1
|
Yenice G, Ozkanlar S, Bolat I, Yildirim S. The Potential Ability of Betulinic Acid to Prevent Experimentally Induced Acute Pancreatitis in Rats. Basic Clin Pharmacol Toxicol 2025; 136:e70052. [PMID: 40344370 PMCID: PMC12061522 DOI: 10.1111/bcpt.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Acute pancreatitis (AP) is a serious pancreatic inflammatory disease that results in pancreatic enzyme activation and autodegradation. Betulinic acid (BA), a pentacyclic triterpene of natural origin that was isolated from several plants, has anti-inflammatory, immunomodulatory and antioxidant effects that can help with AP. With this study, we aimed to investigate the potential positive effects of BA on l-arginine-induced AP. A total of 24 male rats were divided into four groups (control, BA, AP and BA + AP). Animals in the BA group were given BA 50 mg/kg/day for 7 days. AP was induced by administering two doses of 250-mg/100-g l-arginine to animals in the AP group. The animals in the BA + AP group were administered 50-mg/kg/day BA (gavage) for 7 days and two doses of 250-mg/100-g l-arginine on the seventh day. BA pretreatment inhibited the increased lipase activity caused by AP and showed protective activity against oxidative damage to pancreatic tissue. It decreased the severity of inflammation by suppressing the release of pro-inflammatory cytokines while increasing the level of the anti-inflammatory cytokine IL-10. It showed a protective effect on pancreatic tissue by inhibiting tumour necrosis factor (TNF-α) and Bax expression. The findings of the study show that BA exhibits multifaceted protective activity in experimental AP induced with l-arginine.
Collapse
Affiliation(s)
- Guler Yenice
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional DisordersAtaturk UniversityErzurumTurkey
| | - Seckin Ozkanlar
- Faculty of Veterinary Medicine, Department of BiochemistryAtaturk UniversityErzurumTurkey
| | - Ismail Bolat
- Faculty of Veterinary Medicine, Department of PathologyAtaturk UniversityErzurumTurkey
| | - Serkan Yildirim
- Faculty of Veterinary Medicine, Department of PathologyAtaturk UniversityErzurumTurkey
| |
Collapse
|
2
|
Lao XY, Sun YL, Zhao ZJ, Liu J, Ruan XF. Pharmacological effects of betulinic acid and its protective mechanisms on the cardiovascular system. Fitoterapia 2025; 183:106561. [PMID: 40288588 DOI: 10.1016/j.fitote.2025.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Betulinic acid (BA), a pentacyclic triterpenoid saponin widely found in plants, has attracted attention for its diverse pharmacological activities. Recent studies highlight its cardioprotective potential, promoting its relevance in cardiovascular research. AIM OF THE REVIEW This review summarizes BA's physicochemical properties, structure-activity relationships, natural sources, and synthesis strategies. It further discusses its pharmacokinetics and toxicity to evaluate its drug development potential, with emphasis on cardioprotective effects and related signaling pathways. METHODS Literature was collected from databases such as PubMed and Web of Science, focusing on studies addressing BA's chemical characteristics, biological activities, pharmacokinetics, and cardiovascular relevance. RESULTS BA exerts cardioprotective effects via multiple signaling pathways, including NRF2, NF-κB, MAPK, and NFAT. These contribute to its antioxidant, anti-inflammatory, anti-apoptotic, and anti-proliferative actions, as well as its enhancement of endothelial function through nitric oxide signaling. BA also reduces lipid accumulation. Combined with favorable physicochemical properties and synthetic accessibility, these findings support BA as a promising multifunctional lead compound in cardiovascular pharmacology. CONCLUSION BA shows strong potential as a cardioprotective natural compound. Although further research is needed to validate its clinical efficacy and safety, its multi-target actions and structural versatility provide a solid basis for development in cardiovascular drug discovery.
Collapse
Affiliation(s)
- Xu Yuan Lao
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan Long Sun
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhe Jun Zhao
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Liu
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao Fen Ruan
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Shi H, Yan Z, Du H, Gun S. Transcriptome Analysis Reveals the Molecular Mechanism of Potentilla anserina L. Polysaccharides in Mitigating Zearalenone-Induced Oxidative Stress in Porcine Sertoli Cells. Antioxidants (Basel) 2025; 14:439. [PMID: 40298800 PMCID: PMC12024312 DOI: 10.3390/antiox14040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Zearalenone (ZEA) is a widespread mycotoxin that contaminates cereals and other animal feeds. Sertoli cells (SCs) are the main target of attack by many environmental toxins. Our previous study found that Potentilla anserina L. polysaccharides (PAP-1b) exhibited protective effects against ZEA-induced oxidative damage in testicular SCs. However, the regulatory mechanisms remain incompletely characterized. In this study, SCs were treated with a complete medium (CON group) or medium containing 150 μg/mL PAP-1b (PAP-1b group). After 4 h, 100 μM ZEA was added to the ZEA group and PAP-1b-ZEA group, respectively. Samples were collected after the cells continued to be incubated for 48 h and subsequently subjected to transcriptome sequencing. The results showed that 1018, 7183, and 1023 differentially expressed genes (DEGs) were screened in the CON-vs.-PAP-1b, CON-vs.-ZEA, and ZEA-vs.-PAP-1b-ZEA groups, respectively. Among them, glutathione peroxidase 1 (GPX1) emerges as a key gene within this antioxidant defense mechanism. In addition, these DEGs were significantly enriched in Gene Ontology (GO) terms related to oxidative stress as well as in MAPK and PI3K-AKT signaling pathways, suggesting that PAP-1b effectively mitigated ZEA-induced oxidative damage in SCs by regulating these signaling pathways. These results provide an essential basis for the further elucidation of the role of PAP-1b in mitigating ZEA-induced oxidative damage in SCs.
Collapse
Affiliation(s)
- Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Hong Du
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Innovation Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| |
Collapse
|
4
|
Huang Y, Ma C, Zhu L, Kong L, Huang C, Yang W, He J, Yang M, Huang L, Yuan L, Yi J. The Ameliorative Effect of Betulinic Acid on Oxidative Stress in Mice of Cyclophosphamide-Induced Liver Damage. ENVIRONMENTAL TOXICOLOGY 2025; 40:608-623. [PMID: 39601349 DOI: 10.1002/tox.24444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/02/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
As a conventional immunosuppressive drug, cyclophosphamide (CYP) exhibits strong hepatotoxicity in clinical applications. Betulinic acid (BA) is a natural triterpenoid that protects against liver damage. However, the underlying mechanism has not yet been elucidated. The purpose of this study was to evaluate the ameliorative effects of BA on CYP-induced hepatotoxicity and further clarify the underlying mechanism. BA pretreatment mitigated CYP-induced liver oxidative damage by alleviating histopathological lesions, reducing reactive oxygen species (ROS) accumulation, and restoring the mRNA expression of antioxidant enzymes (Cu-Sod, Mn-Sod, Cat, and Gsh-Px). BA treatment also suppressed CYP-induced oxidative stress by activating the NRF2 pathway and inhibiting the MAPK signaling pathway. Moreover, BA attenuated CYP-triggered hepatic apoptosis by suppressing excessive mitochondrial fission, boosting mitochondrial fusion, and ameliorating pro-apoptotic protein expression (CASP9 and the ratio of BCL-2/BAX) by blocking the oxidative stress-activated mitochondrial apoptotic pathway. Furthermore, PD98059 (an inhibitor of ERK) and/or BA abated CYP-provoked hepatotoxicity by inhibiting the ERK-MAPK and mitochondrial apoptotic pathways, implying that deactivation of the ERK-mediated mitochondrial apoptotic pathway contributed to the hepatoprotective efficacy of BA against CYP-induced oxidative stress. Therefore, BA could be used as a complementary medicine in patients undergoing CYP treatment owing to its hepatoprotective effects.
