1
|
Mikhailova EO. Green Silver Nanoparticles: An Antibacterial Mechanism. Antibiotics (Basel) 2024; 14:5. [PMID: 39858291 PMCID: PMC11762094 DOI: 10.3390/antibiotics14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Silver nanoparticles (AgNPs) are a promising tool in the fight against pathogenic microorganisms. "Green" nanoparticles are especially valuable due to their environmental friendliness and lower energy consumption during production, as well as their ability to minimize the number of toxic by-products. This review focuses on the features of AgNP synthesis using living organisms (bacteria, fungi, plants) and the involvement of various biological compounds in this process. The mechanism of antibacterial activity is also discussed in detail with special attention given to anti-biofilm and anti-quorum sensing activities. The toxicity of silver nanoparticles is considered in light of their further biomedical applications.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
2
|
Mohamed AA, Saed S, El-Sayed SR, Yassin MT, Gad M, Tartour E, Fathey HA, Taha AS, Mohamed AH, Al-Otibi FO, AbdelGawwad MR, Ahmed MMS, Almalki SA, Abdel-Haleem M. A combined therapy of meropenem-ZnO nanoparticles efficiently eliminates carbapenem-resistant Klebsiella pneumoniae biofilms, with reduced nephrotoxicity (in vitro). Lett Appl Microbiol 2024; 77:ovae136. [PMID: 39701814 DOI: 10.1093/lambio/ovae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024]
Abstract
In response to the World Health Organization's research agenda of antimicrobial resistance in human health, this study appraised the antibacterial and antibiofilm synergistic activity of meropenem and ZnO nanoparticles (ZnO-NPs) combination against carbapenem-resistant Klebsiella pneumoniae (CRKP). The minimum inhibitory concentration (MIC) of meropenem in combination was found to be ~1/12 of its MIC alone. The results of microtiter dilution assay showed that the combination was more efficient in reducing the biofilm biomass than meropenem alone or ZnO-NPs alone. The scanning-electron-microscopy micrographs elucidated that the combination of meropenem with ZnO-NPs has significantly enhanced its competence in eradicating the preformed biofilms of CRKP strains. In addition, the relative gene expression results showed that the combination compared to the meropenem alone and ZnO-NPs alone eloquently down-regulated the expression of biofilm genes (mrkA, fimA, and ecpA). Besides, the MTT-assay demonstrated that the combination has limited cytotoxicity against Vero-cells (in vitro). Overall, this study represents an efficient safe enhancement of meropenem to tackle the growing health threat of CRKP and carbapenem-resistant Enterobacterals prevalence.
Collapse
Affiliation(s)
- Alzhraa Ali Mohamed
- Microbiology and Botany Department, Faculty of Science, Zagazig University,Zagazig 44519, Egypt
- Graduate School of Natural and Applied Science, Ege University, Izmir, Türkiye
| | - Safaa Saed
- Microbiology and Botany Department, Faculty of Science, Zagazig University,Zagazig 44519, Egypt
| | - Sara Ramadan El-Sayed
- Microbiology and Botany Department, Faculty of Science, Zagazig University,Zagazig 44519, Egypt
| | - Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, 2455 Riyadh, Saudi Arabia
- King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia
| | - Mohamed Gad
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Eman Tartour
- Microbiology and Botany Department, Faculty of Science, Zagazig University,Zagazig 44519, Egypt
| | - Hoda A Fathey
- Microbiology and Botany Department, Faculty of Science, Zagazig University,Zagazig 44519, Egypt
| | - Asmaa S Taha
- Microbiology and Botany Department, Faculty of Science, Zagazig University,Zagazig 44519, Egypt
| | - Asmaa H Mohamed
- Microbiology and Botany Department, Faculty of Science, Zagazig University,Zagazig 44519, Egypt
| | - Fatimah Olyan Al-Otibi
- Botany and Microbiology Department, College of Science, King Saud University, 2455 Riyadh, Saudi Arabia
| | - Mohamed Ragab AbdelGawwad
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71210 Sarajevo, Bosnia and Herzegovina
| | - Mohamed M Sayed Ahmed
- Microbiology and Botany Department, Faculty of Science, Zagazig University,Zagazig 44519, Egypt
| | - Susan Ahmed Almalki
- Laboratory medicine department, Faculty of Applied Medical Sciences, Al-Baha University, 65779, Saudi Arabia
| | - Mohamed Abdel-Haleem
- Microbiology and Botany Department, Faculty of Science, Zagazig University,Zagazig 44519, Egypt
| |
Collapse
|
3
|
