s13018-024-04662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Bone implant infections pose a critical challenge in orthopedic surgery, often leading to implant failure. The potential of implant coatings to deter infections by hindering biofilm formation is promising. However, a shortage of cost-effective, efficient, and clinically suitable coatings persists. Polyvinyl alcohol (PVA), a prevalent biomaterial, possesses inherent hydrophilicity, offering potential antibacterial properties. METHODS This study investigates the PVA solution's capacity to shield implants from bacterial adhesion, suppress bacterial proliferation, and thwart biofilm development. PVA solutions at concentrations of 5%, 10%, 15%, and 20% were prepared. In vitro assessments evaluated PVA's ability to impede bacterial growth and biofilm formation. The interaction between PVA and mCherry-labeled Escherichia coli (E. coli) was scrutinized, along with PVA's therapeutic effects in a rat osteomyelitis model. RESULTS The PVA solution effectively restrained bacterial proliferation and biofilm formation on titanium implants. PVA solution had no substantial impact on the activity or osteogenic potential of MC3T3-E1 cells. Post-operatively, the PVA solution markedly reduced the number of Staphylococcus aureus and E. coli colonies surrounding the implant. Imaging and histological scores exhibited significant improvements 2 weeks post-operation. Additionally, no abnormalities were detected in the internal organs of PVA-treated rats. CONCLUSIONS PVA solution emerges as an economical, uncomplicated, and effective coating material for inhibiting bacterial replication and biofilm formation on implant surfaces, even in high-contamination surgical environments.
Collapse
Affiliation(s)
- Zhonghua Lei
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Orthopedics, The Sixth Peoples Hospital of Huizhou, Huizhou, 516211, China
| | - Haifeng Liang
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Wei Sun
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yan Chen
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhi Huang
- Institute of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China.
| | - Bo Yu
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
11
|
Akay S, Yaghmur A. Recent Advances in Antibacterial Coatings to Combat Orthopedic Implant-Associated Infections. Molecules 2024; 29:1172. [PMID: 38474684 DOI: 10.3390/molecules29051172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Implant-associated infections (IAIs) represent a major health burden due to the complex structural features of biofilms and their inherent tolerance to antimicrobial agents and the immune system. Thus, the viable options to eradicate biofilms embedded on medical implants are surgical operations and long-term and repeated antibiotic courses. Recent years have witnessed a growing interest in the development of robust and reliable strategies for prevention and treatment of IAIs. In particular, it seems promising to develop materials with anti-biofouling and antibacterial properties for combating IAIs on implants. In this contribution, we exclusively focus on recent advances in the development of modified and functionalized implant surfaces for inhibiting bacterial attachment and eventually biofilm formation on orthopedic implants. Further, we highlight recent progress in the development of antibacterial coatings (including self-assembled nanocoatings) for preventing biofilm formation on orthopedic implants. Among the recently introduced approaches for development of efficient and durable antibacterial coatings, we focus on the use of safe and biocompatible materials with excellent antibacterial activities for local delivery of combinatorial antimicrobial agents for preventing and treating IAIs and overcoming antimicrobial resistance.
Collapse
Affiliation(s)
- Seref Akay
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Li B, Thebault P, Labat B, Ladam G, Alt V, Rupp M, Brochausen C, Jantsch J, Ip M, Zhang N, Cheung WH, Leung SYS, Wong RMY. Implants coating strategies for antibacterial treatment in fracture and defect models: A systematic review of animal studies. J Orthop Translat 2024; 45:24-35. [PMID: 38495742 PMCID: PMC10943307 DOI: 10.1016/j.jot.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 03/19/2024] Open
Abstract
Objective Fracture-related infection (FRI) remains a major concern in orthopaedic trauma. Functionalizing implants with antibacterial coatings are a promising strategy in mitigating FRI. Numerous implant coatings have been reported but the preventive and therapeutic effects vary. This systematic review aimed to provide a comprehensive overview of current implant coating strategies to prevent and treat FRI in animal fracture and bone defect models. Methods A literature search was performed in three databases: PubMed, Web of Science and Embase, with predetermined keywords and criteria up to 28 February 2023. Preclinical studies on implant coatings in animal fracture or defect models that assessed antibacterial and bone healing effects were included. Results A total of 14 studies were included in this systematic review, seven of which used fracture models and seven used defect models. Passive coatings with bacteria adhesion resistance were investigated in two studies. Active coatings with bactericidal effects were investigated in 12 studies, four of which used metal ions including Ag+ and Cu2+; five studies used antibiotics including chlorhexidine, tigecycline, vancomycin, and gentamicin sulfate; and the other three studies used natural antibacterial materials including chitosan, antimicrobial peptides, and lysostaphin. Overall, these implant coatings exhibited promising efficacy in antibacterial effects and bone formation. Conclusion Antibacterial coating strategies reduced bacterial infections in animal models and favored bone healing in vivo. Future studies of implant coatings should focus on optimal biocompatibility, antibacterial effects against multi-drug resistant bacteria and polymicrobial infections, and osseointegration and osteogenesis promotion especially in osteoporotic bone by constructing multi-functional coatings for FRI therapy. The translational potential of this paper The clinical treatment of FRI is complex and challenging. This review summarizes novel orthopaedic implant coating strategies applied to FRI in preclinical studies, and offers a perspective on the future development of orthopaedic implant coatings, which can potentially contribute to alternative strategies in clinical practice.
