1
|
Zhang L, Li L, Sun Z. Liangxue Qushi Zhiyang Decoction Inhibits Atopic Dermatitis in Mice via Fc γR-Mediated Phagocytosis. Mediators Inflamm 2025; 2025:7068964. [PMID: 40322063 PMCID: PMC12050150 DOI: 10.1155/mi/7068964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/25/2025] [Indexed: 05/07/2025] Open
Abstract
Background: Liangxue Qushi Zhiyang Decoction (LQZ) is a traditional formula known for its efficacy in treating Atopic Dermatitis (AD). However, the specific mechanisms through which LQZ alleviates AD symptoms remain largely unknown. The objective of this study is to investigate the protective effects of LQZ on AD and to uncover its potential mechanisms of action. Methods: An AD model was established in mice using 2,4-dinitrochlorobenzene (DNCB). Mice were then orally administered LQZ or prednisolone (PDN). Throughout the treatment period, dermatitis scores and scratching frequencies of the mice were regularly monitored. Histopathological analyses were conducted using hematoxylin and eosin (H&E) staining and toluidine blue (TB) staining. Serum levels of inflammatory cytokines were measured using enzyme-linked immunosorbent assay (ELISA). Further, tandem mass tag (TMT) labeling quantitative proteomics was employed to identify differentially expressed proteins (DEPs). Enrichment analysis was conducted to pinpoint potential targets and pathways involved in LQZ's therapeutic action. Finally, validation experiments were performed to further explore the specific pathways and core targets of LQZ in AD treatment.. Results: LQZ treatment notably mitigated the skin barrier damage and inflammatory response induced by DNCB in AD mice, and reduced the serum levels of IgE, IL-4, and IL-1β. Proteomic analysis identified 248 proteins with differential expression, implicating multiple pathways in LQZ' therapeutic action. Among these, the Fc gamma R(FcγR)-mediated phagocytosis pathway emerged as a crucial factor in AD's inflammatory and immune responses. Key proteins associated with this pathway, including Fc-gamma RIII (Fcgr3), V-yes-1 Yamaguchi sarcoma viral related oncogene homolog (Lyn), Tyrosine-protein kinase (Syk), Phosphoinositide phospholipase C-gamma-2 (Plcg2), Neutrophil cytosol factor 1 (Ncf1), Ras-related C3 botulinum toxin substrate 2 (Rac2) and Actin-related protein 2/3 complex subunit 3 (Arpc3), exhibited significantly reduced expression levels following LQZ treatment. Conclusion: LQZ is effective in treating AD by alleviating skin barrier damage and inflammatory reactions. Its anti-AD properties of LQZ may be attributed to the inhibition of the FcγR-mediated phagocytic pathway.
Collapse
Affiliation(s)
- Lili Zhang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Linxian Li
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Zhanxue Sun
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
2
|
Chen J, Jian D, Bai B. The Causal Relationship Between Circulating Metabolites and the Risk of Atopic Dermatitis: A Two-Sample Mendelian Randomization Study. Clin Cosmet Investig Dermatol 2025; 18:567-577. [PMID: 40099042 PMCID: PMC11912910 DOI: 10.2147/ccid.s484813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/19/2024] [Indexed: 03/19/2025]
Abstract
Background Previous research has shown that metabolites (especially lipid-related metabolites) have a significant influence in the development of atopic dermatitis (AD). However, there is no evidence of a causal connection between metabolites and AD risk. The specific mechanisms require further elucidation. Our study employed a two-sample Mendelian randomization (TSMR) strategy to investigate how metabolite traits affect AD. Methods Utilizing publicly accessible GWAS data, we conducted TSMR studies to investigate the relationship between 233 metabolites traits (213 lipid-related traits and 20 no lipid-related traits) and AD. Our TSMR study primarily employed the Inverse-variance weighted method and four ancillary methods to analyze causation. Sensitivity analysis was performed to guarantee the TSMR results were trustworthy. Reverse MR analysis was used for investigating reverse causality. Results After analyzing GWAS datasets for metabolites and AD, 13 metabolites were identified as positive. The MR analysis result indicates that total cholesterol in very small VLDL, cholesterol esters in very small VLDL, free cholesterol in IDL, concentration of medium LDL particles, concentration of large LDL particle, concentration of chylomicrons and extremely large VLDL particles, triglyceride levels in chylomicrons and extremely large VLDL, total lipid levels in chylomicrons and extremely large VLD, phospholipid levels in chylomicrons and extremely large VLDL, phospholipids in medium LDL, phospholipids in large LDL, phospholipids in small LDL, ratio of 18:2 linoleic acid to total fatty acids exhibited negative effects on AD. Reverse MR result analysis found that ratio of 18:2 linoleic acid to total fatty acids in serum was decreased in patients with AD. Sensitivity analyses ensure the stability of our results. Conclusion These findings highlight a definite correlation between metabolite and AD, demonstrating the significant role of 13 lipid-related metabolite traits. Our results significantly reduced the influence of unavoidable confounders and reverse causality. Our findings may set the framework for prospective therapeutic approaches and call for further investigation to validate them.
Collapse
Affiliation(s)
- Jian Chen
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China, 150086
| | - Dan Jian
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China, 150086
| | - Bingxue Bai
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China, 150086
| |
Collapse
|
3
|
Sarailoo M, Asghariazar V, Seifimansour S, Kadkhodayi M, Zare E, Vajdi P, Vostakolaei MA. Assessment of the Cytotoxicity Mechanism of Diazinon on HFFF2 Cells: A Bioinformatic and Experimental Study. J Biochem Mol Toxicol 2025; 39:e70146. [PMID: 39987520 DOI: 10.1002/jbt.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/05/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025]
Abstract
Pesticide exposure can cause many skin diseases such as hypopigmentation and contact dermatitis, but the underlying mechanisms remain unclear. Furthermore, Organophosphate pesticides (OPs) including Diazinon (DZN) can affect cellular pathways like ATPase, leading to mitochondrial energy deficit and even apoptosis in the cell's functions. Following cell exposure to the OP pesticide DZN through treatment, we evaluated alteration in gene expression and DNA damage. Bioinformatic analysis was performed based on the AutoDock, Protein Data Bank, STRING, Way2Drug, and Comparative Toxicogenomics databases and tools. The MTT assay, wound healing, DAPI staining, flow cytometry, and real-time PCR were applied in the current study. The results showed that the viability and migration capacity of HFFF2 cells decreased, and the apoptosis rate increased in the DZN-treated group. These findings revealed that DZN regulated the expression of the apoptotic genes in DZN cells.
Collapse
Affiliation(s)
- Mehdi Sarailoo
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sina Seifimansour
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahtab Kadkhodayi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Zare
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parnia Vajdi
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Asghari Vostakolaei
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
4
|
Rizzetto G, De Simoni E, Molinelli E, Busignani C, Tagliati C, Gambini D, Offidani A, Simonetti O. Protegrin-1 and Analogues Against Acinetobacter baumannii: A Narrative Review. Pharmaceuticals (Basel) 2025; 18:289. [PMID: 40143068 PMCID: PMC11944781 DOI: 10.3390/ph18030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
A. baumannii is recognised as an important etiologic agent for hospital infections and increases the risk of postoperative complications, worsening mortality and prolonging hospitalisation. Protegrin-1 (PG-1) is one of the most promising antimicrobial peptides (AMPs) in the literature, since its antimicrobial action covers a wide range of Gram-positive and Gram-negative bacteria, including A. baumannii. PG-1 represents a valid new therapeutic option for the treatment of A. baumannii multi-drug resistant infections, showing synergic activity with traditional antibiotics, such as colistin. However, its clinical use in humans still requires studies, especially considering the haemolytic risk. For this reason, the use of PG-1 analogues, such as PLP-3, HV2, CDP-1, and IB367, seems to be the most promising way for the clinical use of this class of AMPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (G.R.); (E.D.S.); (E.M.); (C.B.); (C.T.); (D.G.); (A.O.)
