1
|
Devi ST, Kshetrimayum V, Heisnam R, Akula SJ, Radhakrishnanand P, Mukherjee PK, Singh KB, Sharma N. Investigating the impact of Terminalia chebula, an underutilized functional fruit, on oral squamous cell carcinoma: Exploring cell death mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119482. [PMID: 39938761 DOI: 10.1016/j.jep.2025.119482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
ETHNOPHARMALOGICAL RELEVANCE Terminalia chebula, known for its extensive use in traditional medicinal practices among indigenous cultures, is recognized for its effectiveness in treating various oral disorders. Healers in India and China utilize the ripe fruits of T. chebula to prevent and manage conditions such as dental cavities, gingivitis, bleeding gums and stomatitis. The fruits have also been traditionally used in Ayurvedic and Siddha medicines for treatment of various diseases including anticancer properties. It is also an important component of Tibetan traditional medicine used for the treatment of cancer. Studies have demonstrated the efficacy of T. chebula against lung and colon carcinoma. AIM OF THE STUDY Despite its historical significance in oral health, the potential of T. chebula against oral cancer has not been explored, warranting further investigation into its bioactive properties. This study aims to explore the therapeutic potential of the hydroalcoholic extract of Terminalia chebula fruits and its fractions against oral squamous cell carcinoma (OSCC) using SCC9 cells focusing on their cytotoxicity, anti-proliferative effect and the synergistic action of its ethyl-acetate fraction with cisplatin (CP). Additionally it seeks to identify the bioactive phytoconstituents in EAF were identified using LC-ESI-QTOF-MS. MATERIALS AND METHODS Antioxidant activity of TYH and its fraction were assessed using DPPH and ABTS assays. Total phenolic (TPC) and total flavonoid content (TFC) were quantified via Folin-ciocalteau and alluminium chloride assays respectively. Cytotoxic and antiproliferative effects were assessed using MTT assay, clonogenic assay and cell migration assay. Apoptosis in EAF treated SCC9 cells was analysed by using DAPI, Giemsa staining and flow cytometry using Annexin V-FITC/PI apoptosis detection kit. Intracellular reactive oxygen species (ROS) was assessed using H2DCFDA, western blotting examined expression of apoptosis related proteins in SCC9 cells. Combinational effect of EAF with cisplatin (CP) was also assessed and phytochemical constituents of EAF were analysed using LC-ESI-QTOF-MS. RESULTS The ethyl acetate fraction (EAF) showed the highest antioxidant activity (IC50 value of 8.16 ± 0.59 μg/mL and 4.99 ± 0.82 μg/mL in DPPH and ABTS assays respectively) which reciprocated with a high TPC and TFC (528.46 ± 2.59 mgGAE/g and 49.10 ± 1.61 mgQE/g dry weight of the extract respectively) content. EAF significantly reduced cell viability with an IC50 value of 86.73 ± 0.55 μg/mL, resulted in dose dependent cell death, and prevented the proliferation and migration in SCC9 cells. Further Annexin V-PI based flow cytometric analysis and caspase-3/7 enzyme activity assay confirmed the apoptotic effect of EAF in SCC9 cells. Intrinsic pathway of apoptosis post treatment with EAF was confirmed by western blotting with marker proteins, Bax, Bcl-2, Mcl-1, cleaved caspase, procaspase and PARP. A combinatorial study of EAF with the standard drug cisplatin also indicated a synergistic effect of the fraction in cisplatin treated cells with a CI value of 0.67571. LC-ESI-QTOF-MS led to identification of the presence of phenolics and gallotannins with anticancer properties in EAF. CONCLUSION This study demonstrates the potential of the hydroalcoholic extract of Terminalia chebula fruits (TYH), especially its ethyl acetate fraction (EAF), as a therapeutic agent against oral squamous cell carcinoma (OSCC).
Collapse
Affiliation(s)
- Soibam Thoithoisana Devi
- Institute of Bioresources and Sustainable Development (An Autonomous Institute Under the Department of Biotechnology, Govt. of India) Takyelpat, Imphal- 795001, Manipur, India; Department of Zoology, Manipur University (MU), Imphal- 795003, Manipur, India
| | - Vimi Kshetrimayum
- Institute of Bioresources and Sustainable Development (An Autonomous Institute Under the Department of Biotechnology, Govt. of India) Takyelpat, Imphal- 795001, Manipur, India; School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University Bhubaneshwar, Odisha-751024, India
| | - Rameshwari Heisnam
- Institute of Bioresources and Sustainable Development (An Autonomous Institute Under the Department of Biotechnology, Govt. of India) Takyelpat, Imphal- 795001, Manipur, India; School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University Bhubaneshwar, Odisha-751024, India
| | - Sai Jyothi Akula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, India
| | - Pullapanthula Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, India
| | - Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development (An Autonomous Institute Under the Department of Biotechnology, Govt. of India) Takyelpat, Imphal- 795001, Manipur, India
| | | | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development (An Autonomous Institute Under the Department of Biotechnology, Govt. of India) Takyelpat, Imphal- 795001, Manipur, India.