Collapse
Affiliation(s)
- You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Chaoyang Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Wenjiang Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jiayu He
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Mingqi Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Lin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Liyun Yuan
- College of Agronomy, Xiangyang Polytechnic, Xiangyang, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
Liu M, Li XW, Sun H, Yan YQ, Xia ZY, Refaie A, Zhang NY, Wang S, Tan C, Sun LH. T-2 toxin-induced splenic injury by disrupting the gut microbiota-spleen axis via promoting IL-6/JAK/STAT1 signaling-mediated inflammation and apoptosis and its mitigation by elemental nano-selenium. Arch Toxicol 2025:10.1007/s00204-025-04005-3. [PMID: 40014112 DOI: 10.1007/s00204-025-04005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
T-2 toxin is one of the most toxic A trichothecene mycotoxins prevalent in the environment and food chain, which brings severe health hazards to both animals and humans and it can significantly damage immune function. In this study, we comprehensively explained the impact of T-2 toxin on the spleen through gut microbiota-spleen axis by integrating the transcriptome and microbiome. Our results revealed that dietary T-2 toxin ≥ 1.0 mg/kg exposure significantly inhibited the growth performance and caused spleen injury in broilers chicks, accompanied by oxidative stress and histopathological damage. Cecal microbiome analysis suggested that T-2 toxin exposure caused gut microbial dysbiosis, especially leading to the decrease of some beneficial bacteria genera that enhanced gut barrier and reduced inflammation, including Blautia, Coprococcus, Lachnospira and Anaerostipes belonging to Lachnospiraceae family. Transcriptome analysis suggested that T-2 toxin exposure directly caused splenic inflammation and immune-related signaling, such as cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway and JAK-STAT signaling pathway. Furthermore, by integrating the transcriptome and microbiome analysis, we found that spleen damage induced by T-2 toxin was associated with the abnormal activation of IL-6/JAK/STAT1 signaling pathway-mediated inflammation and apoptosis, which was further verified by western bolt analysis. Notably, dietary selenium supplementation could protect chicks from T-2 toxin-induced adverse effects on growth performance and spleen injury by inhibiting the expression of the IL-6/JAK/STAT1 signaling-related genes. In summary, our findings provided new insights into the immunotoxicity mechanisms of T-2 toxin in the chickens' spleen and highlighted the potential of selenium to alleviate T-2 toxin-induced immunotoxicity.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xue-Wu Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Newhope Liuhe Co. Ltd., Beijing, China
| | - Hua Sun
- Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, 010031, Inner Mongolia, China
| | - Yi-Qin Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Yuan Xia
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alainaa Refaie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ni-Ya Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Chen M, Zhang Y, Zhao Y, Cao K, Niu R, Guo D, Sun Z. Complex immunotoxic effects of T-2 Toxin on the murine spleen and thymus: Oxidative damage, inflammasomes, apoptosis, and immunosuppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117476. [PMID: 39644562 DOI: 10.1016/j.ecoenv.2024.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
T-2 toxin (T-2), a highly stable and toxic mycotoxin, poses a significant public health risk as an inevitable environmental pollutant. However, the mechanisms behind its immunotoxic and immunosuppressive effects are not fully understood. For this study, sixty healthy 4-week-old male C57BL/6 N mice were divided randomly into four groups and treated for 28 days with T-2 concentrations of 0, 0.5, 1.0, and 2.0 mg/kg. Our findings revealed significant damage to the thymus and spleen that was proportional to the dose administered, as evidenced by changes in organ indices and histopathological abnormalities. We observed mitochondrial swelling, chromatin condensation, and nuclear structure disruptions in these organs. Even at low doses (0.5 mg/kg), T-2 administration resulted in significant immunosuppression, as evidenced by disturbed blood parameters and altered CD4 + /CD8 + ratios. Elevated ROS and MDA levels indicate oxidative damage, whereas SOD, T-AOC, CAT, and GSH levels are reduced in both the thymus and spleen. Furthermore, the levels of NLRP3, ASC, caspase-1, and IL-1β proteins were significantly elevated, indicating the activation of the NLRP3 inflammasome pathway. Additionally, activation of the apoptosis pathway was demonstrated by an increased Bax/Bcl-2 ratio and heightened activation of caspase-3 and -9. Transcriptomic analysis elucidated the pivotal role of mitochondrial pathways in T-2-induced immunotoxicity. This study elucidates the significant immunotoxic effects of T-2 on the murine spleen and thymus, detailing the underlying mechanisms of T-2-induced immunosuppression. The key mechanisms identified include oxidative stress, activation of the NLRP3 inflammasome, apoptosis, and mitochondrial dysfunction. These findings reveal critical pathways through which T-2 impairs immune system functionality and provide a basis for developing targeted therapeutic strategies to mitigate its immunotoxic effects.
Collapse
Affiliation(s)
- Mingyan Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Yanfang Zhang
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453000, China
| | - Yangbo Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Kewei Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Dongguang Guo
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453000, China.
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China.
| |
Collapse
|
7
|
He Y, Zhu X, Song H, Liu Y, Cao C. Sodium butyrate alleviates T-2 toxin-induced liver toxicity and renal toxicity in quails by modulating oxidative stress-related Nrf2 signaling pathway, inflammation, and CYP450 enzyme system. J Food Sci 2024; 89:8036-8053. [PMID: 39363242 DOI: 10.1111/1750-3841.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 10/05/2024]
Abstract
T-2 toxin is a member of class A aspergilloides toxins, one of the most prevalent mycotoxins that contaminate feed and food. Direct ingestion of animals or feed contaminated by T-2 toxin can cause various animal diseases. Butyrate is an organic fatty acid featuring a four-carbon chain, which is commonly found in the form of sodium butyrate (NaB). NaB has several biological functions and pharmacological effects. However, the role of sodium butyrate in alleviating T-2 toxin-induced hepatorenal toxicity has not been explored. In this study, 240 juvenile quails were evenly assigned into 4 groups. The experimental setup comprised four groups: The control group received a standard diet; the toxin group received a diet containing 0.9 mg/kg T-2 toxin; the butyrate group received a diet containing 0.5 g/kg NaB; and the T-2 treatment group received a diet containing both 0.9 mg/kg T-2 toxin and 0.5 g/kg NaB. We evaluated the histopathological changes in the kidney and liver on Days 14 and 28 and explored the molecular mechanisms involving oxidative stress, inflammation, and expression of nuclear xenobiotic receptors (NXRs). Our results showed that T-2 toxin exposure-induced inflammation in the liver and kidney by activating the oxidative stress pathway and modulating expression of NXRs to regulate related CYP450 isoforms, ultimately leading to histopathological injury in the liver and kidney, whereas sodium butyrate ameliorated this injury. These results offer novel insights into the molecular mechanisms underlying the protective effects of sodium butyrate in mitigating T-2 toxin-induced hepatorenal injury in juvenile quails. PRACTICAL APPLICATION: The mechanisms of T-2 toxin toxicity have been well described in experimental animals, but studies in birds are limited. With the development of society, the market scale of quails farming has been expanding, and the value of quails meat and eggs is increasing; there is an urgent need to clarify the harm of T-2 toxin to quails and its mechanism.
Collapse
Affiliation(s)
- Yihao He
- College of Life Science and Engineering, Foshan University/Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, People's Republic of China
| | - Xueyan Zhu
- College of Life Science and Engineering, Foshan University/Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, People's Republic of China
| | - Huanni Song
- College of Life Science and Engineering, Foshan University/Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, People's Republic of China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, Guangdong, People's Republic of China
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University/Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Zhao H, Huang Y, Yang W, Huang C, Ou Z, He J, Yang M, Wu J, Yao H, Yang Y, Yi J, Kong L. Viola yedoensis Makino alleviates lipopolysaccharide-induced intestinal oxidative stress and inflammatory response by regulating the gut microbiota and NF-κB-NLRP3/ Nrf2-MAPK signaling pathway in broiler. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116692. [PMID: 38971097 DOI: 10.1016/j.ecoenv.2024.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Viola yedoensis Makino (Vy) is a well-known traditional Chinese medicine widely used to treat inflammatory diseases. However, the regulatory effects of dietary Vy supplementation on lipopolysaccharide (LPS)-induced intestinal damage in broilers and the underlying molecular mechanisms remain unclear. In this study, broilers were intraperitoneally injected with 1 mg/kg LPS on days 17, 19 and 21 to induce intestinal damage. Vy supplementation at 0.5, 1.5 and 4.5 % in the diet was administered separately for 21 days to investigate the potential protective effects of Vy supplementation against LPS-induced intestinal impairment in broilers. Vy supplementation improved intestinal morphology and restored growth performance. Vy supplementation attenuated intestinal inflammation by regulating the nuclear factor kappa B (NF-κB) / NLR family pyrin domain-containing 3 (NLRP3) signaling pathway and inhibited its downstream pro-inflammatory factor levels. In addition, Vy supplementation relieved intestinal oxidative impairment by regulating the nuclear factor erythroid-2 related factor 2 (Nrf2) / mitogen-activated protein kinase (MAPK) signaling pathway and downstream antioxidant enzyme activity. Vy supplementation reduced LPS-induced mitochondrial damage and apoptosis. Furthermore, Vy supplementation alleviated LPS-induced intestinal inflammation and oxidative damage in chickens by increasing the abundance of protective bacteria (Lactobacillus and Romboutsia) and reducing the number of pathogenic bacteria (unclassified_f_Ruminococcaceae, unclassified_f_Oscillospiraceae and norank_f_norank_o_Clostridia_vadinBB60_group). Overall, Vy supplementation effectively ameliorated LPS-induced intestinal damage by regulating the NF-κB-NLRP3/Nrf2-MAPK signaling pathway and maintaining intestinal microbiota balance. Vy supplementation can be used as a dietary supplement to protect broilers against intestinal inflammation and oxidative damage.