| |
Collapse
|
5
|
Ma X, Zhao H, Song JK, Zhang Z, Gao CJ, Luo Y, Ding XJ, Xue TT, Zhang Y, Zhang MJ, Zhou M, Wang RP, Kuai L, Li B. Retracing from Outcomes to Causes: NRF2-Driven GSTA4 Transcriptional Regulation Controls Chronic Inflammation and Oxidative Stress in Atopic Dermatitis Recurrence. J Invest Dermatol 2025; 145:334-345.e11. [PMID: 38879155 DOI: 10.1016/j.jid.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 07/14/2024]
Abstract
Atopic dermatitis (AD), a chronic and recurrent inflammatory skin disorder, presents a high incidence and imposes a substantial economic burden. Preventing its recurrence remains a significant challenge in dermatological therapy owing to poorly understood underlying mechanisms. In our study, we adopted a strategy of tracing the mechanisms of recurrence from clinical outcomes. We developed a mouse model of recurrent AD and applied clinically validated treatment regimens. Transcriptomic analyses revealed a pronounced enrichment in the glutathione metabolic pathway in the treated group. Through integrated bioinformatics and in vivo validation, we identified glutathione S-transferase alpha 4 (GSTA4) as a pivotal mediator in AD recurrence. Immunohistochemical analysis demonstrated decreased GSTA4 expression in lesions from patients with AD. Functionally, in vitro overexpression of GSTA4 significantly curtailed AD-like inflammatory responses and ROS production. Moreover, we discovered that NRF2 transcriptional activity regulates GSTA4 expression and function. Our treatment notably augmented NRF2-mediated GSTA4 transcription, yielding pronounced anti-inflammatory and ROS-neutralizing effects. Conclusively, our findings implicate GSTA4 as a critical factor in the recurrence of AD, particularly in the context of oxidative stress and chronic inflammation. Targeting the NRF2-GSTA4 axis emerges as a promising anti-inflammatory and antioxidative strategy for preventing AD recurrence.
Collapse
Affiliation(s)
- Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hang Zhao
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Zhan Zhang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Jie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Ying Luo
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Jie Ding
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ting-Ting Xue
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Meng-Jie Zhang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mi Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Ping Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Le Kuai
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
Argalia G, Reginelli A, Molinelli E, Russo A, Michelucci A, Sechi A, Marzano AV, Desyatnikova S, Fogante M, Patanè V, Granieri G, Tagliati C, Rizzetto G, De Simoni E, Matteucci M, Candelora M, Lanza C, Ventura C, Carboni N, Esposito R, Esposito S, Paolinelli M, Esposto E, Lanni G, Lucidi Pressanti G, Giorgi C, Principi F, Rebonato A, Malinowska SP, Mlosek RK, Giuseppetti GM, Dini V, Romanelli M, Offidani A, Cappabianca S, Wortsman X, Simonetti O. High-Frequency and Ultra-High-Frequency Ultrasound in Dermatologic Diseases and Aesthetic Medicine. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:220. [PMID: 40005337 PMCID: PMC11857453 DOI: 10.3390/medicina61020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Dermatologic ultrasonography applications are rapidly growing in all skin fields. Thanks to very high spatial resolution, high-frequency and ultra-high-frequency ultrasound can evaluate smaller structures, allowing us to improve diagnosis accuracy and disease activity. Moreover, they can guide treatment, such as drug injection, and assess therapy efficacy and complications. In this narrative review, we evaluated high-frequency ultrasound and ultra-high-frequency ultrasound in infections, inflammatory dermatoses, metabolic and genetic disorders, specific cutaneous structure skin disorders, vascular and external-agent-associated disorders, neoplastic diseases, and aesthetics.
Collapse
Affiliation(s)
- Giulio Argalia
- Maternal-Child, Senological, Cardiological Radiology and Outpatient Ultrasound, Department of Radiological Sciences, University Hospital of Marche, Via Conca 71, 60126 Ancona, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80131 Naples, Italy
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences, Dermatology Clinic, Polytechnic Marche University, Via Conca 71, 60126 Ancona, Italy
| | - Anna Russo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80131 Naples, Italy
| | - Alessandra Michelucci
- Department of Dermatology, University of Pisa, Via Roma 67, 56126 Pisa, Italy
- Interdisciplinary Center of Health Science, Sant’Anna School of Advanced Studies of Pisa, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Andrea Sechi
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stella Desyatnikova
- The Stella Center for Facial Plastic Surgery, 509 Olive Way Ste 1430, Seattle, WA 98101, USA
| | - Marco Fogante
- Maternal-Child, Senological, Cardiological Radiology and Outpatient Ultrasound, Department of Radiological Sciences, University Hospital of Marche, Via Conca 71, 60126 Ancona, Italy
| | - Vittorio Patanè
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80131 Naples, Italy
| | - Giammarco Granieri
- Department of Dermatology, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Corrado Tagliati
- AST Ancona, Ospedale di Comunità Maria Montessori di Chiaravalle, Via Fratelli Rosselli 176, 60033 Chiaravalle, Italy
| | - Giulio Rizzetto
- Department of Clinical and Molecular Sciences, Dermatology Clinic, Polytechnic Marche University, Via Conca 71, 60126 Ancona, Italy
| | - Edoardo De Simoni
- Department of Clinical and Molecular Sciences, Dermatology Clinic, Polytechnic Marche University, Via Conca 71, 60126 Ancona, Italy
| | - Marco Matteucci
- Department of Clinical and Molecular Sciences, Dermatology Clinic, Polytechnic Marche University, Via Conca 71, 60126 Ancona, Italy
| | - Matteo Candelora
- Department of Clinical and Molecular Sciences, Dermatology Clinic, Polytechnic Marche University, Via Conca 71, 60126 Ancona, Italy
| | - Cecilia Lanza
- Maternal-Child, Senological, Cardiological Radiology and Outpatient Ultrasound, Department of Radiological Sciences, University Hospital of Marche, Via Conca 71, 60126 Ancona, Italy
| | - Claudio Ventura
- Maternal-Child, Senological, Cardiological Radiology and Outpatient Ultrasound, Department of Radiological Sciences, University Hospital of Marche, Via Conca 71, 60126 Ancona, Italy
| | - Nicola Carboni
- Maternal-Child, Senological, Cardiological Radiology and Outpatient Ultrasound, Department of Radiological Sciences, University Hospital of Marche, Via Conca 71, 60126 Ancona, Italy
| | - Roberto Esposito
- Gemini Med Diagnostic Clinic, via Tabellione 1, 47891 Falciano, San Marino
| | | | - Massimiliano Paolinelli
- AST Ancona, Distretto Sanitario di Senigallia, Dermatologia, Via Campo Boario 4, 60019 Senigallia, Italy
| | - Elisabetta Esposto
- AST Pesaro-Urbino, Distretto Sanitario di Pesaro, Via XI Febbraio, 61121 Pesaro, Italy
| | - Giuseppe Lanni
- Department of Services, U.O.S.D. Radiology, San Liberatore Hospital, Viale Risorgimento, 64032 Atri, Italy
| | - Gabriella Lucidi Pressanti
- Department of Services, U.O.S.D. Radiology, San Liberatore Hospital, Viale Risorgimento, 64032 Atri, Italy
| | - Chiara Giorgi
- AST Pesaro-Urbino, Radiologia, Ospedale Santa Maria della Misericordia, Via Comandino 70, 61029 Urbino, Italy
| | - Fabiola Principi
- AST Ancona, Radiologia, Ospedale Santa Casa di Loreto, Via San Francesco 1, 60025 Loreto, Italy
| | - Alberto Rebonato
- AST Pesaro-Urbino, Radiologia, Ospedale San Salvatore, Piazzale Cinnelli 1, 61121 Pesaro, Italy
| | | | - Robert Krzysztof Mlosek
- Diagnostic Ultrasound Laboratory, Medical University of Warsaw, 61 Zwirki i Wigury Street, 02-091 Warszawa, Poland
| | | | - Valentina Dini