Farhadi K, Rajabi E, Varpaei HA, Iranzadasl M, Khodaparast S, Salehi M. Thymol and carvacrol against Klebsiella: anti-bacterial, anti-biofilm, and synergistic activities-a systematic review. Front Pharmacol 2024; 15:1487083. [PMID: 39512827 PMCID: PMC11540684 DOI: 10.3389/fphar.2024.1487083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Klebsiella poses a significant global threat due to its high antibiotic resistance rate. In recent years, researchers have been seeking alternative antimicrobial agents, leading to the introduction of natural compounds such as monoterpenes, specifically thymol and carvacrol. This review aims to illustrate the potential antimicrobial, anti-biofilm, and synergistic traits of thymol and carvacrol in combat against Klebsiella. Methods Searching PubMed, Scopus, and Web of Science, we reviewed available evidence on the antibacterial effects of thymol, carvacrol, or combined with other compounds against Klebsiella until May 2024. Reference checking was performed after the inclusion of studies. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), fractional inhibitory concentration (FIC), and anti-biofilm activity were gathered, and the MBC/MIC ratio was calculated to assess the bactericidal efficacy. Results We retrieved 38 articles out of 2,652 studies screened. The gathered data assessed the anti-microbial activity of thymol, carvacrol, and both compounds in 17, 10, and 11 studies, respectively. The mean (± standard deviation) non-weighted MIC was 475.46 μg/mL (±509.95) out of 60 MIC for thymol and 279.26 μg/mL (±434.38) out of 68 MIC for carvacrol. Thymol and carvacrol showed anti-biofilm activities in the forms of disruption, inhibition, and mass reduction of biofilms. The MBC/MIC ratio was lower than 4 in 45 out of 47 cases, showing high bactericidal efficacy. FIC values were gathered for 68 combinations of thymol and carvacrol with other compounds, and they were mostly synergistic or additive. Conclusion Thymol and carvacrol alone or in combination with other compounds, specifically known antibiotics, show great antimicrobial activity.
Collapse
Affiliation(s)
- Kousha Farhadi
- Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Erta Rajabi
- Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hesam Aldin Varpaei
- College of Nursing, Michigan State University, East Lansing, MI, United States
| | - Maryam Iranzadasl
- Department of Traditional Medicine, School of Persian Medicine, Shahed University, Tehran, Iran
| | - Sepideh Khodaparast
- Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammadreza Salehi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
4
|
Scandorieiro S, de Oliveira NR, de Souza M, de Castro-Hoshino LV, Baesso ML, Nakazato G, Kobayashi RKT, Panagio LA, Lonni AASG. Nail Lacquer Containing Origanum vulgare and Rosmarinus officinalis Essential Oils and Biogenic Silver Nanoparticles for Onychomycosis: Development, Characterization, and Evaluation of Antifungal Efficacy. Antibiotics (Basel) 2024; 13:892. [PMID: 39335065 PMCID: PMC11428305 DOI: 10.3390/antibiotics13090892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Onychomycosis is a common fungal nail infection for which new antifungals are needed to overcome antimicrobial resistance and the limitations of conventional treatments. This study reports the development of antifungal nail lacquers containing oregano essential oil (OEO), rosemary essential oil (REO), and biogenic silver nanoparticles (bioAgNPs). The formulations (F) were tested against dermatophytes using agar diffusion, ex vivo nail infection, and scanning electron microscopy techniques. They were evaluated for their pharmacotechnical characteristics and by FTIR-PAS to assess permeation across the nail. F-OEO and F-OEO/bioAgNPs were promising candidates for the final nail lacquer formulation, as they permeated through the nail and showed antifungal efficacy against dermatophytes-contaminated nails after 5 days of treatment. Treated nails exhibited decreased hyphae and spores compared to the untreated control; the hyphae were atypically flattened, indicating loss of cytoplasmic content due to damage to the cytoplasmic membrane. The formulations were stable after centrifugation and thermal stress, maintaining organoleptic and physicochemical characteristics. Both F-OEO and F-OEO/bioAgNPs had pH compatible with the nail and drying times (59-90 s) within the reference for nail lacquer. For the first time, OEO and bioAgNPs were incorporated into nail lacquer, resulting in a natural and nanotechnological product for onychomycosis that could combat microbial resistance.