Collapse
Affiliation(s)
- Haoqiang Zhao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wenjiang Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jiayu He
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Mingqi Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jiao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Huan Yao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yu Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
9
|
Fularski P, Czarnik W, Dąbek B, Lisińska W, Radzioch E, Witkowska A, Młynarska E, Rysz J, Franczyk B. Broader Perspective on Atherosclerosis-Selected Risk Factors, Biomarkers, and Therapeutic Approach. Int J Mol Sci 2024; 25:5212. [PMID: 38791250 PMCID: PMC11121693 DOI: 10.3390/ijms25105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands as the leading cause of mortality worldwide. At its core lies a progressive process of atherosclerosis, influenced by multiple factors. Among them, lifestyle-related factors are highlighted, with inadequate diet being one of the foremost, alongside factors such as cigarette smoking, low physical activity, and sleep deprivation. Another substantial group of risk factors comprises comorbidities. Amongst others, conditions such as hypertension, diabetes mellitus (DM), chronic kidney disease (CKD), or familial hypercholesterolemia (FH) are included here. Extremely significant in the context of halting progression is counteracting the mentioned risk factors, including through treatment of the underlying disease. What is more, in recent years, there has been increasing attention paid to perceiving atherosclerosis as an inflammation-related disease. Consequently, efforts are directed towards exploring new anti-inflammatory medications to limit ASCVD progression. Simultaneously, research is underway to identify biomarkers capable of providing insights into the ongoing process of atherosclerotic plaque formation. The aim of this study is to provide a broader perspective on ASCVD, particularly focusing on its characteristics, traditional and novel treatment methods, and biomarkers that can facilitate its early detection.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Alicja Witkowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
10
|
Wang P, Sun LH, Wang X, Wu Q, Liu A. Effective protective agents against the organ toxicity of T-2 toxin and corresponding detoxification mechanisms: A narrative review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:251-266. [PMID: 38362519 PMCID: PMC10867609 DOI: 10.1016/j.aninu.2023.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 12/01/2023] [Indexed: 02/17/2024]
Abstract
T-2 toxin is one of the most widespread and toxic fungal toxins in food and feed. It can cause gastrointestinal toxicity, hepatotoxicity, immunotoxicity, reproductive toxicity, neurotoxicity, and nephrotoxicity in humans and animals. T-2 toxin is physicochemically stable and does not readily degrade during food and feed processing. Therefore, suppressing T-2 toxin-induced organ toxicity through antidotes is an urgent issue. Protective agents against the organ toxicity of T-2 toxin have been recorded widely in the literature, but these protective agents and their molecular mechanisms of detoxification have not been comprehensively summarized. In this review, we provide an overview of the various protective agents to T-2 toxin and the molecular mechanisms underlying the detoxification effects. Targeting appropriate targets to antagonize T-2 toxin toxicity is also an important option. This review will provide essential guidance and strategies for the better application and development of T-2 toxin antidotes specific for organ toxicity in the future.
Collapse
Affiliation(s)
- Pengju Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Lv-hui Sun
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
11
|
Vörösházi J, Neogrády Z, Mátis G, Mackei M. Pathological consequences, metabolism and toxic effects of trichothecene T-2 toxin in poultry. Poult Sci 2024; 103:103471. [PMID: 38295499 PMCID: PMC10846437 DOI: 10.1016/j.psj.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Contamination of feed with mycotoxins has become a severe issue worldwide. Among the most prevalent trichothecene mycotoxins, T-2 toxin is of particular importance for livestock production, including poultry posing a significant threat to animal health and productivity. This review article aims to comprehensively analyze the pathological consequences, metabolism, and toxic effects of T-2 toxin in poultry. Trichothecene mycotoxins, primarily produced by Fusarium species, are notorious for their potent toxicity. T-2 toxin exhibits a broad spectrum of negative effects on poultry species, leading to substantial economic losses as well as concerns about animal welfare and food safety in modern agriculture. T-2 toxin exposure easily results in negative pathological consequences in the gastrointestinal tract, as well as in parenchymal tissues like the liver (as the key organ for its metabolism), kidneys, or reproductive organs. In addition, it also intensely damages immune system-related tissues such as the spleen, the bursa of Fabricius, or the thymus causing immunosuppression and increasing the susceptibility of the animals to infectious diseases, as well as making immunization programs less effective. The toxin also damages cellular processes on the transcriptional and translational levels and induces apoptosis through the activation of numerous cellular signaling cascades. Furthermore, according to recent studies, besides the direct effects on the abovementioned processes, T-2 toxin induces the production of reactive molecules and free radicals resulting in oxidative distress and concomitantly occurring cellular damage. In conclusion, this review article provides a complex and detailed overview of the metabolism, pathological consequences, mechanism of action as well as the immunomodulatory and oxidative stress-related effects of T-2 toxin. Understanding these effects in poultry is crucial for developing strategies to mitigate the impact of the T-2 toxin on avian health and food safety in the future.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary.
| |
Collapse
|
12
|
Huang C, Ou Z, Kong L, Huang Y, Yang W, He J, Yang M, Wu J, Xiang S, Zhou Y, Yi J. Betulinic acid attenuates T-2 toxin-induced lung injury by activating Nrf2 signaling pathway and inhibiting MAPK/NF-κB signaling pathway. Toxicon 2024; 241:107652. [PMID: 38395262 DOI: 10.1016/j.toxicon.2024.107652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
T-2 toxin, a type-A trichothecene mycotoxin, exists ubiquitously in mildewed foods and feeds. Betulinic acid (BA), a pentacyclic triterpenoid derived from plants, has the effect of relieving inflammation and oxidative stress. The purpose of this study was to investigate whether BA mitigates lung impairment caused by T-2 toxin and elucidate the underlying mechanism. The results indicated that T-2 toxin triggered the inflammatory cell infiltration, morphological alterations and cell apoptosis in the lungs. It is gratifying that BA ameliorated T-2 toxin-caused lung injury. The protein expression of nuclear factor erythrocyte 2-related factor 2 (Nrf2) pathway and the markers of antioxidative capability were improved in T-2 toxin induced lung injury by BA mediated protection. Simultaneously, BA supplementation could suppress T-2 toxin-induced mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB)-dependent inflammatory response and mitochondrial apoptotic pathway. Therefore, T-2 toxin gave rise to pulmonary toxicity, but these changes were moderated by BA administration through regulation of the Nrf2/MAPK/NF-κB pathway, which maybe offer a viable alternative for mitigating the lung impairments caused by the mycotoxin.
Collapse
Affiliation(s)
- Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenjiang Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Jiayu He
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Mingqi Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Siting Xiang
- Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China.
| | - Yu Zhou
- Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
13
|
Zhong L, Wu C, Liao L, Wu Y. Mycoplasma synoviae induce spleen tissue damage and inflammatory response of chicken through oxidative stress and apoptosis. Virulence 2023:2283895. [PMID: 37963095 DOI: 10.1080/21505594.2023.2283895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Mycoplasma synovium (MS) is a prominent avian pathogen known to elicit robust inflammatory responses in birds while evading immune detection, often leading to chronic infection and immune compromise. The mechanisms underpinning MS-mediated splenic tissue damage in chickens, however, remain undefined. In our investigation with 7-day-old SPF chickens, we administered an MS-Y bacterial solution (200 µl, 1 × 109 CCU/ml) through eye and nose droplets, collecting spleen samples on days 3, 6, and 12 post-infection. Comprehensive analyses utilizing histopathology, electron microscopy, TUNEL assay, qRT-PCR, and western blot were employed. Results demonstrated that MS-infection downregulated T-SOD, GSH-PX, and CAT, while concurrently elevating iNOS, NO, and MDA levels. Evidently, MS-induced oxidative stress compromised the spleen's antioxidant defences. Histological examinations pinpointed splenic damage characterized by lymphocyte reduction and increased inflammatory cell infiltration. Ultrastructural observations revealed clear apoptotic markers, including mitochondrial perturbations and nuclear anomalies. Importantly, MS induced significant spleen tissue apoptosis, as supported by TUNEL assay outputs and gene expression profiles associated with apoptosis. Concurrently, we observed upregulated expressions of mRNAs and proteins affiliated with the NF-κB/MAPK signalling cascade (p < 0.05). Collectively, our data elucidate that MS infection induces splenic apoptosis and oxidative disturbances, perturbs tissue integrity, and potentiates the NF-κB/MAPK-mediated inflammatory cascade.