- Department of Dermatology, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Marco Romanelli
- Department of Dermatology, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences, Dermatology Clinic, Polytechnic Marche University, Via Conca 71, 60126 Ancona, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80131 Naples, Italy
| | - Ximena Wortsman
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Lo Fontecilla 201 of 734 Las Condes, Región Metropolitana de Santiago, Santiago 8330111, Chile
- Department of Dermatology, School of Medicine, Pontificia Universidad Catolica de Chile, Av. Libertador Bernardo O’Higgins 340, Región Metropolitana de Santiago, Santiago 8331150, Chile
- Institute for Diagnostic, Imaging and Research of the Skin and Soft Tissues (IDIEP), Lo Fontecilla 201 of 734 Las Condes, Región Metropolitana de Santiago, Santiago 7591018, Chile
- Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, 1120 NW 14th St Ste 9, Miami, FL 33146, USA
| | - Oriana Simonetti
- Department of Clinical and Molecular Sciences, Dermatology Clinic, Polytechnic Marche University, Via Conca 71, 60126 Ancona, Italy
| |
Collapse
|
7
|
Lee SK, Keng JW, Yon JAL, Mai CW, Lim HC, Chow SC, Akowuah GA, Liew KB, Lee SK, Marriott PJ, Chew YL. Phytochemical Analysis and Biological Activities of Flavonoids and Anthraquinones from Cassia alata (Linnaeus) Roxburgh and Their Implications for Atopic Dermatitis Management. PLANTS (BASEL, SWITZERLAND) 2025; 14:362. [PMID: 39942922 PMCID: PMC11820745 DOI: 10.3390/plants14030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
To study Cassia alata (CA) (Linnaeus) Roxburgh's effectiveness towards atopic dermatitis (AD), CA leaf extracts were prepared using three methanol-based extraction solvent systems. Bioactive constituents were characterized and quantified via high-performance liquid chromatography with diode array detection. Antioxidant properties and antimicrobial activities against Staphylococcus aureus, a major AD exacerbation factor, were assessed. Four polyphenols (two flavonoids, two anthraquinones) beneficial in AD control were detected (rhein > aloe-emodin > astragalin > kaempferol). The 75% v/v MeOH/water extract had the most polyphenols and the best antioxidant profile (total phenolic content, total flavonoid content, 2,2-diphenyl-1-picrylhydrazyl-hydrate radical scavenging activity, ascorbic acid equivalent antioxidant capacity), with excellent S. aureus inhibition (minimum inhibitory concentration = 0.625 mg/mL; minimum bactericidal concentration = 1.25 mg/mL). Hence, it was selected for the in vitro examination of cytotoxicity and wound healing activity towards human epidermal keratinocyte cells using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2h-tetrazolium bromide (MTT) assay and wound scratch assay. The extract showed no cytotoxicity (IC50 > 100 µg/mL) without significant reduction in cell viability up to 200 µg/mL compared to the vehicle control. An amount of 50 μg/mL extract concentration showed the best wound-healing activity (p < 0.05), with a cell migration rate of 5.89 ± 0.80 µm/h over 96 h post-treatment. Such antioxidant, antimicrobial, and wound-healing activities suggest CA and its polyphenols to be promising natural, long-term AD remedies for skin health.
Collapse
Affiliation(s)
- Sue-Kei Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.-K.L.); (J.-W.K.); (J.-A.-L.Y.); (H.-C.L.)
| | - Jing-Wen Keng
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.-K.L.); (J.-W.K.); (J.-A.-L.Y.); (H.-C.L.)
| | - Jessica-Ai-Lyn Yon
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.-K.L.); (J.-W.K.); (J.-A.-L.Y.); (H.-C.L.)
| | - Chun-Wai Mai
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur 57000, Malaysia;
| | - Heng-Chee Lim
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.-K.L.); (J.-W.K.); (J.-A.-L.Y.); (H.-C.L.)
| | - Sek-Chuen Chow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 46150, Selangor, Malaysia;
| | - Gabriel Akyirem Akowuah
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 46150, Selangor, Malaysia;
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, Selangor, Malaysia;
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia;
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.-K.L.); (J.-W.K.); (J.-A.-L.Y.); (H.-C.L.)
| |
Collapse
|
8
|
Chiang CC, Cheng WJ, Dela Cruz JRMS, Raviraj T, Wu NL, Korinek M, Hwang TL. Neutrophils in Atopic Dermatitis. Clin Rev Allergy Immunol 2024; 67:21-39. [PMID: 39294505 PMCID: PMC11638293 DOI: 10.1007/s12016-024-09004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/20/2024]
Abstract
Neutrophils have a critical role in inflammation. Recent studies have identified their distinctive presence in certain types of atopic dermatitis (AD), yet their exact function remains unclear. This review aims to compile studies elucidating the role of neutrophils in AD pathophysiology. Proteins released by neutrophils, including myeloperoxidase, elastase, and lipocalin, contribute to pruritus progression in AD. Neutrophilic oxidative stress and the formation of neutrophil extracellular traps may further worsen AD. Elevated neutrophil elastase and high-mobility group box 1 protein expression in AD patients' skin exacerbates epidermal barrier defects. Neutrophil-mast cell interactions in allergic inflammation steer the immunological response toward Th2 imbalance and activate the Th17 pathway, particularly in response to allergens or infections linked to AD. Notably, drugs alleviating pruritic symptoms in AD inhibit neutrophilic inflammation. In conclusion, these findings underscore that neutrophils may be therapeutic targets for AD symptoms, emphasizing their inclusion in AD treatment strategies.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Department of Nutrition and Health Sciences, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Wei-Jen Cheng
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Joseph Renz Marion Santiago Dela Cruz
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Thiyagarajan Raviraj
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.
- Institute of Biomedical Sciences and Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
9
|
Kuai L, Huang F, Mao L, Ru Y, Jiang J, Song J, Chen S, Li K, Li Y, Dong H, Lu X, Li B, Shi J. Single-Atom Catalysts with Isolated Cu 1-N 4 Sites for Atopic Dermatitis Cascade Catalytic Therapy via Activating PPAR Signaling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407365. [PMID: 39363827 DOI: 10.1002/smll.202407365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Atopic dermatitis (AD) is one of the most common allergic skin disorders affecting over 230 million people worldwide, while safe and efficient therapeutic options for AD are currently rarely available. Reactive oxygen species (ROS) accumulation plays a key role in AD's disease progression. Therefore, a novel single-atom catalyst is designed with isolated Cu1-N4 sites anchored on carbon support (Cu1-N4 ISAC), featuring triple antioxidant enzyme-mimicking activities, for efficient AD cascade catalytic therapy (CCT). The excellent superoxide dismutase (SOD)-, glutathione peroxidase (GPx)-, and ascorbate peroxidase (APx)-like activities of Cu1-N4 ISACs enable the sequential conversion of O2•- to H2O2 and then to harmless H2O, thereby protecting keratinocytes from oxidative stress damage. Notably, two novel experimental methods are developed to directly prove the SOD-GPx and SOD-APx cascade catalytic activities for the first time. In vivo experiments show that Cu1-N4 ISACs are more potent than a recommended typical medicine (halcinonide solution). Additionally, RNA sequencing and bioinformatic analysis reveal that Cu1-N4 ISACs reduce inflammation and inhibit ROS production by activating PPAR signaling, which is aberrantly reduced in AD. Therefore, the synthesized catalytic medicine offers an alternative to alleviate AD and has the potential to serve as PPAR agonists for treating similar diseases.