Collapse
Affiliation(s)
- Baoqi Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pascal Thebault
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Béatrice Labat
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Guy Ladam
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | | | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology, and Hygiene, and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ning Zhang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Yang S, Li X, Cang W, Mu D, Ji S, An Y, Wu R, Wu J. Biofilm tolerance, resistance and infections increasing threat of public health. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:233-247. [PMID: 37933277 PMCID: PMC10625689 DOI: 10.15698/mic2023.11.807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 11/08/2023]
Abstract
Microbial biofilms can cause chronic infection. In the clinical setting, the biofilm-related infections usually persist and reoccur; the main reason is the increased antibiotic resistance of biofilms. Traditional antibiotic therapy is not effective and might increase the threat of antibiotic resistance to public health. Therefore, it is urgent to study the tolerance and resistance mechanism of biofilms to antibiotics and find effective therapies for biofilm-related infections. The tolerance mechanism and host reaction of biofilm to antibiotics are reviewed, and bacterial biofilm related diseases formed by human pathogens are discussed thoroughly. The review also explored the role of biofilms in the development of bacterial resistance mechanisms and proposed therapeutic intervention strategies for biofilm related diseases.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Xinfei Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Weihe Cang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Delun Mu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Yuejia An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| |
Collapse
|
14
|
Hui I, Pasquier E, Solberg A, Agrenius K, Håkansson J, Chinga-Carrasco G. Biocomposites containing poly(lactic acid) and chitosan for 3D printing - Assessment of mechanical, antibacterial and in vitro biodegradability properties. J Mech Behav Biomed Mater 2023; 147:106136. [PMID: 37774439 DOI: 10.1016/j.jmbbm.2023.106136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
New bone repair materials are needed for treatment of trauma- and disease-related skeletal defects as they still represent a major challenge in clinical practice. Additionally, new strategies are required to combat orthopedic device-related infections (ODRI), given the rising incidence of total joint replacement and fracture fixation surgeries in increasingly elderly populations. Recently, the convergence of additive manufacturing (AM) and bone tissue engineering (BTE) has facilitated the development of bone healthcare to achieve personalized three-dimensional (3D) scaffolds. This study focused on the development of a 3D printable bone repair material, based on the biopolymers poly(lactic acid) (PLA) and chitosan. Two different types of PLA and chitosan differing in their molecular weight (MW) were explored. The novel feature of this research was the successful 3D printing using biocomposite filaments composed of PLA and 10 wt% chitosan, with clear chitosan entrapment within the PLA matrix confirmed by Scanning Electron Microscopy (SEM) images. Tensile testing of injection molded samples indicated an increase in stiffness, compared to pure PLA scaffolds, suggesting potential for improved load-bearing characteristics in bone scaffolds. However, the potential benefit of chitosan on the biocomposite stiffness could not be reproduced in compression testing of 3D printed cylinders. The antibacterial assays confirmed antibacterial activity of chitosan when dissolved in acetic acid. The study also verified the biodegradability of the scaffolds, with a process producing an acidic environment that could potentially be neutralized by chitosan. In conclusion, the study indicated the feasibility of the proposed PLA/chitosan biocomposite for 3D printing, demonstrating adequate mechanical strength, antibacterial properties and biodegradability, which could serve as a new material for bone repair.
Collapse
Affiliation(s)
- Isabel Hui
- Swiss Federal Institute of Technology Zurich, Switzerland
| | | | | | - Karin Agrenius
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, SE-50115, Borås, Sweden
| | - Joakim Håkansson
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, SE-50115, Borås, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-40530, Gothenburg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | | |
Collapse
|
15
|
Upadhyyaya GK, Tewari S. Enhancing Surgical Outcomes: A Critical Review of Antibiotic Prophylaxis in Orthopedic Surgery. Cureus 2023; 15:e47828. [PMID: 38022210 PMCID: PMC10679787 DOI: 10.7759/cureus.47828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The postoperative burden remains significant due to the possibility of prolonged hospitalization, escalated healthcare costs, and patient distress caused by postorthopedic surgical site infections (SSIs). Orthopedic surgery is likewise faced with a significant challenge posed by these conditions. A positive association has been observed between the presence of postorthopedic SSIs and heightened susceptibility to adverse health outcomes, along with elevated rates of morbidity and mortality. Systemic antibiotic prophylaxis (SAP) reduces the risk of acquiring an SSI. Closed fractures, open fractures, arthroplasty, and percutaneous fixation each possess distinct attributes that impact the data and antimicrobial therapy. When implementing SAP, it is crucial to strike a delicate equilibrium between maintaining effective antibiotic stewardship protocols and preventing the occurrence of SSIs. This practice effectively prevents both the incidence of negative consequences and the emergence of antibiotic resistance. The objective of this study was to examine the existing literature on the use of surgical antibiotic prophylaxis in orthopedic surgery and explore the potential consequences associated with the inappropriate administration of antibiotics.