Collapse
Affiliation(s)
- Lemiao Zhong
- University Key Laboratory for Integrated ChineseTraditional and Western Veterinary Medicine and Animal Healthcare, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture And Forestry University, Fuzhou, Fujian Province, China
| | - Chunlin Wu
- University Key Laboratory for Integrated ChineseTraditional and Western Veterinary Medicine and Animal Healthcare, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture And Forestry University, Fuzhou, Fujian Province, China
| | - Lvyan Liao
- University Key Laboratory for Integrated ChineseTraditional and Western Veterinary Medicine and Animal Healthcare, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture And Forestry University, Fuzhou, Fujian Province, China
| | - Yijian Wu
- University Key Laboratory for Integrated ChineseTraditional and Western Veterinary Medicine and Animal Healthcare, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture And Forestry University, Fuzhou, Fujian Province, China
| |
Collapse
|
14
|
Chen F, Wang Y, Chen Y, Fan J, Zhang C, He X, Yang X. JNK molecule is a toxic target for IPEC-J2 cell barrier damage induced by T-2 toxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115247. [PMID: 37453270 DOI: 10.1016/j.ecoenv.2023.115247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The most prevalent contaminated mycotoxin in feed and grain is T-2 toxin. The T-2 toxin's primary action target is the gut because it is the main organ of absorption. T-2 toxin can cause intestinal damage, but, few molecular mechanisms have been elucidated. It is important to discover the key pathways by which T-2 toxin causes enterotoxicity. In this research, IPEC-J2 cells are used as a cell model to investigate the function of the MAPK signaling pathway in T-2 toxin-induced intestinal epithelial cell damage. Throughout this research, T-2 toxin results in functional impairment in IPEC-J2 cells by reducing the TJ proteins Claudin, Occludin-1, ZO-1, N-cadherin, and CX-43 expression. T-2 toxin significantly reduced the survival of IPEC-J2 cells and increased LDH release in a dose-dependent way. T-2 toxin induced IPEC-J2 cell oxidative stress by raising ROS and MDA content, and mitochondrial damage was indicated by a decline in MMP and an increase in the opening degree of MPTP. T-2 toxin upregulated the expression of ERK, P38 and JNK, which triggered the MAPK signaling pathway. In addition, T-2 toxin caused IPEC-J2 cell inflammation responses reflected by increased the levels of inflammation-related factors IL-8, p65, P-p65 and IL-6, and down-regulated IL-10 expression level. Inhibition JNK molecule can ease IPEC-J2 cell functional impairment and inflammatory response. In conclusion, as a consequence of the T-2 toxin activating the JNK molecule, oxidative stress and mitochondrial damage are induced, which impair cellular inflammation.
Collapse
Affiliation(s)
- Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Yunhe Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Jiayan Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Xiuyuan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002 Henan, China.
| |
Collapse
|
15
|
Wang Y, Liu Y, Huang T, Chen Y, Song W, Chen F, Jiang Y, Zhang C, Yang X. Nrf2: A Main Responsive Element of the Toxicity Effect Caused by Trichothecene (T-2) Mycotoxin. TOXICS 2023; 11:393. [PMID: 37112621 PMCID: PMC10146852 DOI: 10.3390/toxics11040393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
T-2 toxin, the most toxic type A trichothecene mycotoxin, is produced by Fusarium, and is widely found in contaminated feed and stored grains. T-2 toxin is physicochemically stable and is challenging to eradicate from contaminated feed and cereal, resulting in food contamination that is inescapable and poses a major hazard to both human and animal health, according to the World Health Organization. Oxidative stress is the upstream cause of all pathogenic variables, and is the primary mechanism through which T-2 toxin causes poisoning. Nuclear factor E2-related factor 2 (Nrf2) also plays a crucial part in oxidative stress, iron metabolism and mitochondrial homeostasis. The major ideas and emerging trends in future study are comprehensively discussed in this review, along with research progress and the molecular mechanism of Nrf2's involvement in the toxicity impact brought on by T-2 toxin. This paper could provide a theoretical foundation for elucidating how Nrf2 reduces oxidative damage caused by T-2 toxin, and a theoretical reference for exploring target drugs to alleviate T-2 toxin toxicity with Nrf2 molecules.
Collapse
Affiliation(s)
- Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Yu Liu
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Tingyu Huang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Yunhe Chen
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Wenxi Song
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New District, Zhengzhou 450002, China
| |
Collapse
|
16
|
T-2 toxin-induced intestinal damage with dysregulation of metabolism, redox homeostasis, inflammation, and apoptosis in chicks. Arch Toxicol 2023; 97:805-817. [PMID: 36695871 DOI: 10.1007/s00204-023-03445-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
T-2 toxin is a worldwide problem for feed and food safety, leading to livestock and human health risks. The objective of this study was to explore the mechanism of T-2 toxin-induced small intestine injury in broilers by integrating the advanced microbiomic, metabolomic and transcriptomic technologies. Four groups of 1-day-old male broilers (n = 4 cages/group, 6 birds/cage) were fed a control diet and control diet supplemented with T-2 toxin at 1.0, 3.0, and 6.0 mg/kg, respectively, for 2 weeks. Compared with the control, dietary T-2 toxin reduced feed intake, body weight gain, feed conversion ratio, and the apparent metabolic rates and induced histopathological lesions in the small intestine to varying degrees by different doses. Furthermore, the T-2 toxin decreased the activities of glutathione peroxidase, thioredoxin reductase and total antioxidant capacity but increased the concentrations of protein carbonyl and malondialdehyde in the duodenum in a dose-dependent manner. Moreover, the integrated microbiomic, metabolomic and transcriptomic analysis results revealed that the microbes, metabolites, and transcripts were primarily involved in the regulation of nucleotide and glycerophospholipid metabolism, redox homeostasis, inflammation, and apoptosis were related to the T-2 toxin-induced intestinal damage. In summary, the present study systematically elucidated the intestinal toxic mechanisms of T-2 toxin, which provides novel ideas to develop a detoxification strategy for T-2 toxin in animals.
Collapse
|
17
|
Zhang J, Han Y, Song M, Wang Q, Cao Z, Yang X, Li Y. Selenium Improves Bone Microenvironment-Related Hematopoiesis and Immunity in T-2 Toxin-Exposed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2590-2599. [PMID: 36693005 DOI: 10.1021/acs.jafc.2c08275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The T-2 toxin is one of the most frequent contaminants in the environment and agricultural production globally. It exerts a wide range of toxic effects. Selenium (Se), as an antioxidant, has the potential to be widely used to antagonize mycotoxin toxicity. To investigate the protective effects of Se on bone microenvironment (BM)-related hematopoiesis and immunity after T-2 toxin exposure, 36 male mice were treated with the T-2 toxin (1 mg/kg) and/or Se (0.2 mg/kg) by intragastric administration for 28 days. The results showed that Se alleviated T-2 toxin-induced cytopenia and splenic extramedullary hematopoiesis. Se also significantly relieved T-2 toxin-induced immunosuppression, as assessed by immune factors and lymphocytes. Furthermore, Se also attenuated oxidative stress and apoptosis and improved the BM in T-2 toxin-exposed mice. Therefore, Se improves BM-related hematopoiesis and immunity after T-2 toxin exposure. This study provides references for identifying the toxic mechanism and screening potential therapeutic drugs of the T-2 toxin.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanfei Han
- Liaoning Agricultural Technical College, Yingkou, Liaoning 115009, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
18
|
Yu X, Zhang C, Chen K, Liu Y, Deng Y, Liu W, Zhang D, Jiang G, Li X, Giri SS, Park SC, Chi C. Dietary T-2 toxin induces transcriptomic changes in hepatopancreas of Chinese mitten crab (Eriocheir sinensis) via nutrition metabolism and apoptosis-related pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114397. [PMID: 36527851 DOI: 10.1016/j.ecoenv.2022.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Long-term feed route exposure to T-2 toxin was proved to elicit growth retarding effects and induction of oxidative stress and apoptosis in Chinese mitten crab (Eriocheir sinensis). However, no study with a holistic perspective has been conducted to date to further describe the in-depth toxicological mechanism of T-2 toxin in E.sinensis. In this study, an RNA-Sequencing (RNA-seq) was used in this study to investigate the effects of feed supplementation with 0 mg/kg and 4 mg/kg T-2 toxin on the hepatopancreas transcriptome of E.sinensis and establish a hepatopancreas transcriptome library of T-2 toxin chronically exposed crabs after five weeks, where 14 differentially expressed genes (DEGs) were screened out across antioxidant, apoptosis, autophagy, glucolipid metabolism and protein synthesis. The actual expression of all the DEGs (Caspase, ATG4, PERK, ACSL, CAT, BIRC2, HADHA, HADHB, ACOX, PFK, eEFe1, eIF4ɑ, RPL13Ae) was also analyzed by real-time quantitative PCR (RT-qPCR). It was demonstrated that long-term intake of large amounts of T-2 toxin could impair antioxidant enzyme activity, promote apoptosis and protective autophagy, disrupt lipid metabolism and inhibit protein synthesis in the hepatopancreas of E.sinensis. In conclusion, this study explored the toxicity mechanism of T-2 toxin on the hepatopancreas of E.sinensis at the mRNA level, which lays the foundation for further investigation of the molecular toxicity mechanism of T-2 toxin in aquatic crustaceans.