Collapse
Affiliation(s)
- Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Fang Huang
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Lijie Mao
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Yi Ru
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Si Chen
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Ke Li
- School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiangyu Lu
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
10
|
Zhang Y, Zhao W, Liao J, Zhang Y, Wang L, Li P, Du B. Evaluation of the therapeutic effect of Sacha inchi oil in atopic dermatitis mice. Int Immunopharmacol 2024; 138:112552. [PMID: 38917521 DOI: 10.1016/j.intimp.2024.112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin condition characterized by a multifaceted pathogenesis, which encompasses immune system signaling dysregulation, compromised skin barrier function, and genetic influencers. Sacha inchi (Plukenetia volubilis L.) oil (SIO) has demonstrated potent anti-inflammatory and antioxidant properties, however, the mechanism underlying the beneficial effects of SIO on AD remains unclear. This study aims to investigate the anti-AD effect of SIO and its possible molecular mechanism in mice with AD. The results demonstrated that SIO significantly reduced the degree of skin lesions and scratching, and improved the skin thickness and mast cell infiltration in AD mice. Furthermore, SIO significantly reduced the levels of immunoglobulin E, histamine and thymic stromal lymphopoietin in serum of AD mice. Additionally, it inhibited the expression of tumor necrosis factor-γ, interferon-γ, interleukin-2, interleukin-4, interleukin 1β and other inflammatory cytokines in the lesions skin of mice. The Western blotting analysis revealed that SIO exhibited an upregulatory effect on the protein expression of filaggrin and loricrin, while concurrently exerting inhibitory effects on the protein expression and phosphorylation levels of P38, ERK, NF-κB, and IκBα within their respective signaling pathways. Consequently, it can be inferred that SIO exerts a significant anti-atopic dermatitis effect by modulating the P38, ERK, NF-κB, and IκBα signaling pathways. This study contributes to expand the research and development potential of SIO, and provides novel insights and potential therapeutic strategies for AD treatment.
Collapse
Affiliation(s)
- Yuwei Zhang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjun Zhao
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jingru Liao
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yixiang Zhang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lieyu Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Xiao Q, Guo J, Lu Y, Gao J, Jia C, Huang M, Chu W, Yao W, Ning P, Xu Q, Xu N. Molybdenum Nanoparticles Alleviate MC903-Induced Atopic Dermatitis-Like Symptoms in Mice by Modulating the ROS-Mediated NF-κB and Nrf2 /HO-1 Signaling Pathways. Int J Nanomedicine 2024; 19:8779-8796. [PMID: 39220192 PMCID: PMC11365534 DOI: 10.2147/ijn.s472999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Atopic dermatitis (AD) is a chronic inflammatory skin condition that can affect individuals of all ages. Recent research has shown that oxidative stress plays a crucial role in the development of AD. Therefore, inhibiting oxidative stress may be an effective therapeutic approach for AD. Nano-molybdenum is a promising material for use as an antioxidant. We aimed to evaluate the therapeutic effects and preliminary mechanisms of molybdenum nanoparticles (Mo NPs) by using a murine model of chemically induced AD-like disease. Methods HaCaT cells, a spontaneously immortalized human keratinocyte cell line, were stimulated by tumor necrosis factor-alpha /interferon-gamma after pre-treatment with Mo NPs. Reactive oxygen species levels, production of inflammatory factors, and activation of the nuclear factor kappa-B and the nuclear factor erythroid 2-related factor pathways were then evaluated. Mo NPs was topically applied to treat a murine model of AD-like disease induced by MC903, a vitamin D3 analog. Dermatitis scores, pruritus scores, transepidermal water loss and body weight were evaluated. AD-related inflammatory factors and chemokines were evaluated. Activation of the nuclear factor kappa-B and nuclear factor erythroid 2-related factor / heme oxygenase-1 pathways was assessed. Results Our data showed that the topical application of Mo NPs dispersion could significantly alleviate AD skin lesions and itching and promote skin barrier repair. Further mechanistic experiments revealed that Mo NPs could inhibit the excessive activation of the nuclear factor kappa-B pathway, promote the expression of nuclear factor erythroid 2-related factor and heme oxygenase-1 proteins, and suppress oxidative stress reactions. Additionally, they inhibited the expression of thymic stromal lymphopoietin, inflammatory factors, and chemokines, thereby alleviating skin inflammation. Conclusion Mo NPs present a promising alternative treatment option for patients with AD as they could address three pivotal mechanisms in the pathogenesis of AD concurrently.
Collapse
Affiliation(s)
- Qin Xiao
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jing Guo
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yongzhou Lu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jin Gao
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Chuanlong Jia
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Minghuan Huang
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Weifang Chu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Wei Yao
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Peng Ning
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University, Shanghai, People’s Republic of China
| | - Qiannan Xu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
De Simoni E, Candelora M, Belleggia S, Rizzetto G, Molinelli E, Capodaglio I, Ferretti G, Bacchetti T, Offidani A, Simonetti O. Role of antioxidants supplementation in the treatment of atopic dermatitis: a critical narrative review. Front Nutr 2024; 11:1393673. [PMID: 38933878 PMCID: PMC11203398 DOI: 10.3389/fnut.2024.1393673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by itching, epidermal barrier dysfunction, and an unbalanced inflammatory reaction. AD pathophysiology involves a dysregulated immune response driven by T helper-2 cells. Many factors, including reactive oxygen species (ROS), are involved in AD pathogenesis by causing cellular damage and inflammation resulting in skin barrier dysfunction. This narrative review aims to provide a comprehensive overview of the role of natural molecules and antioxidant compounds, highlighting their potential therapeutic value in AD prevention and management. They include vitamin D, vitamin E, pyridoxine, Vitamin C, carotenoids, and melatonin. Some studies report a statistically significant association between antioxidant levels and improvement in AD, however, there are conflicting results in which antioxidant supplementation, especially Vitamin D, did not result in improvement in AD. Therefore, the clinical efficacy of these dietary nutritional factors in the treatment of AD needs to be further evaluated in clinical trials. Meanwhile, antioxidants can be incorporated into the management of AD patients in a personalized manner, tailored to the severity of the disease, comorbidities, and individual needs.
Collapse
Affiliation(s)
- Edoardo De Simoni
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Matteo Candelora
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Sara Belleggia
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Irene Capodaglio
- Hospital Cardiology and UTIC, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Gianna Ferretti
- Department of Clinical Experimental Science and Odontostomatology-Biochemistry, Research Center of Health Education and Health Promotion, Ancona, Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences-Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
13
|
Karami H, Niavand MR, Haddadi R, Noriyan A, Vafaei SY. Development of a hydrogel containing bisabolol-loaded nanocapsules for the treatment of atopic dermatitis in a Balb/c mice model. Int J Pharm 2024; 656:124029. [PMID: 38527566 DOI: 10.1016/j.ijpharm.2024.124029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
α-Bisabolol (αBIS), a plant-derived compound with anti-inflammatory properties, is potentially a therapeutic agent for Atopic dermatitis. However, its poor water solubility and photoinstability limit its topical application. Therefore, the present study, aimed to develop cationic polymeric nanocapsules of αBIS to improve its skin delivery, photostability, and therapeutic efficacy. The αBIS-loaded nanocapsules were prepared using the solvent displacement technique. A Box-Behnken (BB) design was employed to statistically optimize formulation variables and αBIS-loaded nanocapsules characterized by particle size, surface charge and encapsulation efficiency. The optimal formulation was selected, and the spherical shape of the nanocapsules was confirmed by scanning electron microscopy (SEM). Furthermore, hydrogel containing αBIS-loaded nanocapsules was prepared by thickening of nanocapsule suspension with Carbopol 934 and evaluated for rheology, in vitro drug release and skin permeation. Furthermore, a mice model of atopic dermatitis was used to evaluate the anti-inflammatory potential of the hydrogels. The optimal formulation displayed a spherical morphology under scanning electron microscopy (SEM) with an optimum particle size of 133.00 nm, polydispersity index (PDI) of 0.12, high EE% of 93 %, and improved optical stability of αBIS in the prepared nanocapsules compared to the free drug. The nano-based hydrogels demonstrated non-Newtonian pseudoplastic behavior and an increased αBIS in vitro release profile without causing skin irritation in rabbits. Drug retention within the dermis and epidermis layers significantly surpassed that of drug-free hydrogel. Moreover, in vivo histopathological studies and myeloperoxidase (MPO) enzyme activity, revealed that hydrogel containing bisabolol nanocapsules exhibited The best anti-inflammatory effect. The results showed that hydrogels containing bisabolol nanocapsules markedly alleviated dermatitis-related inflammation and reduced skin thickness in Balb/c mice. Our findings support nanocapsules as an effective drug delivery system to enhance αBIS stability, bioavailability, and therapeutic efficacy in AD treatment.