| |
Collapse
|
2
|
Rafe Hatshan M, Perianaika Matharasi Antonyraj A, Marunganathan V, Rafi Shaik M, Deepak P, Thiyagarajulu N, Manivannan C, Jain D, Melo Coutinho HD, Guru A, Arockiaraj J. Synergistic Action of Vanillic Acid-Coated Titanium Oxide Nanoparticles: Targeting Biofilm Formation Receptors of Dental Pathogens and Modulating Apoptosis Genes for Enhanced Oral Anticancer Activity. Chem Biodivers 2025; 22:e202402080. [PMID: 39325551 DOI: 10.1002/cbdv.202402080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
The prevalence of bacterial and fungal infections is caused by S. aureus, S. mutans, E. faecalis, and Candida albicans are often associated with dental illnesses. In the present study, a unique strategy was used to combat these diseases by fabricating titanium dioxide nanoparticles (TiO2 NPs) conjugated with the plant-based molecule vanillic acid (VA). To confirm the structural characterization of the synthesized VA-TiO2 NPs, an extensive analysis was carried out utilizing methods such as SEM, FTIR, and XRD. Assessments for scavenging reactive oxygen species were performed to evaluate its antioxidant capability. Furthermore, a zone of inhibition test targeting pathogenic oral bacteria was used to assess the antibacterial efficacy of VA-TiO2 NPs. Molecular modeling investigations were performed to better understand the interactions among vanillic acid and dental pathogen receptors using the Autodock program. The findings indicated that VA-TiO2 NPs exhibited strong free radical scavenging activity. Additionally, they showed excellent antibacterial action towards dental pathogens, with a minimum inhibition level of 60 μg/mL. Furthermore, at doses of 15 μg/mL, 30 μg/mL, 60 μg/mL, and 120 μg/mL, VA-TiO2 NPs demonstrated concentration-dependent apoptotic impacts on human oral carcinoma cells. Apoptotic gene over-expression was identified by the molecular perspectives that revealed the anticancer mechanism of VA-TiO2 NPs on KB cells. This study highlights the promising suitability of VA-TiO2 NPs for dental applications due to their robust antioxidant, anticancer, and antimicrobial characteristics. These nanoparticles present an evident prospect for addressing oral pathogen challenges and improving overall oral health.
Collapse
Affiliation(s)
- Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Anahas Perianaika Matharasi Antonyraj
- Department of Research Analytics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Poonamallee, Chennai, Tamil Nadu, 600077, India
| | - Vanitha Marunganathan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Paramasivam Deepak
- Department of Life sciences, Kristu Jayanti College (Autonomous) K., Narayanapura, Kothanur (PO) Bengaluru, 560077, India
| | - Nathiya Thiyagarajulu
- Department of Life sciences, Kristu Jayanti College (Autonomous) K., Narayanapura, Kothanur (PO) Bengaluru, 560077, India
| | - Chandrakumar Manivannan
- Division of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tiruchirapalli, India
| | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | | | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, 603203, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| |
Collapse
|
3
|
Ramalingam SV, Bakthavatchalam S, Ramachandran K, Gnanarani Soloman V, Ajmal AK, Al-Sadoon MK, Vinayagam R. Potential Antimicrobial and Cytotoxic Activity of Caralluma indica Seed Extract. Antibiotics (Basel) 2024; 13:1193. [PMID: 39766582 PMCID: PMC11672789 DOI: 10.3390/antibiotics13121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Plant-derived phytochemicals are crucial in fighting bacterial infections and in cancer therapy. Objective: This study investigates the phytochemical composition of the ethanolic extract obtained from Caralluma indica (C. indica) seeds and assesses its antimicrobial, anticancer, and antioxidant activities. Results: GC-MS analysis found 30 phytochemicals in C. indica seeds, including 5 bioactive compounds that have been shown to have antioxidant, antimicrobial, and cytotoxicity properties, through in silico evaluation. Phytochemical screening of C. indica identified and measured the phenolic compounds, providing insight into its bioactive potential and therapeutic properties. C. indica exhibited robust antioxidant capacity (DPPH, ABTS, nitric oxide, and H2O2 radical scavenging) alongside potent antimicrobial activity against oral pathogen and cytotoxicity activity on a human oral squamous carcinoma cell line (OECM-1) (EC50 of 169.35 µg/mL) and yeast cell Saccharomyces cerevisiae (215.82 µg/mL), with a selective index of 1.27. The subminimum % MBC/MFC of C. indica significantly reduced biofilm formation against oral pathogens (p < 0.05). Molecular docking studies showed a strong correlation (r = 0.862) between antifungal and anticancer targets, suggesting that the antimicrobial agents in C. indica contribute to cancer prevention mechanisms. Conclusions: These findings propose C. indica seeds as promising candidates for combating oral pathogens, inhibiting biofilm formation, and reducing the risk of oral cancer progression.