Collapse
Affiliation(s)
- Xiawei Yu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China.
| | - Caiyan Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Keke Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Yuan Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Ying Deng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
19
|
Sheng Y, Sun Y, Tang Y, Yu Y, Wang J, Zheng F, Li Y, Sun Y. Catechins: Protective mechanism of antioxidant stress in atherosclerosis. Front Pharmacol 2023; 14:1144878. [PMID: 37033663 PMCID: PMC10080012 DOI: 10.3389/fphar.2023.1144878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Tea has long been valued for its health benefits, especially its potential to prevent and treat atherosclerosis (AS). Abnormal lipid metabolism and oxidative stress are major factors that contribute to the development of AS. Tea, which originated in China, is believed to help prevent AS. Research has shown that tea is rich in catechins, which is considered a potential source of natural antioxidants. Catechins are the most abundant antioxidants in green tea, and are considered to be the main compound responsible for tea's antioxidant activity. The antioxidant properties of catechins are largely dependent on the structure of molecules, and the number and location of hydroxyl groups or their substituents. As an exogenous antioxidant, catechins can effectively eliminate lipid peroxidation products. They can also play an antioxidant role indirectly by activating the endogenous antioxidant system by regulating enzyme activity and signaling pathways. In this review, we summarized the preventive effect of catechin in AS, and emphasized that improving the antioxidant effect and lipid metabolism disorders of catechins is the key to managing AS.
Collapse
Affiliation(s)
| | - Yizhuo Sun
- *Correspondence: Fengjie Zheng, ; Yuhang Li, ; Yan Sun,
| | | | | | | | - Fengjie Zheng
- *Correspondence: Fengjie Zheng, ; Yuhang Li, ; Yan Sun,
| | - Yuhang Li
- *Correspondence: Fengjie Zheng, ; Yuhang Li, ; Yan Sun,
| | - Yan Sun
- *Correspondence: Fengjie Zheng, ; Yuhang Li, ; Yan Sun,
| |
Collapse
|
20
|
Zhu L, Luo C, Ma C, Kong L, Huang Y, Yang W, Huang C, Jiang W, Yi J. Inhibition of the NF-κB pathway and ERK-mediated mitochondrial apoptotic pathway takes part in the mitigative effect of betulinic acid on inflammation and oxidative stress in cyclophosphamide-triggered renal damage of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114150. [PMID: 36215883 DOI: 10.1016/j.ecoenv.2022.114150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Betulinic acid (BA), an occurring pentacyclic triterpenoid, has various biological activities, such as anti-inflammation and antioxidation. Previous studies found that BA attenuated cyclophosphamide (CYP)-induced intestinal mucosal damage by inhibiting intestinal mucosal barrier dysfunctions and cell apoptosis. However, the effects and regulation mechanisms of BA on CYP-induced renal damage has not been reported in literature. Here, we found that BA pretreatment alleviated the elevation of serum urea level and inhibited the increase in serum neutrophil gelatinase-associated lipocalin level induced by CYP. Meanwhile, BA ameliorated renal tubular epithelial cell edema, and vacuolization of renal cortical tubular and renal glomerulus. Moreover, pretreatment with BA inhibited the mRNA expressions of pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and increased mRNA expressions of anti-inflammatory cytokines such as IL-10 and transforming growth factor-β by inactivation nuclear factor kappa-B. Simultaneously, BA decreased the accumulation of reactive oxygen species and malondialdehyde, and lowered the levels of superoxide dismutase and glutathione, while increased the activity of glutathione peroxidase in CYP-induced kidney damage mice. Besides, BA reduced the phosphorylation of extracellular signal-regulated kinases (ERK), inhibited the ratio of Bcl-2/Bax and cell apoptosis in CYP-triggered kidney damage. Furthermore, BA and/or PD98059 (an inhibitor of ERK) regulated mitigation of CYP-elicited renal injury and deactivation of the ERK pathway and mitochondrial apoptotic pathway, indicating that the protective effect of BA on CYP-induced renal damage may be associated with the down-regulation of ERK-mediated mitochondrial apoptotic pathway. Thus, BA could be a candidate agent against chemotherapy drug-induced nephrotoxicity by reducing inflammation and oxidative stress through suppression of ERK-mediated mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chenxi Luo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chaoyang Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wenjiang Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Weiwei Jiang
- College of Medical Technology, Hunan Polytechnic of Environment and Biology, Hengyang 421005, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
21
|
Sudharshan SJ, Krishna Narayanan A, Princilly J, Dyavaiah M, Nagegowda DA. Betulinic acid mitigates oxidative stress-mediated apoptosis and enhances longevity in the yeast Saccharomyces cerevisiae model. Free Radic Res 2022; 56:699-712. [PMID: 36624963 DOI: 10.1080/10715762.2023.2166505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Betulinic acid (BA), a pentacyclic triterpenoid found in certain plant species, has been reported to have several health benefits including antioxidant and anti-apoptotic properties. However, the mechanism by which BA confers these properties is currently unknown. Saccharomyces cerevisiae, a budding yeast with a short life cycle and conserved cellular mechanism with high homology to humans, was used as a model for determining the role of BA in aging and programmed cell death (PCD). Treatment with hydrogen peroxide (H2O2) exhibited significantly increased (30-35%) survivability of antioxidant (sod1Δ, sod2Δ, cta1Δ, ctt1Δ, and tsa1Δ) and anti-apoptotic (pep4Δ and fis1Δ) mutant strains when cells were pretreated with BA (30 µM) as demonstrated in spot and CFU (Colony forming units) assays. Measurement of intracellular oxidation level using the ROS-specific dye H2DCF-DA showed that all tested BA-pretreated mutants exhibited decreased ROS than the control when exposed to H2O2. Similarly, when mutant strains were pretreated with BA and then exposed to H2O2, there was reduced lipid peroxidation as revealed by the reduced malondialdehyde content. Furthermore, BA-pretreated mutant cells showed significantly lower apoptotic activity by decreasing DNA/nuclear fragmentation and chromatin condensation under H2O2-induced stress as determined by DAPI and acridine orange/ethidium bromide staining. In addition, BA treatment also extended the life span of antioxidant and anti-apoptotic mutants by ∼10-25% by scavenging ROS and preventing apoptotic cell death. Our overall results suggest that BA extends the chronological life span of mutant strains lacking antioxidant and anti-apoptotic genes by lowering the impact of oxidative stress, ROS levels, and apoptotic activity. These properties of BA could be further explored for its use as a valuable nutraceutical.
Collapse
Affiliation(s)
- S J Sudharshan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Bengaluru, India
| | - Ananth Krishna Narayanan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Bengaluru, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Jemima Princilly
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Bengaluru, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
22
|
Guo B, Cao J, Liu Y, Wang Y, Qian Y, Chen G, Zhu W. Cardiac Protection of a Novel Lupane-Type Triterpenoid from Injuries Induced by Hypoxia-Reperfusion. Int J Mol Sci 2022; 23:ijms23169473. [PMID: 36012738 PMCID: PMC9409286 DOI: 10.3390/ijms23169473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) leads to cardiac remodeling and heart failure associated with acute myocardial infarction, which is one of the leading causes of death worldwide. Betulinic acid (BA), a widely distributed lupane-type triterpenoid, has been reported to possess antioxidative activity and inhibit apoptosis in MIRI. Due to the low bioavailability and water insolubility of BA, a previous study found a series of BA-derivative compounds by microbial transformation. In this study, we observe whether there are anti-MIRI effects of BTA07, a BA derivative, on cardiac injuries induced by hypoxia/reoxygenation (H/R) in adult rat cardiomyocytes in vitro and in Langendorff-perfused hearts ex vivo, and further explore its mechanism of cardioprotection to find more efficient BA derivatives. The hemodynamic parameters of isolated hearts were monitored and recorded by a Lab Chart system. The markers of oxidative stress and apoptosis in isolated hearts and adult rat cardiomyocytes (ARCMs) were evaluated. The expression levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X (Bax), protein kinase B (Akt) and phospho-Akt (pAkt, Ser473) induced by H/R were detected via Western blot. The Langendorff experiments showed that BTA07 improves hemodynamic parameters, reduces myocardium damage and infarct size, inhibits levels of myocardial tissue enzymes lactate dehydrogenase (LDH) and creatine kinase (CK) in the coronary outflow and reduces oxidative stress and the activation of caspase-3 in the myocardium. In vitro, BTA07 reduced cell death and caspase-3 activation and inhibited reactive oxygen species (ROS) generation. Furthermore, the protective effects of BTA07 were attenuated by inhibition of the PI3K/Akt signaling pathway with LY294002 in ARCMs. BTA07 protects ARCMs and isolated hearts from hypoxia-reperfusion partly by inhibiting oxidative stress and cardiomyocyte apoptosis.