Collapse
Affiliation(s)
- Homa Karami
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Niavand
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Noriyan
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Yaser Vafaei
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
14
|
Yu H, Lin J, Yuan J, Sun X, Wang C, Bai B. Screening mitochondria-related biomarkers in skin and plasma of atopic dermatitis patients by bioinformatics analysis and machine learning. Front Immunol 2024; 15:1367602. [PMID: 38774875 PMCID: PMC11106410 DOI: 10.3389/fimmu.2024.1367602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Background There is a significant imbalance of mitochondrial activity and oxidative stress (OS) status in patients with atopic dermatitis (AD). This study aims to screen skin and peripheral mitochondria-related biomarkers, providing insights into the underlying mechanisms of mitochondrial dysfunction in AD. Methods Public data were obtained from MitoCarta 3.0 and GEO database. We screened mitochondria-related differentially expressed genes (MitoDEGs) using R language and then performed GO and KEGG pathway analysis on MitoDEGs. PPI and machine learning algorithms were also used to select hub MitoDEGs. Meanwhile, the expression of hub MitoDEGs in clinical samples were verified. Using ROC curve analysis, the diagnostic performance of risk model constructed from these hub MitoDEGs was evaluated in the training and validation sets. Further computer-aided algorithm analyses included gene set enrichment analysis (GSEA), immune infiltration and mitochondrial metabolism, centered on these hub MitoDEGs. We also used real-time PCR and Spearman method to evaluate the relationship between plasma circulating cell-free mitochondrial DNA (ccf-mtDNA) levels and disease severity in AD patients. Results MitoDEGs in AD were significantly enriched in pathways involved in mitochondrial respiration, mitochondrial metabolism, and mitochondrial membrane transport. Four hub genes (BAX, IDH3A, MRPS6, and GPT2) were selected to take part in the creation of a novel mitochondrial-based risk model for AD prediction. The risk score demonstrated excellent diagnostic performance in both the training cohort (AUC = 1.000) and the validation cohort (AUC = 0.810). Four hub MitoDEGs were also clearly associated with the innate immune cells' infiltration and the molecular modifications of mitochondrial hypermetabolism in AD. We further discovered that AD patients had considerably greater plasma ccf-mtDNA levels than controls (U = 92.0, p< 0.001). Besides, there was a significant relationship between the up-regulation of plasma mtDNA and the severity of AD symptoms. Conclusions The study highlights BAX, IDH3A, MRPS6 and GPT2 as crucial MitoDEGs and demonstrates their efficiency in identifying AD. Moderate to severe AD is associated with increased markers of mitochondrial damage and cellular stress (ccf=mtDNA). Our study provides data support for the variation in mitochondria-related functional characteristics of AD patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Bingxue Bai
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
15
|
Alessandrello C, Sanfilippo S, Minciullo PL, Gangemi S. An Overview on Atopic Dermatitis, Oxidative Stress, and Psychological Stress: Possible Role of Nutraceuticals as an Additional Therapeutic Strategy. Int J Mol Sci 2024; 25:5020. [PMID: 38732239 PMCID: PMC11084351 DOI: 10.3390/ijms25095020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition with a considerable impact on patients' quality of life. Its etiology is multifactorial and, among the predisposing factors, a role is played by oxidative stress. Pollution, recurrent infections, and psychological stress contribute to oxidative stress, amplifying the production of proinflammatory cytokines and worsening barrier damage. There are various oxidative stress mechanisms involved in the pathogenesis of AD. Moreover, AD often appears to be associated with psychological disorders such as alexithymia, depression, and anxiety due to severe itching and related insomnia, as well as social distress and isolation. The increasing incidence of AD requires the evaluation of additional therapeutic approaches in order to reduce the psychological burden of this condition. Our review aims to evaluate the role of some nutraceuticals in AD treatment and its related psychological comorbidities. The combination of some natural compounds (flavonoids, alkaloids, terpenes, isothiocyanates) with traditional AD treatments might be useful in improving the effectiveness of therapy, by reducing chronic inflammation and preventing flare-ups, and in promoting corticosteroid sparing. In addition, some of these nutraceuticals also appear to have a role in the treatment of psychological disorders, although the underlying oxidative stress mechanisms are different from those already known for AD.
Collapse
Affiliation(s)
| | | | - Paola L. Minciullo
- School and Operative Unit of Allergy and Clinical Immunology, University Hospital of Messina, 98125 Messina, Italy; (C.A.); (S.S.); (S.G.)
| | | |
Collapse
|
16
|
Heydarirad G, Rastegar S, Haji-Abdolvahab H, Fuzimoto A, Hunter J, Zare R, Pasalar M. Efficacy and safety of purslane (Portulaca oleracea) for mild to moderate chronic hand eczema; A randomized, double-blind, placebo-controlled clinical trial. Explore (NY) 2024; 20:401-410. [PMID: 37872023 DOI: 10.1016/j.explore.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Chronic hand eczema (CHE) is a common skin inflammation with a complex pathophysiology. Due to its anti-inflammatory properties, Portulaca oleracea L. (purslane) is traditionally used in Persian medicine for skin ailments. This study aimed to evaluate the safety and efficacy of a standardized purslane extract (based on traditional Persian medicine) for adults with mild or moderately severe CHE. METHODS A randomized, double-blind, placebo-controlled clinical trial was conducted at Razi Hospital in Iran from January to June 2022. Participants were randomly allocated to receive an oral purslane or placebo syrup plus topical Vaseline for four weeks. Seventy participants were randomly allocated into the intervention (n = 35) and placebo (n = 35) groups. The primary outcomes were the extent and severity of CHE symptoms over the four weeks after adjusting for age, gender and baseline score. Secondary outcomes were quality of life, symptom recurrence, treatment satisfaction, and adverse events. RESULTS After 4 weeks of treatment, compared to the placebo group (n = 31), the purslane group (n = 31) had significantly lower physician-reported fissure scores (adjusted mean difference (adjMD): -0.50, 95 %CI -3.93 to -0.34, p = 0.043), participant-reported itching (adjMD -0.51, 95 %CI -2.32 to -0.31, p = 0.041), dryness (adjMD -1.46, 95 %CI -2.89 to -0.03, p = 0.045), and total itching, dryness and thickness (adjMD -2.36, 95 %CI -6.23 to -1.51, p = 0.023) scores. Fourteen participants (purslane n = 10; placebo n = 4, p = 0.068) experienced adverse events of mild to moderate severity. CONCLUSION Purslane has some promising effects for reducing the extent and severity of CHE symptoms, and no direct comparisons have been made with commonly used treatments. Future multicenter trials and mechanistic studies are warranted to establish the safety and effectiveness of purslane as a potential therapeutic agent for CHE. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT20200707048040N1).
