1
|
Jiang H, Qi J, Wang J, Chen J, Feng D, Yang J, Liu X, Liu M, Zhou X, An Z, Lu Y, Ge C, Wang Y. Terramide A: a novel ironophore targeting Acinetobacter baumannii with mechanistic insights into bacterial iron deprivation. J Antibiot (Tokyo) 2025:10.1038/s41429-025-00816-9. [PMID: 40164737 DOI: 10.1038/s41429-025-00816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
Acetobacter baumannii poses escalating clinical challenges due to its exceptional adaptability, demanding innovative antimicrobial strategies. This study pioneers an investigation into the antibacterial efficacy and molecular mechanism of Terramide A, a hydroxamate siderophore isolated from Aspergillus terreus, against notorious A. baumannii. Employing a multidisciplinary approach integrating phenotypic characterization with mechanistic interrogation, we demonstrate that Terramide A exerts significant inhibitory effects against A. baumannii and P. aeruginosa, pathogens critically dependent on siderophore-mediated iron acquisition for survival and virulence. Structural characterization underlines the hydroxamate moieties of Terramide A presumably supports its hypothesized role as a fungal siderophore, involving competitive iron sequestration and bacterial homeostasis. Subsequently, multi-omics investigation of susceptible strain AB19606 delineated a metabolic collapse cascade due to iron acquisition competition: (1) impairment of central metabolism and energy production through oxidative phosphorylation (OXPHO) inhibitions; (2) compromised stress adaptation and bacterial flexibility; (3) compensatory overactivation of siderophores biosynthesis and transportation, depleting metabolic intermediates and exacerbating stress; (4) coordinated suppression of virulence determinants, such as secretory systems and biofilm formation. These molecular derangements translated into phenotypic deficits, including quorum sensing, diminished autoinducer peptides production, and morphological/functional abnormalities. In vivo evaluation in a rat skin wound infection model further demonstrated that Terramide A promotes wound healing and mitigates inflammation, supporting its antibacterial efficacy. These findings establish Terramide A as a promising antibacterial agent and provide critical insights into iron-competitive antimicrobial strategies to exploit micro-nutrient deprivation and metabolic dysfunction. However, further research is needed to optimize the siderophore-based scaffold, clarify its mechanisms, and assess therapeutic potential.
Collapse
Affiliation(s)
- Hanxiang Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiangfeng Qi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiwen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiaqin Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dong Feng
- Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China
| | - Junbiao Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinna Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mengqun Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xvzhe Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhilong An
- Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chun Ge
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China.
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Ataman M, Çelik BÖ. Investigation of the in vitro antimicrobial activity of eravacycline alone and in combination with various antibiotics against MDR Acinetobacter baumanni strains. BMC Microbiol 2025; 25:167. [PMID: 40133833 PMCID: PMC11938564 DOI: 10.1186/s12866-025-03914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/20/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Acinetobacter baumannii is an obligately aerobic, non-motile, non-fermenting, gram-negative, opportunistic pathogen. The fact that this pathogen, which is the leading cause of nosocomial infections, is naturally resistant to many antibiotics and quickly acquires new resistance mechanisms gradually limits the antibiotic options that can be used in treatment. So, our study aims to investigate the in vitro antibacterial effects of eravacycline, a new tetracycline-class antibiotic, and compare this antibiotic with the antibiotics used in the clinic to treat the infection caused by A. baumannii. Also, eravacycline was tested in combination with meropenem or colistin against A. baumannii strains, which are resistant to colistin and meropenem. The antibiotic susceptibility of strains was determined by the microbroth dilution method. In addition, the agar dilution method determined the mutant inhibition concentration (MPC) values of the studied antibiotics. To investigate the effects of the antibiotics mentioned in our study on biofilm formation, the biofilm-forming abilities of the strains were evaluated by the crystal violet staining method. The bactericidal and synergistic effects of the studied antibiotics alone or in combination were determined by the time-dependent killing curve (TKC) method. RESULTS The present antibacterial susceptibility experiments showed that 98% of the strains were multi-drug resistant (MDR). Our results in mutant inhibition studies showed that eravacycline is an antibiotic with the potential to prevent the emergence of resistant mutants with its low MPC value. When the effects of antibiotics on biofilm formation were investigated in our thesis study, it was determined that 95% of our strains formed biofilm. In biofilm inhibition experiments, it was observed that eravacycline at minimum inhibitory concentration (MIC) inhibited biofilm formation by 84% alone, 86% combined with colistin, and 85% combined with meropenem. Our combination experiments showed that 1×MIC eravacycline-meropenem and 4×MIC eravacycline-colistin combinations were synergistic against A. baumannii strains. In addition, the combination of 4×MIC eravacycline-meropenem also showed bactericidal activity at the 24th hour. No antagonist effects were detected in our combination studies. CONCLUSION Present results reveal essential pharmacodynamic data on eravacycline, a new antibiotic for treating A. baumannii infections, which poses a global threat. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Merve Ataman
- Department of Pharmaceutical Microbiology, Istanbul University Institute of Graduate Studies in Health Sciences, Beyazıt, Istanbul, 34116, Turkey
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Istanbul Aydın University, Istanbul, 34295, Turkey
| | - Berna Özbek Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul, 34116, Turkey.