Collapse
Affiliation(s)
- Shunmuga Vadivu Ramalingam
- Department of Biochemistry, SRM Dental College, Bharathi Salai, Ramapuram, Chennai 600089, Tamil Nadu, India
| | - Senthil Bakthavatchalam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600089, Tamil Nadu, India; (S.B.); (V.G.S.)
| | - Karnan Ramachandran
- PG and Research Department of Zoology, Rajah Serfoji Government College (Autonomous), Bharathidasan University, Thanjavur 613005, Tamil Nadu, India;
| | - Vasthi Gnanarani Soloman
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600089, Tamil Nadu, India; (S.B.); (V.G.S.)
| | - Afrin Khan Ajmal
- Department of English and Foreign Languages, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600089, Tamil Nadu, India;
| | - Mohammad Khalid Al-Sadoon
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Li W, Fu H, Ma H, Chang Y. Structural and functional optimization of glycoprotein-enzymes for targeted biocatalysis in oral squamous cell carcinoma. Int J Biol Macromol 2024; 285:137964. [PMID: 39581407 DOI: 10.1016/j.ijbiomac.2024.137964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The efficacy of optimized glycoproteinenzymes as a novel therapeutic approach for oral squamous cell carcinoma (OSCC) was tested in this study. The stability and viability of SCC-25 and HN4 operating-system cell lines were characterized. Both lines were confirmed to have a spindle-like morphology for SCC-25, while HN4 cells exhibited cobblestone-like clusters. Viability decreased with time for cell clones SCC-25 was 95 % and 80 % after five days, while HN4 was 94 % and 79 %. Enzyme 1, expression in E. coli and Pichia pastoris to high purity recombinant glycoprotein-enzymes. Activities of these enzymes varied equally among experimental conditions. The enzyme showed an activity of 18 units at Condition D as active max, Enzyme 2 retraced 16 units, and Enzyme 3 reached this point in the same condition. Differences in activity between different conditions were also found in various experimental conditions. In therapeutic assessments, glycoprotein-enzyme treatment lowered OSCC cell viability with IC50 values of 10-15 g/ml. Successful cellular localization could be detected primarily in the cytoplasm and nucleus of live animal tissue following treatment with those therapies. In preclinical xenograft models, treatment resulted in a 40-50 % reduction in tumour volume and growth rates, with treated tumours displaying a 60 % decrease in Ki-67, a 50 % reduction in Bcl-2, and a 70 % increase in cleaved caspase-3. Additionally, the Bax/Bcl-2 ratio increased by 80 %, and CD31 staining revealed a 40 % reduction in microvessel density. These results suggest that optimized glycoprotein enzyme therapy effectively inhibits tumour growth, induces apoptosis and reduces angiogenesis, thus laying a solid foundation for its application in clinical therapy of OSCC.
Collapse
Affiliation(s)
- Wenlu Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 45000, China.