Collapse
Affiliation(s)
- Ghazaleh Heydarirad
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sedigheh Rastegar
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Jennifer Hunter
- Director, Health Research Group, Sydney, New South Wales, Australia
| | - Roghayeh Zare
- Research Center of Persian Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Pasalar
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Huang F, Lu X, Kuai L, Ru Y, Jiang J, Song J, Chen S, Mao L, Li Y, Li B, Dong H, Shi J. Dual-Site Biomimetic Cu/Zn-MOF for Atopic Dermatitis Catalytic Therapy via Suppressing FcγR-Mediated Phagocytosis. J Am Chem Soc 2024; 146:3186-3199. [PMID: 38266487 DOI: 10.1021/jacs.3c11059] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease that carries a significant global economic burden. Elevated levels of reactive oxygen species (ROS) have been recognized as contributing to AD exacerbation, making them a potential therapeutic target for AD treatment. Here, we introduce a dual-site biomimetic copper/zinc metal-organic framework (Cu/Zn-MOF) featuring four types of enzyme-like activities for AD treatment via suppressing the Fcγ receptor (FcγR)-mediated phagocytosis signal by mimicking the bimetallic sites of natural copper-zinc superoxide dismutase (CuZn-SOD). Interestingly, the neighboring Cu and Zn sites in both Cu/Zn-MOF and CuZn-SOD are at similar distances of ∼5.98 and ∼6.3 Å from each other, respectively, and additionally, both Cu and Zn sites are coordinated to nitrogen atoms in both structures, and the coordinating ligands to Cu and Zn are both imidazole rings. Cu/Zn-MOF exhibits remarkable SOD-like activity as well as its glutathione peroxidase (GPx)-, thiol peroxidase (TPx)-, and ascorbate peroxidase (APx)-like activities to continuously consume ROS and mitigate oxidative stress in keratinocytes. Animal experiments show that Cu/Zn-MOF outperforms halcinonide solution (a potent steroid medication) in terms of preventing mechanical injuries, reducing cutaneous water loss, and inhibiting inflammatory responses while presenting favorable biosafety. Mechanistically, Cu/Zn-MOF functions through an FcγR-mediated phagocytosis signal pathway, decreasing the continuous accumulation of ROS in AD and ultimately suppressing disease progression. These findings will provide an effective paradigm for AD therapy and contribute to the development of two-site bionics (TSB).
Collapse
Affiliation(s)
- Fang Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xiangyu Lu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai 200331, China
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Si Chen
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai 200331, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
| | - Lijie Mao
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai 200331, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
- Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jianlin Shi
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai 200331, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
| |
Collapse
|
18
|
Morresi C, Luccarini A, Marcheggiani F, Ferretti G, Damiani E, Bacchetti T. Modulation of paraoxonase-2 in human dermal fibroblasts by UVA-induced oxidative stress: A new potential marker of skin photodamage. Chem Biol Interact 2023; 384:110702. [PMID: 37717644 DOI: 10.1016/j.cbi.2023.110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Paraoxonase-2 (PON2) is an intracellular protein, that exerts a protective role against cell oxidative stress and apoptosis. Genetic and environmental factors (i.e. dietary factors, cigarette smoke, drugs) are able to modulate cellular PON2 levels. The effect of ultraviolet A radiation (UVA), the oxidizing component of sunlight, on PON2 in human dermal fibroblasts (HuDe) has not been previously explored. Excessive UVA radiation is known to cause direct and indirect skin damage by influencing intracellular signalling pathways through oxidative stress mediated by reactive oxygen species (ROS) that modulate the expression of downstream genes involved in different processes, e.g. skin photoaging and cancer. The aim of this study was, therefore, to investigate the modulation of PON2 in terms of protein expression and enzyme activity in HuDe exposed to UVA (270 kJ/m2). Our results show that PON2 is up-regulated immediately after UVA exposure and that its levels and activity decrease in the post-exposure phase, in a time-dependent manner (2-24 h). The trend in PON2 levels mirror the time-course study of UVA-induced ROS. To confirm this, experiments were also performed in the presence of a SPF30 sunscreen used as shielding agent to revert modulation of PON2 at 0 and 2 h post-UVA exposure where other markers of photo-oxidative stress were also examined (NF-KB, γH2AX, advanced glycation end products). Overall, our results show that the upregulation of PON2 might be related to the increase in intracellular ROS and may play an important role in mitigation of UVA-mediated damage and in the prevention of the consequences of UV exposure, thus representing a new marker of early-response to UVA-induced damage in skin fibroblasts.
Collapse
Affiliation(s)
- Camilla Morresi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy
| | - Alessia Luccarini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy
| | - Gianna Ferretti
- Department of Clinical Science and Odontostomatology, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy.
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy.
| |
Collapse
|
19
|
Voss GT, Davies MJ, Schiesser CH, de Oliveira RL, Nornberg AB, Soares VR, Barcellos AM, Luchese C, Fajardo AR, Wilhelm EA. Treating atopic-dermatitis-like skin lesions in mice with gelatin-alginate films containing 1,4-anhydro-4-seleno-d-talitol (SeTal). Int J Pharm 2023:123174. [PMID: 37364783 DOI: 10.1016/j.ijpharm.2023.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
New compounds and pharmacological strategies offer alternatives for treating chronic skin diseases, such as atopic dermatitis (AD). Here, we investigated the incorporation of 1,4-anhydro-4-seleno-d-talitol (SeTal), a bioactive seleno-organic compound, in gelatin and alginate (Gel-Alg) polymeric films as a strategy for improving the treatment and attenuation of AD-like symptoms in a mice model. Hydrocortisone (HC) or vitamin C (VitC) were incorporated with SeTal in the Gel-Alg films, and their synergy was investigated. All the prepared film samples were able to retain and release SeTal in a controlled manner. In addition, appreciable film handling facilitates SeTal administration. A series of in-vivo/ex-vivo experiments were performed using mice sensitized with dinitrochlorobenzene (DNCB), which induces AD-like symptoms. Long-term topical application of the loaded Gel-Alg films attenuated disease symptoms and pruritus, with suppression of the levels of inflammatory markers, oxidative damage, and the skin lesions associated with AD. Moreover, the loaded films showed superior efficiency in attenuating the analyzed symptoms when compared to hydrocortisone (HC) cream, a traditional AD-treatment, and decreased the inherent drawbacks of this compound. In short, incorporating SeTal (by itself or with HC or VitC) in biopolymeric films provides a promising alternative for the long-term treatment of AD-type skin diseases.
Collapse
Affiliation(s)
- Guilherme T Voss
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900, Pelotas-RS, Brazil
| | - Michael J Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark; Seleno Therapeutics Pty. Ltd., Brighton East, VIC, 3187, Australia
| | - Carl H Schiesser
- Seleno Therapeutics Pty. Ltd., Brighton East, VIC, 3187, Australia
| | - Renata L de Oliveira
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900, Pelotas-RS, Brazil
| | - Andresa B Nornberg
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil
| | - Victória R Soares
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil
| | - Angelita M Barcellos
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900, Pelotas-RS, Brazil
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil.
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900, Pelotas-RS, Brazil.
| |
Collapse
|
20
|
De Simoni E, Rizzetto G, Molinelli E, Capodaglio I, Offidani A, Simonetti O. The Role of Diet in Children with Psoriasis: Emerging Evidence and Current Issues. Nutrients 2023; 15:nu15071705. [PMID: 37049545 PMCID: PMC10097110 DOI: 10.3390/nu15071705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Psoriasis is an immune-mediated inflammatory systemic disease with skin tropism and chronic relapsing course; it is associated with an increased cardiovascular risk and with many metabolic comorbidities, emerging during childhood in 22–33% of cases. Diet influences the presentation and the clinical course of inflammatory diseases, including psoriasis; in particular, it was shown that a Mediterranean, gluten-free, or low-calorie diet may positively affect disease control in adult patients with psoriasis and adequate pharmacological therapy. These three dietary regimens may play a role also in children with psoriasis. It has been demonstrated that pediatric psoriasis is associated with psychological stress, celiac disease, and obesity, which may be positively influenced by these dietary regimens, respectively. Therefore, the expertise of multiple health figures (gastroenterologists, nutritionists, pediatricians, dermatologists) is required to plan a tailor-made dietary strategy, ensuring good growth, through an adequate intake of essential micro- and macronutrients and, at the same time, impacting the pro-inflammatory biochemical profile and on the associated cardiovascular risk of psoriasis disease.