Collapse
|
23
|
Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part II). Int J Mol Sci 2022; 23:ijms23168896. [PMID: 36012159 PMCID: PMC9408012 DOI: 10.3390/ijms23168896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Triterpenic acids are a widespread class of phytocompounds which have been found to possess valuable therapeutic properties such as anticancer, anti-inflammatory, hepatoprotective, cardioprotective, antidiabetic, neuroprotective, lipolytic, antiviral, and antiparasitic effects. They are a subclass of triterpenes bearing a characteristic lipophilic structure that imprints unfavorable in vivo properties which subsequently limit their applications. The early investigation of the mechanism of action (MOA) of a drug candidate can provide valuable information regarding the possible side effects and drug interactions that may occur after administration. The current paper aimed to summarize the most recent (last 5 years) studies regarding the MOA of betulinic acid, boswellic acid, glycyrrhetinic acid, madecassic acid, moronic acid, and pomolic acid in order to provide scientists with updated and accessible material on the topic that could contribute to the development of future studies; the paper stands as the sequel of our previously published paper regarding the MOA of triterpenic acids with therapeutic value. The recent literature published on the topic has highlighted the role of triterpenic acids in several signaling pathways including PI3/AKT/mTOR, TNF-alpha/NF-kappa B, JNK-p38, HIF-α/AMPK, and Grb2/Sos/Ras/MAPK, which trigger their various biological activities.
Collapse
|
24
|
T-2 Toxin Induces Apoptotic Cell Death and Protective Autophagy in Mouse Microglia BV2 Cells. J Fungi (Basel) 2022; 8:jof8080761. [PMID: 35893129 PMCID: PMC9330824 DOI: 10.3390/jof8080761] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
T-2 toxin exposure could cause neurotoxicity; however, the precise molecular mechanisms remain unclear. In the present study, we investigated T-2 toxin-induced cytotoxicity and underlying molecular mechanisms using a mouse microglia BV2 cell line. The results show that T-2 toxin treatment-induced cytotoxicity of BV2 cells was dose- and time-dependent. Compared to the control, T-2 toxin treatment at 1.25–5 ng/mL significantly increased reactive oxygen species (ROS) production and triggered oxidative stress. T-2 toxin treatment also caused mitochondrial dysfunction in BV2 cells, which was evidenced by decreased mitochondrial transmembrane potential, upregulated expression of Bax protein, and decreased expression of Bcl-2 protein. Meanwhile, T-2 toxin treatment upregulated the expression of cleaved-caspase-3, cleaved-PARP-1 proteins, and downregulated the expression of HO-1 and nuclear Nrf2 proteins, finally inducing cell apoptosis in BV2 cells. N-acetylcysteine (NAC) supplementation significantly attenuated T-2 toxin-induced cytotoxicity. Moreover, T-2 toxin treatment activated autophagy and upregulated autophagy flux, and the inhibition of autophagy significantly promoted T-2 toxin-induced cell apoptosis. Taken together, our results reveal that T-2 toxin-induced cytotoxicity in BV2 cells involves the production of ROS, the activation of the mitochondrial apoptotic pathway, and the inhibition of the Nrf2/HO-1 pathway. Our study offers new insight into the underlying molecular mechanisms in T-2 toxin-mediated neurotoxicity.
Collapse
|
25
|
Tian L, Wang Y, Qing J, Zhou W, Sun L, Li R, Li Y. A review of the pharmacological activities and protective effects of Inonotus obliquus triterpenoids in kidney diseases. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Kidney diseases are common health problems worldwide. Various etiologies ultimately lead to the development of chronic kidney disease and end-stage renal disease. Natural compounds from herbs or medicinal plants are widely used for therapy and prevention of various ailments, among which is Inonotus obliquus. I. obliquus is rich in triterpenoids and the main active ingredients include betulinic acid, trametenolic acid, inotodiol, and ergosterol. New evidence suggests that I. obliquus triterpenes may be an effective drug for the treatment and protection of various kidney diseases. The aim of this review is to highlight the pharmacological activities and potential role of I. obliquus triterpenes in the kidney disease treatment and protection.
Collapse
Affiliation(s)
- Lingling Tian
- The Third Clinical College, Shanxi University of Chinese Medicine , Taiyuan , Shanxi, 030001 , China
| | - Yi Wang
- The Third Clinical College, Shanxi University of Chinese Medicine , Taiyuan , Shanxi, 030001 , China
| | - Jianbo Qing
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- The Fifth Clinical Medical College of Shanxi Medical University , Taiyuan , Shanxi, 030001 , China
| | - Wenjing Zhou
- School of Medical Sciences, Shanxi University of Chinese Medicine , jinzhong , 030619 , China
| | - Lin Sun
- College of Taditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine , jinzhong , 030619 , China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University ; Taiyuan , 030001 , China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan, 030012 , Shanxi , China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030012, Shanxi , China
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- Academy of Microbial Ecology, Shanxi Medical University , Taiyuan , 030001 , China
| |
Collapse
|
26
|
Huang Y, Zhu Z, Luo C, Ma C, Zhu L, Kong L, Li R, Wu J, Yuan Z, Yi J. Betulinic acid attenuates cognitive dysfunction, oxidative stress, and inflammation in a model of T-2 toxin-induced brain damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52098-52110. [PMID: 35254615 DOI: 10.1007/s11356-022-19498-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
T-2 toxin is a mycotoxin that has harmful effects on the immune system and cognitive function. Betulinic acid (BA) is a plant-derived pentacyclic lupane-type triterpenoid which possesses a wide spectrum of bioactivities. The study was aimed to explore whether BA has a protective effect on cognitive impairment and oxidative stress caused by T-2 toxin. BA was suspended in 1% soluble starch by continuous intragastric administration for 14 days, then the brain damage in mice was induced by a single intraperitoneal injection of T-2 toxin (4 mg/kg). It was found that BA alleviated the reduction of discrimination index in T-2 toxin-treated mice, and enhanced dopamine (DA), 5-hydroxytryptamine (5-HT), and acetylcholine (ACH) levels of brain neurotransmitter. Meanwhile, BA pretreatment ameliorated oxidative stress through increase of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione (GSH) levels, and inhibition of the generation of reactive oxygen species (ROS) and malondialdehyde (MDA) in the brain of mice exposed to T-2 toxin. Moreover, BA reduced brain hemorrhage and ecchymosis, improved the mitochondrial morphology, enriched the number of organelles, and inhibited cell apoptosis in brain challenged with T-2 toxin. Furthermore, BA inhibited mRNA expression of pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) as well as enhanced mRNA expression of anti-inflammatory cytokine such as IL-10 in the brain of T-2 toxin-triggered mice. Therefore, BA could improve the cognitive function, enhance the antioxidant capacity, and inhibit the secretion of proinflammatory cytokines in brain, thereby playing a preventive and protective role against brain damage caused by T-2 toxin.
Collapse
Affiliation(s)
- You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zihan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Chenxi Luo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Chaoyang Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
27
|
Lin X, Zhu L, Gao X, Kong L, Huang Y, Zhao H, Chen Y, Wen L, Li R, Wu J, Yuan Z, Yi J. Ameliorative effect of betulinic acid against zearalenone exposure triggers testicular dysfunction and oxidative stress in mice via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113561. [PMID: 35489292 DOI: 10.1016/j.ecoenv.2022.113561] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin, which mainly contaminates grains and has estrogen-like effects on the reproductive system. Betulinic acid (BA), a natural lupane-type pentacyclic triterpene, has anti-oxidative and anti-inflammatory properties. This study aimed to investigate whether BA alleviates ZEA-induced testicular damage and explore the possible mechanism. Here, BA ameliorated testicular damage by mitigating the disordered arrangement of seminiferous tubules, the exfoliation of lumen cells, and the increase of cell apoptosis caused by ZEA. Meanwhile, BA alleviated ZEA-triggered testicular damage by restoring hormone levels and sperm motility, and reconstructing the blood-testis-barrier. Moreover, BA alleviated ZEA-exposed testicular oxidative stress by activating Nrf2 pathway. Furthermore, BA moderated ZEA-evoked testicular inflammation by inhibiting p38/ERK MAPK pathway. Overall, our results revealed that BA has a therapeutic protective effect on ZEA-induced testicular injury and oxidative stress via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation, which provides a viable alternative to alleviate ZEA-induced male reproductive toxicology.