Collapse
Affiliation(s)
- Sara Scandorieiro
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, Hospital Universitário de Londrina, Robert Koch Avenue, 60, Londrina 86038-350, Brazil
| | - Natalia Rodrigues de Oliveira
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, Hospital Universitário de Londrina, Robert Koch Avenue, 60, Londrina 86038-350, Brazil
| | - Monique de Souza
- Department of Physics, Center of Exact Sciences, Universidade Estadual de Maringá, Colombo Avenue, 5790, Maringá 87020-900, Brazil
| | | | - Mauro Luciano Baesso
- Department of Physics, Center of Exact Sciences, Universidade Estadual de Maringá, Colombo Avenue, 5790, Maringá 87020-900, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR-445, Km 380, University Campus, Londrina 86057-970, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR-445, Km 380, University Campus, Londrina 86057-970, Brazil
| | - Luciano Aparecido Panagio
- Laboratory of Medical Mycology and Oral Microbiology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR-445, Km 380, University Campus, Londrina 86057-970, Brazil
| | - Audrey Alesandra Stinghen Garcia Lonni
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, Hospital Universitário de Londrina, Robert Koch Avenue, 60, Londrina 86038-350, Brazil
| |
Collapse
|
5
|
Garry B, Samdavid Thanapaul RJR, Werner LM, Pavlovic R, Rios KE, Antonic V, Bobrov AG. Antibacterial Activity of Ag+ on ESKAPEE Pathogens In Vitro and in Blood. Mil Med 2024; 189:493-500. [PMID: 39160817 DOI: 10.1093/milmed/usae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Bloodstream infections are a significant threat to soldiers wounded in combat and contribute to preventable deaths. Novel and combination therapies that can be delivered on the battlefield or in lower roles of care are urgently needed to address the threat of bloodstream infection among military personnel. In this manuscript, we tested the antibacterial capability of silver ions (Ag+), with long-appreciated antibacterial properties, against ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species, and Escherichia coli) pathogens. MATERIALS AND METHODS We used the GENESYS (RAIN LLC) device to deliver Ag+ to Gram-positive and Gram-negative ESKAPEE organisms grown in broth, human blood, and serum. Following the Ag+ treatment, we quantified the antibacterial effects by quantifying colony-forming units. RESULTS We found that Ag+ was bactericidal against 5 Gram-negative organisms, K pneumoniae, A baumannii, P aeruginosa, E cloacae, and E coli, and bacteriostatic against 2 Gram-positive organisms, E faecium and S aureus. The whole blood and serum inhibited the bactericidal activity of Ag+ against a common agent of bloodstream infection, P aeruginosa. Finally, when Ag+ was added in conjunction with antibiotic in the presence of whole blood, there was no significant effect of Ag+ over antibiotic alone. CONCLUSIONS Our results confirmed that Ag+ has broad-spectrum antibacterial properties. However, the therapeutic value of Ag+ may not extend to the treatment of bloodstream infections because of the inhibition of Ag+ activity in blood and serum.