Collapse
Affiliation(s)
- Edoardo De Simoni
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
- Correspondence:
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Irene Capodaglio
- Hospital Cardiology and UTIC, Ospedali Riuniti di Ancona, 60126 Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| |
Collapse
|
21
|
Microbiota, Oxidative Stress, and Skin Cancer: An Unexpected Triangle. Antioxidants (Basel) 2023; 12:antiox12030546. [PMID: 36978794 PMCID: PMC10045429 DOI: 10.3390/antiox12030546] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Mounting evidence indicates that the microbiota, the unique combination of micro-organisms residing in a specific environment, plays an essential role in the development of a wide range of human diseases, including skin cancer. Moreover, a persistent imbalance of microbial community, named dysbiosis, can also be associated with oxidative stress, a well-known emerging force involved in the pathogenesis of several human diseases, including cutaneous malignancies. Although their interplay has been somewhat suggested, the connection between microbiota, oxidative stress, and skin cancer is a largely unexplored field. In the present review, we discuss the current knowledge on these topics, suggesting potential therapeutic strategies.
Collapse
|
22
|
De Simoni E, Rizzetto G, Molinelli E, Lucarini G, Mattioli-Belmonte M, Capodaglio I, Ferretti G, Bacchetti T, Offidani A, Simonetti O. Metabolic Comorbidities in Pediatric Atopic Dermatitis: A Narrative Review. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010002. [PMID: 36675951 PMCID: PMC9866487 DOI: 10.3390/life13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Atopic dermatitis (AD) is an itchy dermatitis with multifactorial aetiology, chronic-recurrent course, and typical distribution of lesions according to the age, affecting the 10-20% of pediatric population. Patients with AD, including children, suffer from many metabolic comorbidities, including metabolic syndrome, being overweight, obesity, dyslipidaemia, and arterial hypertension, all of which had a prevalence that was demonstrated to be higher than in healthy patients. The association between AD and metabolic comorbidities is multifactorial and involves the deregulation of immune system. In fact, hypertrophic adipose tissue produces soluble adipokines involved in inflammation and immunity, which stimulate the production of pro-inflammatory cytokines, responsible for a chronic low-grade inflammatory state and a higher predisposition to hypersensitivity reactions. Especially in pediatric population with AD, these metabolic disorders are usually underestimated and are associated with long term sequelae and an increased risk of a cardiovascular event, which may also occur later in adult age. Therefore, metabolic comorbidities should be carefully evaluated and early treated in children with AD, to minimize the long-term risk of cardiovascular events.
Collapse
Affiliation(s)
- Edoardo De Simoni
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences-Histology, Polytechnic University of Marche, 60020 Ancona, Italy
- Correspondence: ; Tel.: +39-0712206075
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences-Histology, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Irene Capodaglio
- Hospital Cardiology and UTIC, Ospedali Riuniti di Ancona, 60126 Ancona, Italy
| | - Gianna Ferretti
- Research Center of Health Education and Health Promotion, Department of Clinical Experimental Science and Odontostomatology-Biochemistry, 60126 Ancona, Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences-Biochemistry, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| |
Collapse
|
23
|
Borgia F, Li Pomi F, Vaccaro M, Alessandrello C, Papa V, Gangemi S. Oxidative Stress and Phototherapy in Atopic Dermatitis: Mechanisms, Role, and Future Perspectives. Biomolecules 2022; 12:1904. [PMID: 36551332 PMCID: PMC9775940 DOI: 10.3390/biom12121904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease in which the overproduction of reactive oxygen species plays a pivotal role in the pathogenesis and persistence of inflammatory lesions. Phototherapy represents one of the most used therapeutic options, with benefits in the clinical picture. Studies have demonstrated the immunomodulatory effect of phototherapy and its role in reducing molecule hallmarks of oxidative stress. In this review, we report the data present in literature dealing with the main signaling molecular pathways involved in oxidative stress after phototherapy to target atopic dermatitis-affected cells. Since oxidative stress plays a pivotal role in the pathogenesis of atopic dermatitis and its flare-up, new research lines could be opened to study new drugs that act on this mechanism, perhaps in concert with phototherapy.
Collapse
Affiliation(s)
- Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Clara Alessandrello
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
24
|
Panieri E, Telkoparan-Akillilar P, Saso L. NRF2, a crucial modulator of skin cells protection against vitiligo, psoriasis, and cancer. Biofactors 2022; 49:228-250. [PMID: 36310374 DOI: 10.1002/biof.1912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022]
Abstract
The skin represents a physical barrier between the organism and the environment that has evolved to confer protection against biological, chemical, and physical insults. The inner layer, known as dermis, is constituted by connective tissue and different types of immune cells whereas the outer layer, the epidermis, is composed by different layers of keratinocytes and an abundant number of melanocytes, localized in the stratum basale of the epidermis. Oxidative stress is a common alteration of inflammatory skin disorders such as vitiligo, dermatitis, or psoriasis but can also play a causal role in skin carcinogenesis and tumor progression. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) has emerged as a crucial regulator of cell defense mechanisms activating complex transcriptional programs that facilitate reactive oxygen species detoxification, repair oxidative damage and prevent xenobiotic-induced toxicity. Accumulating evidence suggests that the keratinocytes, melanocytes, and other skin cell types express high levels of NRF2, which is known to play a pivotal role in the skin homeostasis, differentiation, and metabolism during normal and pathologic conditions. In the present review, we summarize the current evidence linking NRF2 to skin pathophysiology and we discuss some recent modulators of NRF2 activity that have shown a therapeutic efficacy in skin protection against tumor initiation and common inflammatory skin conditions such as vitiligo or psoriasis, with a particular emphasis on natural compounds.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- Department of General Direction (DG), Section of Hazardous Substances, Environmental Education and Training for the Technical Coordination of Management Activities (DGTEC), Italian Institute for Environmental Protection and Research, Rome, Italy
| | | | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Khan AQ, Agha MV, Sheikhan KSAM, Younis SM, Tamimi MA, Alam M, Ahmad A, Uddin S, Buddenkotte J, Steinhoff M. Targeting deregulated oxidative stress in skin inflammatory diseases: An update on clinical importance. Biomed Pharmacother 2022; 154:113601. [PMID: 36049315 DOI: 10.1016/j.biopha.2022.113601] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022] Open
Abstract
Skin, the largest vital organ of the human body, provides the first line of defense against biological, non-biological and xenobiotics exposure. Over the years, due to increased anthropogenic activities including industrialization and pollution, a steep increase in cutaneous pathological conditions such as malignancies, dermatitis, and psoriasis has been detected. Indeed, due to the complex nature of cutaneous inflammatory diseases, further investigations are required to produce a better outcome in patient care. However, research obtained over the last few decades has revolutionized the understanding of cutaneous disease pathogenesis and therapeutic developments. In this line, increasing data from pre-clinical and clinical studies implicates the crucial role of oxidative stress in pathogenesis and complications of cutaneous inflammatory diseases, including atopic dermatitis and psoriasis. Taking into consideration the current challenge, this review aims to highlight the novel updates exploring reactive oxygen species (ROS) induced mechanistic signaling mechanisms in conjunction with pathways converging towards atopic dermatitis and psoriasis. Additionally, an exploration of the clinical importance of natural products for management of cutaneous diseases has been included. Overall, this review highlights the therapeutic importance of targeting oxidative stress in the pathogenesis, symptoms, and complications of inflammatory diseases of the skin.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Maha Victor Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Shahd M Younis
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maha Al Tamimi
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
26
|
The Role of Oxidative Stress in Atopic Dermatitis and Chronic Urticaria. Antioxidants (Basel) 2022; 11:antiox11081590. [PMID: 36009309 PMCID: PMC9405063 DOI: 10.3390/antiox11081590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) and chronic urticaria (CU) are common skin diseases with an increasing prevalence and pathogenesis that are not fully understood. Emerging evidence suggests that oxidative stress plays a role in AD and CU. The aim of the single-center cross-sectional study was to compare markers of oxidative stress in 21 patients with AD, and 19 CU patients. The products of protein oxidation, total antioxidant capacity (TAC), and markers of lipid peroxidation were estimated in the serum. AD patients had a higher level of advanced protein oxidation products and a lower level of thiol groups than healthy participants. However, CU patients had statistically higher levels of AOPP and 3-nitrotyrosine than healthy subjects. The level of thiol groups and serum TAC decreased significantly in patients with CU. There was no difference in serum concentration of lipid peroxidation products, Amadori products, ratio of reduced to oxidized glutathione, and ability of albumin to binding cobalt between AD or CU patients compared to healthy subjects. We found a moderate positive significant correlation between AOPP and age in patients with AD. In patients with CU, TAC was negatively correlated with age. These results may shed light on the etiopathogenesis of AD or CU, and confirm an oxidative burden in these patients. Furthermore, our study could be useful in developing new therapeutic methods that include using antioxidants in dermatological diseases.