Collapse
Affiliation(s)
- Xing Lin
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xinyu Gao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Haoqiang Zhao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yazhi Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
28
|
Li J, Wang Y, Deng Y, Wang X, Wu W, Nepovimova E, Wu Q, Kuca K. Toxic mechanisms of the trichothecenes T-2 toxin and deoxynivalenol on protein synthesis. Food Chem Toxicol 2022; 164:113044. [PMID: 35452771 DOI: 10.1016/j.fct.2022.113044] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
The toxic mechanisms of trichothecenes, including T-2 toxin and deoxynivalenol (DON), are closely related with their effects on protein synthesis. Increasing lines of evidence show that T-2 toxin can reduce the levels of tight junction proteins, and nuclear factor erythroid 2-related factor 2 (Nrf2) by disrupting cellular barriers and the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Nrf2/heme oxygenase (HO)-1 pathways. Moreover, it can inhibit aggrecan synthesis, thus causing Kashin-Beck disease. Regarding type B trichothecene, DON inhibits activation marker and β-catenin synthesis by acting on immune cells and the wingless/integrated (Wnt) pathway; it also inhibits cell proliferation and immune surveillance. In addition, DON has been shown to destroy tight junctions, glucose transport, and tumor endothelial marker 8, thus disturbing intestinal function and changing cell migration. This review summarizes the inhibitory effects of the trichothecenes T-2 toxin and DON on different protein synthesis, while discussing their underlying mechanisms. Focus is given to the effects of these toxins on tight junctions, aggrecan, activation markers, and hormones including testosterone under the influence of steroidogenic enzymes. This review can extend the current understanding of the effects of trichothecenes on protein synthesis and help to further understand their toxic mechanisms.
Collapse
Affiliation(s)
- Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Ying Deng
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei, 430070, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
29
|
Ma Y, Xiang S, Jiang W, Kong L, Tan Z, Liang Z, Yuan Z, Yi J, Zhu L. Gamma-oryzanol protects human liver cell (L02) from hydrogen peroxide-induced oxidative damage through regulation of the MAPK/Nrf2 signaling pathways. J Food Biochem 2022; 46:e14118. [PMID: 35218032 DOI: 10.1111/jfbc.14118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Abstract
Gamma-oryzanol (Orz), a mixture of the ferulic acid ester of triterpene alcohols and phytosterols, was found abundantly in rice bran and rice bran oil which could be available and served as an antioxidant. The present study was to explore the potential protective effects of Orz on oxidative stress and cell apoptosis in human hepatic cells (L02 cells) induced by hydrogen peroxide (H2 O2 ). Flow cytometry detection and Hoechst 33258 staining showed that Orz significantly restored cell cycle and ameliorated apoptosis in H2 O2 -challenged L02 cells. Orz pretreatment inhibited H2 O2 -induced cell apoptosis by increasing the scavenging of hydroxyl radicals (OH·), and efficiently decreasing the production of nitric oxide (NO). Moreover, a loss of total antioxidant capacity (T-AOC) and adenosine triphosphatase (ATPase) were enhanced in H2 O2 -mediated L02 cells pretreated with Orz. Furthermore, preincubation with Orz reduced H2 O2 -mediated the proapoptotic protein of Bak expression and the phosphorylation of ASK1, p38, JNK, and ERK, and increased the anti-apoptotic protein of Bcl-xl expression and anti-oxidative stress proteins of Nrf2 and HO-1 expression. The findings suggested that Orz exerts the cytoprotective effects in H2 O2 -induced L02 cells apoptosis by ameliorating oxidative stress via inhibiting MAPK signaling pathway and activating Nrf2 signaling pathway. PRACTICAL APPLICATIONS: Gamma-oryzanol (Orz), a mixture of the ferulic acid ester of triterpene alcohols and phytosterols, was found abundantly in rice bran and rice bran oil which could be availably served as an antioxidant. In this study, it was found that Orz exerts the cytoprotective effects in H2 O2 -induced L02 cell apoptosis by ameliorating oxidative stress via the inhibition of MAPK signaling pathway and the activation of Nrf2 signaling pathway, which provides a theoretical basis for dietary adding natural products to prevent or treat oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yurong Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,Changsha University of Science & Technology, Changsha, China
| | - Siting Xiang
- Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Weiwei Jiang
- Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zhuliang Tan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Changsha, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
30
|
Xie W, Hu W, Huang Z, Li M, Zhang H, Huang X, Yao P. Betulinic acid accelerates diabetic wound healing by modulating hyperglycemia-induced oxidative stress, inflammation and glucose intolerance. BURNS & TRAUMA 2022; 10:tkac007. [PMID: 35415192 PMCID: PMC8993492 DOI: 10.1093/burnst/tkac007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/24/2022] [Indexed: 04/12/2023]
Abstract
BACKGROUND Diabetes significantly delays wound healing through oxidative stress, inflammation and impaired re-epithelialization that lead to defective regulation of the healing process, although the related mechanism remains unclear. Here, we aim to investigate the potential role and mechanism for the beneficial effect of betulinic acid (BA) on diabetic wound healing. METHODS The molecular effect of BA on hyperglycemia-mediated gene expression, oxidative stress, inflammation and glucose uptake was evaluated in endothelial, fibroblast and muscle cells. Burn injury was introduced to streptozotocin-induced diabetic rats and BA administration through either an intraperitoneal (IP) or topical (TOP) technique was used for wound treatment. Glucose tolerance was evaluated in both muscle tissue and fibroblasts, while oxidative stress and inflammation were determined in both the circulatory system and in wound tissues. The effect of BA on the wound healing process was also evaluated. RESULTS BA treatment reversed hyperglycemia-induced glucose transporter type 4 (GLUT4) suppression in both muscle and fibroblast cells. This treatment also partly reversed hyperglycemia-mediated suppression of endothelial nitric oxide synthase (eNOS), nuclear factor erythroid 2-related factor 2 (Nrf2) signaling and nuclear factor NFκB p65 subunit (NFκB p65) activation in endothelial cells. An in vivo rat study showed that BA administration ameliorated diabetes-mediated glucose intolerance and partly attenuated diabetes-mediated oxidative stress and inflammation in both the circulatory system and wound tissues. BA administration by both IP and TOP techniques significantly accelerated diabetic wound healing, while BA administration by either IP or TOP methods alone had a significantly lower effect. CONCLUSIONS BA treatment ameliorates hyperglycemia-mediated glucose intolerance, endothelial dysfunction, oxidative stress and inflammation. Administration of BA by both IP and TOP techniques was found to significantly accelerate diabetic wound healing, indicating that BA could be a potential therapeutic candidate for diabetic wound healing.
Collapse
Affiliation(s)
- Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060 P.R. China
| | - Weigang Hu
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060 P.R. China
| | - Zhuo Huang
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060 P.R. China
| | - Min Li
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060 P.R. China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, 518036, P.R. China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060 P.R. China
| | - Paul Yao
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060 P.R. China
- Correspondence.
| |
Collapse
|
31
|
He E, Ma Y, Kong L, Huang Y, Huang C, Yang W, Yi J, Zhu L. Suppression of endoplasmic reticulum stress-associated pathways and hepatocyte apoptosis participates in the attenuation of betulinic acid on alcohol-provoked liver injury in mice. Food Funct 2022; 13:11489-11502. [DOI: 10.1039/d2fo01042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BA protects against alcohol-induced liver damage through the alleviation of oxidative stress and suppression of ERS-induced apoptosis.
Collapse
Affiliation(s)
- Enqi He
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yurong Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Changsha University of Science & Technology, Changsha 410114, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Wenjiang Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
32
|
Activation of TLR4 induces severe acute pancreatitis-associated spleen injury via ROS-disrupted mitophagy pathway. Mol Immunol 2021; 142:63-75. [PMID: 34965485 DOI: 10.1016/j.molimm.2021.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Severe acute pancreatitis (SAP) is complicated by systemic inflammatory response syndrome and multiple organ dysfunction, the disease will eventually result in death in almost half of the case. The spleen, as the largest immune organ adjacent to the pancreas, is prone to damage in SAP, thereby aggravating the damage of other organs and increasing mortality. However, to date, the research on the mechanism and treatment of spleen injury caused by SAP is still in its infancy. Herein, we investigated the mechanism of spleen injury, and explored the application potential of tuftsin for relieving spleen damage in SAP mice. Firstly, SAP mice model was constructed via the retrograde infusion of 3.5 % sodium taurocholate into the biliopancreatic duct. Then, we proved that the up-regulation of Toll-like receptor 4 (TLR4) in spleen would lead to the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction under SAP conditions. The splenic ROS and mitochondrial dysfunction could be improved by N-acetylcysteine (NAC) treatment or knocking out TLR4 in SAP mice. Meanwhile, we found that NAC treatment could also improve the autophagy of spleen tissue, suggesting that splenic ROS may affect impaired autophagy, causing the accumulation of damaged mitochondria, aggravating spleen damage. Furthermore, we verified the mechanism of spleen injury is caused by splenic ROS affecting PI3K/p-AKT/mTOR pathway-mediated autophagy. In addition, we detected the spleen injury caused by SAP could decrease the concentration of tuftsin in the serum of mice. Whereas, exogenous supplementation of tuftsin ameliorated the pathological damage, ROS accumulation, impaired autophagy, inflammation expression and apoptosis in damaged spleen. In summary, we verified the new mechanism of SAP-caused spleen damage that TLR4-induced ROS provoked mitophagy impairment and mitochondrial dysfunction in spleen via PI3K/p-AKT mTOR signaling, and the application potential of tuftsin in treating spleen injury, which might expand novel ideas and methods for the treatment of pancreatitis.