| |
Collapse
|
3
|
Lokireddy SR, Kunchala SR, Vadde R. Advancements in Escherichia coli secretion systems for enhanced recombinant protein production. World J Microbiol Biotechnol 2025; 41:90. [PMID: 40025370 DOI: 10.1007/s11274-025-04302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Escherichia coli is inarguably one of the most studied microorganisms across the spectrum of microbiology. It is very widely used in recombinant protein production owing to its rapid growth, ease of genetic manipulation, and relatively high protein yields. Despite all of its advantages, its inability to efficiently secrete proteins naturally remains a drawback leading to protein aggregation as inclusion bodies in the cytoplasm and consequent low overall protein yield. Therefore, many approaches to mitigate this weakness and enhance extracellular secretion to increase protein yield have been devised. This review explores the natural and engineered secretion systems in E. coli, highlighting their potential for enhanced protein secretion for non-glycosylated proteins. Natural one-step (e.g., Type I and III Secretion Systems) and two-step systems (e.g., Sec and Tat pathways) are detailed alongside recent advancements in genetic engineering, mutagenesis, and synthetic biology approaches aimed at improving protein yield, folding, and secretion efficiency. Emerging technologies, such as the ESETEC® and BacSec® platforms, promise scalable and cost-effective solutions for higher protein production. Challenges, including limited cellular capabilities and protein aggregation, are addressed through innovative strategies like cell wall modification, co-expression of chaperones, and medium optimization. This review emphasizes E. coli's adaptability to industrial applications, and the promising future of recombinant protein technologies.
Collapse
Affiliation(s)
- Sudarsana Reddy Lokireddy
- Oncosmis Biotech Private Limited, Plot No 3, Genpact Rd, IDA Uppal, Hyderabad, TG, 500 007, India
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516 005, India
| | - Sridhar Rao Kunchala
- Oncosmis Biotech Private Limited, Plot No 3, Genpact Rd, IDA Uppal, Hyderabad, TG, 500 007, India.
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516 005, India.