Collapse
Affiliation(s)
- Brittany Garry
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rex J R Samdavid Thanapaul
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- NRC Research Associateship Programs, National Academies of Sciences, Engineering, and Medicine, Washington, DC 20001, USA
| | - Lacie M Werner
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Radmila Pavlovic
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Kariana E Rios
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
6
|
Iskuzhina L, Batasheva S, Kryuchkova M, Rozhin A, Zolotykh M, Mingaleeva R, Akhatova F, Stavitskaya A, Cherednichenko K, Rozhina E. Advances in the Toxicity Assessment of Silver Nanoparticles Derived from a Sphagnum fallax Extract for Monolayers and Spheroids. Biomolecules 2024; 14:611. [PMID: 38927015 PMCID: PMC11202274 DOI: 10.3390/biom14060611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 06/28/2024] Open
Abstract
The production of nanomaterials through environmentally friendly methods is a top priority in the sustainable development of nanotechnology. This paper presents data on the synthesis of silver nanoparticles using an aqueous extract of Sphagnum fallax moss at room temperature. The morphology, stability, and size of the nanoparticles were analyzed using various techniques, including transmission electron microscopy, Doppler laser velocimetry, and UV-vis spectroscopy. In addition, Fourier transform infrared spectroscopy was used to analyze the presence of moss metabolites on the surface of nanomaterials. The effects of different concentrations of citrate-stabilized and moss extract-stabilized silver nanoparticles on cell viability, necrosis induction, and cell impedance were compared. The internalization of silver nanoparticles into both monolayers and three-dimensional cells spheroids was evaluated using dark-field microscopy and hyperspectral imaging. An eco-friendly method for the synthesis of silver nanoparticles at room temperature is proposed, which makes it possible to obtain spherical nanoparticles of 20-30 nm in size with high bioavailability and that have potential applications in various areas of human life.
Collapse
Affiliation(s)
- Liliya Iskuzhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Svetlana Batasheva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
- Institute for Regenerative Medicine, Sechenov University, Trubetskaya Str. 8/2, 119992 Moscow, Russia
| | - Marina Kryuchkova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Artem Rozhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Mariya Zolotykh
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Rimma Mingaleeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Anna Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia; (A.S.); (K.C.)
| | - Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia; (A.S.); (K.C.)
| | - Elvira Rozhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| |
Collapse
|
7
|
Shariati A, Noei M, Askarinia M, Khoshbayan A, Farahani A, Chegini Z. Inhibitory effect of natural compounds on quorum sensing system in Pseudomonas aeruginosa: a helpful promise for managing biofilm community. Front Pharmacol 2024; 15:1350391. [PMID: 38628638 PMCID: PMC11019022 DOI: 10.3389/fphar.2024.1350391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Pseudomonas aeruginosa biofilm is a community of bacteria that adhere to live or non-living surfaces and are encapsulated by an extracellular polymeric substance. Unlike individual planktonic cells, biofilms possess a notable inherent resistance to sanitizers and antibiotics. Overcoming this resistance is a substantial barrier in the medical and food industries. Hence, while antibiotics are ineffective in eradicating P. aeruginosa biofilm, scientists have explored alternate strategies, including the utilization of natural compounds as a novel treatment option. To this end, curcumin, carvacrol, thymol, eugenol, cinnamaldehyde, coumarin, catechin, terpinene-4-ol, linalool, pinene, linoleic acid, saponin, and geraniol are the major natural compounds extensively utilized for the management of the P. aeruginosa biofilm community. Noteworthy, the exact interaction of natural compounds and the biofilm of this bacterium is not elucidated yet; however, the interference with the quorum sensing system and the inhibition of autoinducer production in P. aeruginosa are the main possible mechanisms. Noteworthy, the use of different drug platforms can overcome some drawbacks of natural compounds, such as insolubility in water, limited oral bioavailability, fast metabolism, and degradation. Additionally, drug platforms can deliver different antibiofilm agents simultaneously, which enhances the antibiofilm potential of natural compounds. This article explores many facets of utilizing natural compounds to inhibit and eradicate P. aeruginosa biofilms. It also examines the techniques and protocols employed to enhance the effectiveness of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Milad Noei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Askarinia
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Farahani