Collapse
Affiliation(s)
- Gaurav K Upadhyyaya
- Department of Orthopedics, All India Institute of Medical Sciences, Raebareli, Raebareli, IND
| | - Sachchidanand Tewari
- Department of Pharmacology, All India Institute of Medical Sciences, Raebareli, Raebareli, IND
| |
Collapse
|
16
|
Bormann N, Schmock A, Hanke A, Eras V, Ahmed N, Kissner MS, Wildemann B, Brune JC. Analysis of the Ability of Different Allografts to Act as Carrier Grafts for Local Drug Delivery. J Funct Biomater 2023; 14:305. [PMID: 37367268 DOI: 10.3390/jfb14060305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Bone defects and infections pose significant challenges for treatment, requiring a comprehensive approach for prevention and treatment. Thus, this study sought to evaluate the efficacy of various bone allografts in the absorption and release of antibiotics. A specially designed high-absorbency, high-surface-area carrier graft composed of human demineralized cortical fibers and granulated cancellous bone (fibrous graft) was compared to different human bone allograft types. The groups tested here were three fibrous grafts with rehydration rates of 2.7, 4, and 8 mL/g (F(2.7), F(4), and F(8)); demineralized bone matrix (DBM); cortical granules; mineralized cancellous bone; and demineralized cancellous bone. The absorption capacity of the bone grafts was assessed after rehydration, the duration of absorption varied from 5 to 30 min, and the elution kinetics of gentamicin were determined over 21 days. Furthermore, antimicrobial activity was assessed using a zone of inhibition (ZOI) test with S. aureus. The fibrous grafts exhibited the greatest tissue matrix absorption capacity, while the mineralized cancellous bone revealed the lowest matrix-bound absorption capacity. For F(2.7) and F(4), a greater elution of gentamicin was observed from 4 h and continuously over the first 3 days when compared to the other grafts. Release kinetics were only marginally affected by the varied incubation times. The enhanced absorption capacity of the fibrous grafts resulted in a prolonged antibiotic release and activity. Therefore, fibrous grafts can serve as suitable carrier grafts, as they are able to retain fluids such as antibiotics at their intended destinations, are easy to handle, and allow for a prolonged antibiotic release. Application of these fibrous grafts can enable surgeons to provide longer courses of antibiotic administration for septic orthopedic indications, thus minimizing infections.
Collapse
Affiliation(s)
- Nicole Bormann
- Julius Wolff Institut und BIH-Center für Regenerative Therapien und Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, 13353 Berlin, Germany
| | - Aysha Schmock
- Julius Wolff Institut und BIH-Center für Regenerative Therapien und Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, 13353 Berlin, Germany
| | - Anja Hanke
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| | - Volker Eras
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| | - Norus Ahmed
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| | - Maya S Kissner
- Julius Wolff Institut und BIH-Center für Regenerative Therapien und Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, 13353 Berlin, Germany
| | - Britt Wildemann
- Julius Wolff Institut und BIH-Center für Regenerative Therapien und Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, 13353 Berlin, Germany
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Jan C Brune
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| |
Collapse
|
17
|
Deng Y, Zhou C, Fu L, Huang X, Liu Z, Zhao J, Liang W, Shao H. A mini-review on the emerging role of nanotechnology in revolutionizing orthopedic surgery: challenges and the road ahead. Front Bioeng Biotechnol 2023; 11:1191509. [PMID: 37260831 PMCID: PMC10228697 DOI: 10.3389/fbioe.2023.1191509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
An emerging application of nanotechnology in medicine currently being developed involves employing nanoparticles to deliver drugs, heat, light, or other substances to specific types of cells (such as cancer cells). As most biological molecules exist and function at the nanoscale, engineering and manipulating matter at the molecular level has many advantages in the field of medicine (nanomedicine). Although encouraging, it remains unclear how much of this will ultimately result in improved patient care. In surgical specialties, clinically relevant nanotechnology applications include the creation of surgical instruments, suture materials, imaging, targeted drug therapy, visualization methods, and wound healing techniques. Burn lesion and scar management is an essential nanotechnology application. Prevention, diagnosis, and treatment of numerous orthopedic conditions are crucial technological aspects for patients' functional recovery. Orthopedic surgery is a specialty that deals with the diagnosis and treatment of musculoskeletal disorders. In recent years, the field of orthopedics has been revolutionized by the advent of nanotechnology. Using biomaterials comprised of nanoparticles and structures, it is possible to substantially enhance the efficacy of such interactions through nanoscale material modifications. This serves as the foundation for the majority of orthopedic nanotechnology applications. In orthopedic surgery, nanotechnology has been applied to improve surgical outcomes, enhance bone healing, and reduce complications associated with orthopedic procedures. This mini-review summarizes the present state of nanotechnology in orthopedic surgery, including its applications as well as possible future directions.
Collapse
Affiliation(s)
- Yongjun Deng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Haiyan Shao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|