| |
Collapse
|
4
|
Yu L, Zhao Y, Zhang S, Ni W, Zhang L, Xue C, Wang P, Zhang X. Antimicrobial resistance and virulence factors analysis of a multidrug-resistant Acinetobacter baumannii isolated from chickens using whole-genome sequencing. BMC Microbiol 2024; 24:526. [PMID: 39695425 DOI: 10.1186/s12866-024-03694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is currently recognized not only as a significant nosocomial pathogen but also is an emerging bacterial infection in food-producing animals, posing a critical threat to global health. However, this is a hindrance to detailed bioinformatic studies of MDR A. baumannii of chicken origin due to the lack of its complete genome sequence. Here, we report whole-genome sequencing analysis of MDR A. baumannii Y03 isolated from chickens. The Y03 genome consists of 1 circular chromosome and 4 circular plasmids, The Y03 chromosome harbors 41 antimicrobial resistance genes conferring resistance to major classes of antibiotics, including β-lactams, phenicols, macrolides, lincosamides, aminoglycosides, and nitrofurans, as well as 135 virulence factors involved in effector delivery system, immune modulation, adherence, stress survival, biofilm, exotoxin, and nutritional/metabolic factor. The in vivo infection experiments certificated that Y03 was virulent to chickens. Meanwhile, we used PCR amplification method to detect 10 antimicrobial resistance genes including abeM, adeB, adeH, adeK, blaapmC, blaOXA-90, catB9, macB, folP, and parE, as well as 14 virulence genes including lpxC, pilO, fimT, ompA, basA, bauA, gspL, csu, pgaC, plc2, tssA, tviB, bap, and vgrG. Whole-genome sequencing analysis revealed that Y03 contained 46 horizontal gene transfer elements, including 11 genomic islands, 30 transposons, and 5 prophages, as well as 518 mutations associated with reduced virulence and 44 mutations resulting in loss of pathogenicity. Furthermore, there were 22 antibiotic targets and 28 lethal mutations on the Y03 chromosome that could be used as potential targets to prevent, control, and treat infections caused by MDR A. baumannii Y03. Therefore, this study contributes to the development of strategies for the prevention, control, and treatment of A. baumannii infections and their spread in chickens.
Collapse
Affiliation(s)
- Lumin Yu
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, 276005, China.
| | - Yuzhong Zhao
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, 276005, China
| | - Shanpeng Zhang
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, 276005, China
| | - Weishi Ni
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, 276005, China
| | - Lingling Zhang
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, 276005, China
| | - Cong Xue
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, 276005, China
| | - Peikun Wang
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, 276005, China
| | - Xinglin Zhang
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, 276005, China.
| |
Collapse
|
5
|
Lucidi M, Visaggio D, Migliaccio A, Capecchi G, Visca P, Imperi F, Zarrilli R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024; 15:2289769. [PMID: 38054753 PMCID: PMC10732645 DOI: 10.1080/21505594.2023.2289769] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of healthcare-associated infections and hospital outbreaks, particularly in intensive care units. Much of the success of A. baumannii relies on its genomic plasticity, which allows rapid adaptation to adversity and stress. The capacity to acquire novel antibiotic resistance determinants and the tolerance to stresses encountered in the hospital environment promote A. baumannii spread among patients and long-term contamination of the healthcare setting. This review explores virulence factors and physiological traits contributing to A. baumannii infection and adaptation to the hospital environment. Several cell-associated and secreted virulence factors involved in A. baumannii biofilm formation, cell adhesion, invasion, and persistence in the host, as well as resistance to xeric stress imposed by the healthcare settings, are illustrated to give reasons for the success of A. baumannii as a hospital pathogen.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Nasser F, Gaudreau A, Lubega S, Zaker A, Xia X, Mer AS, D'Costa VM. Characterization of the diversity of type IV secretion system-encoding plasmids in Acinetobacter. Emerg Microbes Infect 2024; 13:2320929. [PMID: 38530969 DOI: 10.1080/22221751.2024.2320929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/14/2024] [Indexed: 03/28/2024]
Abstract
The multi-drug resistant pathogen Acinetobacter baumannii has gained global attention as an important clinical challenge. Owing to its ability to survive on surfaces, its capacity for horizontal gene transfer, and its resistance to front-line antibiotics, A. baumannii has established itself as a successful pathogen. Bacterial conjugation is a central mechanism for pathogen evolution. The epidemic multidrug-resistant A. baumannii ACICU harbours a plasmid encoding a Type IV Secretion System (T4SS) with homology to the E. coli F-plasmid, and plasmids with homologous gene clusters have been identified in several A. baumannii sequence types. However the genetic and host strain diversity, global distribution, and functional ability of this group of plasmids is not fully understood. Using systematic analysis, we show that pACICU2 belongs to a group of almost 120 T4SS-encoding plasmids within four different species of Acinetobacter and one strain of Klebsiella pneumoniae from human and environmental origin, and globally distributed across 20 countries spanning 4 continents. Genetic diversity was observed both outside and within the T4SS-encoding cluster, and 47% of plasmids harboured resistance determinants, with two plasmids harbouring eleven. Conjugation studies with an extensively drug-resistant (XDR) strain showed that the XDR plasmid could be successfully transferred to a more divergent A. baumanii, and transconjugants exhibited the resistance phenotype of the plasmid. Collectively, this demonstrates that these T4SS-encoding plasmids are globally distributed and more widespread among Acinetobacter than previously thought, and that they represent an important potential reservoir for future clinical concern.