Collapse
|
33
|
Ou Z, Zhu L, Huang C, Ma C, Kong L, Lin X, Gao X, Huang L, Wen L, Liang Z, Yuan Z, Wu J, Yi J. Betulinic acid attenuates cyclophosphamide-induced intestinal mucosa injury by inhibiting the NF-κB/MAPK signalling pathways and activating the Nrf2 signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112746. [PMID: 34482064 DOI: 10.1016/j.ecoenv.2021.112746] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Betulinic acid (BA), a pentacyclic triterpenoid, has been associated with several biological effects, such as antioxidant, anti-inflammatory and antiviral activities. Previous studies have demonstrated that BA has the ability to alleviate intestinal mucosal damage, however, the potential mechanism associated with the effect has not been reported. This study aimed to investigate the possible protective mechanism of BA against cyclophosphamide (CYP)-induced intestinal mucosal damage. Here, we found that BA pretreatment prevented intestinal mucosal barrier dysfuction from CYP-challenged mice by repairing the intestinal physical, chemical, and immune barriers. Moreover, BA treatment suppressed the CYP-induced oxidative stress by activating the nuclear factor erythroid 2 [NF-E2]-related factor (Nrf2) pathway blocked reactive oxygen species (ROS) accumulation. In addition, BA inhibited CYP-triggered intestinal inflammation through down-regulating the nuclear transcription factor kappa B (NF-κB)/mitogen-activating protein kinase (MAPK) pathways. Furthermore, BA pretreatment reduced intestinal apoptosis by blocking ROS-activated mitochondrial apoptotic pathway. Overall, the current study demonstrated the protective effect of BA against CYP-caused intestinal mucosal damage by regulating the Nrf2 and NF-κB/MAPK signalling pathways, which may provide new therapeutic targets to attenuate intestinal impairment and maintain intestinal health.
Collapse
Affiliation(s)
- Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chenglong Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chaoyang Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xing Lin
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xinyu Gao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Changsha 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
34
|
Huang L, Zhu L, Ou Z, Ma C, Kong L, Huang Y, Chen Y, Zhao H, Wen L, Wu J, Yuan Z, Yi J. Betulinic acid protects against renal damage by attenuation of oxidative stress and inflammation via Nrf2 signaling pathway in T-2 toxin-induced mice. Int Immunopharmacol 2021; 101:108210. [PMID: 34628148 DOI: 10.1016/j.intimp.2021.108210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Betulinic acid (BA) is a pentacyclic triterpenoid compound with potential antioxidant and anti-inflammatory effects. In this study, T-2 toxin was injected intraperitoneally in mice to establish kidney damage model and to evaluate the protective effects of BA and further reveal the molecular mechanism. BA pretreatment inhibited the T-2 toxin-stimulated increase in serum Crea, but showed no significant effect on serum Urea. BA pretreatment alleviated excessive glomerular hemorrhage and inflammatory cell infiltration in kidneys caused by T-2 toxin. Moreover, pretreatment with BA mitigated T-2 toxin-induced renal oxidative damage by up-regulating the activities of SOD and CAT, and the content of GSH, while down-regulating the accumulation of ROS and MDA. Meanwhile, BA pretreatment markedly attenuated T-2 toxin-induced renal inflammatory response by decreasing the mRNA expression of IL-1β, TNF-α and IL-10, and increasing IL-6 mRNA expression. Furthermore, mechanism research found that pretreatment with BA could activate Nrf2 signaling pathway. It was suggested that BA ameliorated the oxidative stress and inflammatory response of T-2 toxin-triggered renal damage by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Lin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Chaoyang Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Yazhi Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Haoqiang Zhao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China.
| |
Collapse
|
35
|
Park C, Jeong JW, Han MH, Lee H, Kim GY, Jin S, Park JH, Kwon HJ, Kim BW, Choi YH. The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis. Anim Cells Syst (Seoul) 2021; 25:119-127. [PMID: 34234893 PMCID: PMC8118407 DOI: 10.1080/19768354.2021.1915380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although previous studies have shown anti-cancer activity of betulinic acid (BA), a pentacyclic triterpenoid, against various cancer lines, the underlying molecular mechanisms are not well elucidated. In this study, we evaluated the mechanisms involved in the anti-cancer efficacy of BA in U937 human myeloid leukemia cells. BA exerted a significant cytotoxic effect on U937 cells through blocking cell cycle arrest at the G2/M phase and inducing apoptosis, and that the intracellular reactive oxygen species (ROS) levels increased after treatment with BA. The down-regulation of cyclin A and cyclin B1, and up-regulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1 revealed the G2/M phase arrest mechanism of BA. In addition, BA induced the cytosolic release of cytochrome c by reducing the mitochondrial membrane potential with an increasing Bax/Bcl-2 expression ratio. BA also increased the activity of caspase-9 and -3, and subsequent degradation of the poly (ADP-ribose) polymerase. However, quenching of ROS by N-acetyl-cysteine, an ROS scavenger, markedly abolished BA-induced G2/M arrest and apoptosis, indicating that the generation of ROS plays a key role in inhibiting the proliferation of U937 cells by BA treatment. Taken together, our results provide a mechanistic rationale that BA exhibits anti-cancer properties in U937 leukemia cells through ROS-dependent induction of cell cycle arrest at G2/M phase and apoptosis.
Collapse
Affiliation(s)
- Cheol Park
- College of Liberal Studies, Dong-Eui University, Busan, Republic of Korea
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Soojung Jin
- Core-Facility Center for Tissue Regeneration, Dong Eui University, Busan, Republic of Korea
| | - Jung-Ha Park
- Core-Facility Center for Tissue Regeneration, Dong Eui University, Busan, Republic of Korea.,Biopharmaceutical Engineering Major, Dong-eui University, Busan, Republic of Korea
| | - Hyun Ju Kwon
- Core-Facility Center for Tissue Regeneration, Dong Eui University, Busan, Republic of Korea.,Biopharmaceutical Engineering Major, Dong-eui University, Busan, Republic of Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Dong-eui University, Busan, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea.,Core-Facility Center for Tissue Regeneration, Dong Eui University, Busan, Republic of Korea
| |
Collapse
|
36
|
Cai H, Liu Y, Men H, Zheng Y. Protective Mechanism of Humanin Against Oxidative Stress in Aging-Related Cardiovascular Diseases. Front Endocrinol (Lausanne) 2021; 12:683151. [PMID: 34177809 PMCID: PMC8222669 DOI: 10.3389/fendo.2021.683151] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Physiological reactive oxygen species (ROS) are important regulators of intercellular signal transduction. Oxidative and antioxidation systems maintain a dynamic balance under physiological conditions. Increases in ROS levels destroy the dynamic balance, leading to oxidative stress damage. Oxidative stress is involved in the pathogenesis of aging-related cardiovascular diseases (ACVD), such as atherosclerosis, myocardial infarction, and heart failure, by contributing to apoptosis, hypertrophy, and fibrosis. Oxidative phosphorylation in mitochondria is the main source of ROS. Increasing evidence demonstrates the relationship between ACVD and humanin (HN), an endogenous peptide encoded by mitochondrial DNA. HN protects cardiomyocytes, endothelial cells, and fibroblasts from oxidative stress, highlighting its protective role in atherosclerosis, ischemia-reperfusion injury, and heart failure. Herein, we reviewed the signaling pathways associated with the HN effects on redox signals, including Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2), chaperone-mediated autophagy (CMA), c-jun NH2 terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK), adenosine monophosphate-activated protein kinase (AMPK), and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)-Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3). Furthermore, we discussed the relationship among HN, redox signaling pathways, and ACVD. Finally, we propose that HN may be a candidate drug for ACVD.
Collapse
|