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Li L, Gao X, Li M, Liu Y, Ma J, Wang X, Yu Z, Cheng W, Zhang W, Sun H, Song X, Wang Z. Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies. Front Cell Infect Microbiol 2024; 14:1324895. [PMID: 38465230 PMCID: PMC10920351 DOI: 10.3389/fcimb.2024.1324895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium within the Enterobacteriaceae family that can cause multiple systemic infections, such as respiratory, blood, liver abscesses and urinary systems. Antibiotic resistance is a global health threat and K. pneumoniae warrants special attention due to its resistance to most modern day antibiotics. Biofilm formation is a critical obstruction that enhances the antibiotic resistance of K. pneumoniae. However, knowledge on the molecular mechanisms of biofilm formation and its relation with antibiotic resistance in K. pneumoniae is limited. Understanding the molecular mechanisms of biofilm formation and its correlation with antibiotic resistance is crucial for providing insight for the design of new drugs to control and treat biofilm-related infections. In this review, we summarize recent advances in genes contributing to the biofilm formation of K. pneumoniae, new progress on the relationship between biofilm formation and antibiotic resistance, and new therapeutic strategies targeting biofilms. Finally, we discuss future research directions that target biofilm formation and antibiotic resistance of this priority pathogen.
Collapse
Affiliation(s)
- Lifeng Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mingchao Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yuchun Liu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Jiayue Ma
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zhidan Yu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Weyland Cheng
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Wancun Zhang
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Huiqing Sun
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaorui Song
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Scandorieiro S, Kimura AH, de Camargo LC, Gonçalves MC, da Silva JVH, Risso WE, de Andrade FG, Zaia CTBV, Lonni AASG, Dos Reis Martinez CB, Durán N, Nakazato G, Kobayashi RKT. Hydrogel-Containing Biogenic Silver Nanoparticles: Antibacterial Action, Evaluation of Wound Healing, and Bioaccumulation in Wistar Rats. Microorganisms 2023; 11:1815. [PMID: 37512989 PMCID: PMC10383514 DOI: 10.3390/microorganisms11071815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Wound infections are feared complications due to their potential to increase healthcare costs and cause mortality since multidrug-resistant bacteria reduce treatment options. This study reports the development of a carbomer hydrogel containing biogenic silver nanoparticles (bioAgNPs) and its effectiveness in wound treatment. This hydrogel showed in vitro bactericidal activity after 2 h, according to the time-kill assay. It also reduced bacterial contamination in rat wounds without impairing their healing since the hydrogel hydrophilic groups provided hydration for the injured skin. The high number of inflammatory cells in the first days of the skin lesion and the greater degree of neovascularization one week after wound onset showed that the healing process occurred normally. Furthermore, the hydrogel-containing bioAgNPs did not cause toxic silver accumulation in the organs and blood of the rats. This study developed a bioAgNP hydrogel for the treatment of wounds; it has a potent antimicrobial action without interfering with cicatrization or causing silver bioaccumulation. This formulation is effective against bacteria that commonly cause wound infections, such as Pseudomonas aeruginosa and Staphylococcus aureus, and for which new antimicrobials are urgently needed, according to the World Health Organization's warning.
Collapse
Affiliation(s)
- Sara Scandorieiro
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, University Hospital of Londrina, Londrina 86038-350, Brazil
| | - Angela Hitomi Kimura
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Larissa Ciappina de Camargo
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Marcelly Chue Gonçalves
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - João Vinícius Honório da Silva
- Laboratory of Histopathological Analysis, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Wagner Ezequiel Risso
- Laboratory of Animal Ecophysiology, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Fábio Goulart de Andrade
- Laboratory of Histopathological Analysis, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Cássia Thaïs Bussamra Vieira Zaia
- Laboratory of Neuroendocrine Physiology and Metabolism, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Audrey Alesandra Stinghen Garcia Lonni
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, University Hospital of Londrina, Londrina 86038-350, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Laboratory of Animal Ecophysiology, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Nelson Durán
- Institute of Biology, State University of Campinas, Campinas 13083-862, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| |
Collapse
|