Collapse
Affiliation(s)
- Farah Nasser
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Avery Gaudreau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Shareefah Lubega
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Arvin Zaker
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Xuhua Xia
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Arvind S Mer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Vanessa M D'Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Karampatakis T, Tsergouli K, Behzadi P. Pan-Genome Plasticity and Virulence Factors: A Natural Treasure Trove for Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:257. [PMID: 38534692 DOI: 10.3390/antibiotics13030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen responsible for a variety of community- and hospital-acquired infections. It is recognized as a life-threatening pathogen among hospitalized individuals and, in particular, immunocompromised patients in many countries. A. baumannii, as a member of the ESKAPE group, encompasses high genomic plasticity and simultaneously is predisposed to receive and exchange the mobile genetic elements (MGEs) through horizontal genetic transfer (HGT). Indeed, A. baumannii is a treasure trove that contains a high number of virulence factors. In accordance with these unique pathogenic characteristics of A. baumannii, the authors aim to discuss the natural treasure trove of pan-genome and virulence factors pertaining to this bacterial monster and try to highlight the reasons why this bacterium is a great concern in the global public health system.
Collapse
Affiliation(s)
| | - Katerina Tsergouli
- Microbiology Department, Agios Pavlos General Hospital, 55134 Thessaloniki, Greece
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| |
Collapse
|
9
|
Ding S, Ma Z, Yu L, Lan G, Tang Y, Li Z, He Z, She X. Comparative genomics and host range analysis of four Ralstonia pseudosolanacearum strains isolated from sunflower reveals genomic and phenotypic differences. BMC Genomics 2024; 25:191. [PMID: 38373891 PMCID: PMC10875864 DOI: 10.1186/s12864-024-10087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Bacterial wilt caused by Ralstonia solanacearum species complex (RSSC) is one of the devastating diseases in crop production, seriously reducing the yield of crops. R. pseudosolanacearum, is known for its broad infrasubspecific diversity and comprises 36 sequevars that are currently known. Previous studies found that R. pseudosolanacearum contained four sequevars (13, 14, 17 and 54) isolated from sunflowers sown in the same field. RESULTS Here, we provided the complete genomes and the results of genome comparison of the four sequevars strains (RS639, RS642, RS647, and RS650). Four strains showed different pathogenicities to the same cultivars and different host ranges. Their genome sizes were about 5.84 ~ 5.94 Mb, encoding 5002 ~ 5079 genes and the average G + C content of 66.85% ~ 67%. Among the coding genes, 146 ~ 159 specific gene families (contained 150 ~ 160 genes) were found in the chromosomes and 34 ~ 77 specific gene families (contained 34 ~ 78 genes) in the megaplasmids from four strains. The average nucleotide identify (ANI) values between any two strains ranged from 99.05% ~ 99.71%, and the proportion of the total base length of collinear blocks accounts for the total gene length of corresponding genome was all more than 93.82%. Then, we performed a search for genomic islands, prophage sequences, the gene clusters macromolecular secretion systems, type III secreted effectors and other virulence factors in these strains, which provided detailed comparison results of their presence and distinctive features compared to the reference strain GMI1000. Among them, the number and types of T2SS gene clusters were different in the four strains, among which RS650 included all five types. T4SS gene cluster of RS639 and RS647 were missed. In the T6SS gene cluster, several genes were inserted in the RS639, RS647, and RS650, and gene deletion was also detected in the RS642. A total of 78 kinds of type III secreted effectors were found, which included 52 core and 9 specific effectors in four strains. CONCLUSION This study not only provided the complete genomes of multiple R. pseudosolanacearum strains isolated from a new host, but also revealed the differences in their genomic levels through comparative genomics. Furthermore, these findings expand human knowledge about the range of hosts that Ralstonia can infect, and potentially contribute to exploring rules and factors of the genetic evolution and analyzing its pathogenic mechanism.