Collapse
|
27
|
Carotenoids in Human SkinIn Vivo: Antioxidant and Photo-Protectant Role against External and Internal Stressors. Antioxidants (Basel) 2022; 11:antiox11081451. [PMID: 35892651 PMCID: PMC9394334 DOI: 10.3390/antiox11081451] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The antioxidant system of the human body plays a crucial role in maintaining redox homeostasis and has an important protective function. Carotenoids have pronounced antioxidant properties in the neutralization of free radicals. In human skin, carotenoids have a high concentration in the stratum corneum (SC)-the horny outermost layer of the epidermis, where they accumulate within lipid lamellae. Resonance Raman spectroscopy and diffuse reflectance spectroscopy are optical methods that are used to non-invasively determine the carotenoid concentration in the human SC in vivo. It was shown by electron paramagnetic resonance spectroscopy that carotenoids support the entire antioxidant status of the human SC in vivo by neutralizing free radicals and thus, counteracting the development of oxidative stress. This review is devoted to assembling the kinetics of the carotenoids in the human SC in vivo using non-invasive optical and spectroscopic methods. Factors contributing to the changes of the carotenoid concentration in the human SC and their influence on the antioxidant status of the SC in vivo are summarized. The effect of chemotherapy on the carotenoid concentration of the SC in cancer patients is presented. A potential antioxidant-based pathomechanism of chemotherapy-induced hand-foot syndrome and a method to reduce its frequency and severity are discussed.
Collapse
|
28
|
Dorjsembe B, Nho CW, Choi Y, Kim JC. Extract from Black Soybean Cultivar A63 Extract Ameliorates Atopic Dermatitis-like Skin Inflammation in an Oxazolone-Induced Murine Model. Molecules 2022; 27:2751. [PMID: 35566102 PMCID: PMC9104407 DOI: 10.3390/molecules27092751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Black soybean has been used in traditional medicine to treat inflammatory diseases, cancer, and diabetes and as a nutritional source since ancient times. We found that Korean black soybean cultivar A63 has more cyanidin-3-O-glucoside, (C3G), procyanidin B2 (PB2), and epicatechin (EPC) contents than other cultivars and has beneficial effects on cell viability and anti-oxidation. Given the higher concentration of anthocyanidins and their strong anti-oxidant activity, we predicted that A63 extract could relieve inflammatory disease symptoms, including those of atopic dermatitis (AD). Here, we evaluated the anti-AD activity of A63 extract in an oxazolone (OXA)-induced mouse model. A63 extract treatment significantly reduced epidermal thickness and inflammatory cell infiltration, downregulated the expression of AD gene markers, including Interleukin (IL)-4 and IL-5, and restored damaged skin barrier tissues. Furthermore, A63 extract influenced the activation of the signal transducer and activator of transcription (STAT) 3 and STAT6, extracellular regulatory kinase (ERK), and c-Jun N-terminal kinase (JNK) signaling pathways, which play a crucial role in the development of AD. Altogether, our results suggest that A63 can ameliorate AD-like skin inflammation by inhibiting inflammatory cytokine production and STAT3/6 and Mitogen-activated protein kinase (MAPK) signaling and restoring skin barrier function.
Collapse
Affiliation(s)
- Banzragch Dorjsembe
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (B.D.); (C.W.N.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (B.D.); (C.W.N.)
| | - Yongsoo Choi
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
| | - Jin-Chul Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
| |
Collapse
|
29
|
Georgescu SR, Mitran CI, Mitran MI, Matei C, Popa GL, Erel O, Tampa M. Thiol-Disulfide Homeostasis in Skin Diseases. J Clin Med 2022; 11:jcm11061507. [PMID: 35329832 PMCID: PMC8954849 DOI: 10.3390/jcm11061507] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress represents the imbalance between oxidants and antioxidants and has been associated with a wide range of diseases. Thiols are the most important compounds in antioxidant defense. There is an equilibrium between thiols and their oxidized forms, disulfides, known as dynamic thiol-disulfide homeostasis (TDH). In 2014, Erel and Neselioglu developed a novel automated assay to measure thiol and disulfide levels. Subsequently, many researchers have used this simple, inexpensive and fast method for evaluating TDH in various disorders. We have reviewed the literature on the role of TDH in skin diseases. We identified 26 studies that evaluated TDH in inflammatory diseases (psoriasis, seborrheic dermatitis, atopic dermatitis, vitiligo, acne vulgaris and rosacea), allergic diseases (acute and chronic urticaria) and infectious diseases (warts, pityriasis rosea and tinea versicolor). The results are heterogeneous, but in most cases indicate changes in TDH that shifted toward disulfides or toward thiols, depending on the extent of oxidative damage.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (C.M.); (M.T.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Madalina Irina Mitran
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Correspondence: (M.I.M.); (G.L.P.)
| | - Clara Matei
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (C.M.); (M.T.)
| | - Gabriela Loredana Popa
- Department of Parasitology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (M.I.M.); (G.L.P.)
| | - Ozcan Erel
- Biochemistry Laboratory, Ankara City Hospital, Ankara 06800, Turkey;
- Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara 06010, Turkey
| | - Mircea Tampa
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (C.M.); (M.T.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| |
Collapse
|
30
|
Ni Q, Zhang P, Li Q, Han Z. Oxidative Stress and Gut Microbiome in Inflammatory Skin Diseases. Front Cell Dev Biol 2022; 10:849985. [PMID: 35321240 PMCID: PMC8937033 DOI: 10.3389/fcell.2022.849985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a dominant role in inflammatory skin diseases. Emerging evidence has shown that the close interaction occurred between oxidative stress and the gut microbiome. Overall, in this review, we have summarized the impact of oxidative stress and gut microbiome during the progression and treatment for inflammatory skin diseases, the interactions between gut dysbiosis and redox imbalance, and discussed the potential possible role of oxidative stress in the gut-skin axis. In addition, we have also elucidated the promising gut microbiome/redox-targeted therapeutic strategies for inflammatory skin diseases.
Collapse
Affiliation(s)
- Qingrong Ni
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Ping Zhang
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Zheyi Han
- Department of Gastroenterology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
- *Correspondence: Zheyi Han,
| |
Collapse
|
31
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
32
|
Nosratabadi R, Khajepour F, Zangouyee M, Khosravimashizi A, Afgar A, Abdollahi V, Dabiri S. Caraway extract alleviates atopic dermatitis by regulating oxidative stress, suppressing Th2 cells, and upregulating Th1 cells in mice. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.357741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|