Collapse
Affiliation(s)
- Shanwen Ding
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Zijun Ma
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Lin Yu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Guobing Lan
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Yafei Tang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Zhenggang Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Zifu He
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China.
| | - Xiaoman She
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China.
| |
Collapse
|
10
|
Li P, Zhang S, Wang J, Al-Shamiri MM, Luo K, Liu S, Mi P, Wu X, Liu H, Tian H, Han B, Lei J, Han S, Han L. The role of type VI secretion system genes in antibiotic resistance and virulence in Acinetobacter baumannii clinical isolates. Front Cell Infect Microbiol 2024; 14:1297818. [PMID: 38384301 PMCID: PMC10879597 DOI: 10.3389/fcimb.2024.1297818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The type VI secretion system (T6SS) is a crucial virulence factor in the nosocomial pathogen Acinetobacter baumannii. However, its association with drug resistance is less well known. Notably, the roles that different T6SS components play in the process of antimicrobial resistance, as well as in virulence, have not been systematically revealed. Methods The importance of three representative T6SS core genes involved in the drug resistance and virulence of A. baumannii, namely, tssB, tssD (hcp), and tssM was elucidated. Results A higher ratio of the three core genes was detected in drug-resistant strains than in susceptible strains among our 114 A. baumannii clinical isolates. Upon deletion of tssB in AB795639, increased antimicrobial resistance to cefuroxime and ceftriaxone was observed, alongside reduced resistance to gentamicin. The ΔtssD mutant showed decreased resistance to ciprofloxacin, norfloxacin, ofloxacin, tetracycline, and doxycycline, but increased resistance to tobramycin and streptomycin. The tssM-lacking mutant showed an increased sensitivity to ofloxacin, polymyxin B, and furazolidone. In addition, a significant reduction in biofilm formation was observed only with the ΔtssM mutant. Moreover, the ΔtssM strain, followed by the ΔtssD mutant, showed decreased survival in human serum, with attenuated competition with Escherichia coli and impaired lethality in Galleria mellonella. Discussion The above results suggest that T6SS plays an important role, participating in the antibiotic resistance of A. baumannii, especially in terms of intrinsic resistance. Meanwhile, tssM and tssD contribute to bacterial virulence to a greater degree, with tssM being associated with greater importance.
Collapse
Affiliation(s)
- Pu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jingdan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Mona Mohamed Al-Shamiri
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Kai Luo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shuyan Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Peng Mi
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Laboratory Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaokang Wu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haiping Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Laboratory Medicine, Xi’an Daxing Hospital, Xi’an, China
| | - Huohuan Tian
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jin’e Lei
- Department of Laboratory Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
11
|
Hanafiah A, Sukri A, Yusoff H, Chan CS, Hazrin-Chong NH, Salleh SA, Neoh HM. Insights into the Microbiome and Antibiotic Resistance Genes from Hospital Environmental Surfaces: A Prime Source of Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:127. [PMID: 38391513 PMCID: PMC10885873 DOI: 10.3390/antibiotics13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Hospital environmental surfaces are potential reservoirs for transmitting hospital-associated pathogens. This study aimed to profile microbiomes and antibiotic resistance genes (ARGs) from hospital environmental surfaces using 16S rRNA amplicon and metagenomic sequencing at a tertiary teaching hospital in Malaysia. Samples were collected from patient sinks and healthcare staff counters at surgery and orthopaedic wards. The samples' DNA were subjected to 16S rRNA amplicon and shotgun sequencing to identify bacterial taxonomic profiles, antibiotic resistance genes, and virulence factor pathways. The bacterial richness was more diverse in the samples collected from patient sinks than those collected from staff counters. Proteobacteria and Verrucomicrobia dominated at the phylum level, while Bacillus, Staphylococcus, Pseudomonas, and Acinetobacter dominated at the genus level. Staphylococcus epidermidis and Staphylococcus aureus were prevalent on sinks while Bacillus cereus dominated the counter samples. The highest counts of ARGs to beta-lactam were detected, followed by ARGs against fosfomycin and cephalosporin. We report the detection of mcr-10.1 that confers resistance to colistin at a hospital setting in Malaysia. The virulence gene pathways that aid in antibiotic resistance gene transfer between bacteria were identified. Environmental surfaces serve as potential reservoirs for nosocomial infections and require mitigation strategies to control the spread of antibiotic resistance bacteria.
Collapse
Affiliation(s)
- Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Hamidah Yusoff
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Nur Hazlin Hazrin-Chong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Sharifah Azura Salleh
- Infection Control Unit, Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hui-Min Neoh
- UKM Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
Bello-López E, Escobedo-Muñoz AS, Hernández-Castro R, Cevallos MA. Genome sequence of an Acinetobacter pittii strain obtained from a red -lored parrot with pneumonia. Microbiol Resour Announc 2024; 13:e0103823. [PMID: 38112472 DOI: 10.1128/mra.01038-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Acinetobacter pittii 978-A_19 was obtained from a parrot with pneumonia. It is resistant to ampicillin, carbenicillin, cephalosporins, clindamycin, and trimethoprim + sulfamethoxazole. The genome encodes a new blaADC allele, a blaOXA-502 gene, possesses several virulence genes related to adherence and biofilm formation, and has types I, II, and IV secretion systems.
Collapse
Affiliation(s)
- E Bello-López
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México , Cuernavaca, Morelos, Mexico
| | - A S Escobedo-Muñoz
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México , Cuernavaca, Morelos, Mexico
| | - R Hernández-Castro
- Departmento de Ecología de Patógenos, Hospital General Dr. Manuel Gea González , Ciudad de México, Mexico
| | - M A Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México , Cuernavaca, Morelos, Mexico
| |
Collapse
|
13
|
Kumar L, Bisen M, Harjai K, Chhibber S, Azizov S, Lalhlenmawia H, Kumar D. Advances in Nanotechnology for Biofilm Inhibition. ACS OMEGA 2023; 8:21391-21409. [PMID: 37360468 PMCID: PMC10286099 DOI: 10.1021/acsomega.3c02239] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Biofilm-associated infections have emerged as a significant public health challenge due to their persistent nature and increased resistance to conventional treatment methods. The indiscriminate usage of antibiotics has made us susceptible to a range of multidrug-resistant pathogens. These pathogens show reduced susceptibility to antibiotics and increased intracellular survival. However, current methods for treating biofilms, such as smart materials and targeted drug delivery systems, have not been found effective in preventing biofilm formation. To address this challenge, nanotechnology has provided innovative solutions for preventing and treating biofilm formation by clinically relevant pathogens. Recent advances in nanotechnological strategies, including metallic nanoparticles, functionalized metallic nanoparticles, dendrimers, polymeric nanoparticles, cyclodextrin-based delivery, solid lipid nanoparticles, polymer drug conjugates, and liposomes, may provide valuable technological solutions against infectious diseases. Therefore, it is imperative to conduct a comprehensive review to summarize the recent advancements and limitations of advanced nanotechnologies. The present Review encompasses a summary of infectious agents, the mechanisms that lead to biofilm formation, and the impact of pathogens on human health. In a nutshell, this Review offers a comprehensive survey of the advanced nanotechnological solutions for managing infections. A detailed presentation has been made as to how these strategies may improve biofilm control and prevent infections. The key objective of this Review is to summarize the mechanisms, applications, and prospects of advanced nanotechnologies to provide a better understanding of their impact on biofilm formation by clinically relevant pathogens.
Collapse
Affiliation(s)
- Lokender Kumar
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
- Cancer
Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Monish Bisen
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Kusum Harjai
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Sanjay Chhibber
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Shavkatjon Azizov
- Laboratory
of Biological Active Macromolecular Systems, Institute of Bioorganic
Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
- Faculty
of Life Sciences, Pharmaceutical Technical
University, Tashkent 100084, Uzbekistan
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh173229, India
| |
Collapse
|