| | - Hao Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 45000, China
| | - Hong Ma
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 45000, China
| | - Yi Chang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 45000, China
| |
Collapse
|
5
|
Bishayee A, Penn A, Bhandari N, Petrovich R, DeLiberto LK, Burcher JT, Barbalho SM, Nagini S. Dietary plants for oral cancer prevention and therapy: A review of preclinical and clinical studies. Phytother Res 2024; 38:5225-5263. [PMID: 39193857 DOI: 10.1002/ptr.8293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 08/29/2024]
Abstract
Oral cancer is a disease with high mortality and rising incidence worldwide. Although fragmentary literature on the anti-oral cancer effects of plant products has been published, a comprehensive analysis is lacking. In this work, a critical and comprehensive evaluation of oral cancer preventative or therapeutic effects of dietary plants was conducted. An exhaustive analysis of available data supports that numerous dietary plants exert anticancer effects, including suppression of cell proliferation, viability, autophagy, angiogenesis, invasion, and metastasis while promoting cell cycle arrest and apoptosis. Plant extracts and products target several cellular mechanisms, such as the reversal of epithelial-to-mesenchymal transition and the promotion of oxidative stress and mitochondrial membrane dysfunction by modulation of various signaling pathways. These agents were also found to regulate cellular growth signaling pathways by action on extracellular signal-regulated kinase and mitogen-activated protein kinase, inflammation via modulation of cyclooxygenase (COX)-1, COX-2, and nuclear factor-κB p65, and metastasis through influence of cadherins and matrix metalloproteinases. In vivo studies support these findings and demonstrate a decrease in tumor burden, incidence, and hyperplastic and dysplastic changes. Clinical studies also showed decreased oral cancer risk. However, high-quality studies should be conducted to establish the clinical efficacy of these plants. Overall, our study supports the use of dietary plants, especially garlic, green tea, longan, peppermint, purple carrot, saffron, tomato, and turmeric, for oral cancer prevention and intervention. However, further research is required before clinical application of this strategy.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Amanda Penn
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Neha Bhandari
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Riley Petrovich
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jack T Burcher
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Sandra Maria Barbalho
- School of Food and Technology of Marilia, Marília, São Paulo, Brazil
- School of Medicine, University of Marília, Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília, Sao Paulo, Brazil
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
6
|
Mitea G, Schröder V, Iancu IM, Mireșan H, Iancu V, Bucur LA, Badea FC. Molecular Targets of Plant-Derived Bioactive Compounds in Oral Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3612. [PMID: 39518052 PMCID: PMC11545343 DOI: 10.3390/cancers16213612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND With a significant increase in both incidence and mortality, oral cancer-particularly oral squamous cell carcinoma (OSCC)-is one of the main causes of death in developing countries. Even though there is evidence of advances in surgery, chemotherapy, and radiotherapy, the overall survival rate for patients with OSCC has improved, but by a small percentage. This may be due, on the one hand, to the fact that the disease is diagnosed when it is at a too-advanced stage, when metastases are already present. METHODS This review explores the therapeutic potential of natural herbal products and their use as adjuvant therapies in the treatment of oral cancer from online sources in databases (PubMed, Web of Science, Google Scholar, Research Gate, Scopus, Elsevier). RESULTS Even if classic therapies are known to be effective, they often produce many serious side effects and can create resistance. Certain natural plant compounds may offer a complementary approach by inducing apoptosis, suppressing tumor growth, and improving chemotherapy effectiveness. The integration of these compounds with conventional treatments to obtain remarkable synergistic effects represents a major point of interest to many authors. This review highlights the study of molecular mechanisms and their efficiency in in vitro and in vivo models, as well as the strategic ways in which drugs can be administered to optimize their use in real contexts. CONCLUSIONS This review may have a significant impact on the oncology community, creating new inspirations for the development of more effective, safer cancer therapies with less toxic potential.
Collapse
Affiliation(s)
- Gabriela Mitea
- Department of Pharmacology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Irina Mihaela Iancu
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Horațiu Mireșan
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Valeriu Iancu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Laura Adriana Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Florin Ciprian Badea
- Department of Dental Medicine, Faculty of Dental Medicine, Ovidius University of Constanta, 900684 Constanta, Romania;
| |
Collapse
|
7
|
Arivalagan N, Ramakrishnan A, Sindya J, Rajanathadurai J, Perumal E. Capsaicin Promotes Apoptosis and Inhibits Cell Migration via the Tumor Necrosis Factor-Alpha (TNFα) and Nuclear Factor Kappa B (NFκB) Signaling Pathway in Oral Cancer Cells. Cureus 2024; 16:e69839. [PMID: 39435241 PMCID: PMC11492975 DOI: 10.7759/cureus.69839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a highly prevalent cancer worldwide. Microbial infections, poor oral hygiene, and chronic viral infections such as human papillomavirus (HPV) contribute to its incidence. Capsaicin, known for its presence in chili peppers, has demonstrated potential antiproliferative effects in cancer cells. It operates by inducing programmed cell death, regulating the expression of transcription factors, halting cell cycle progression, and influencing growth signal transduction pathways. These findings suggest capsaicin's promising role as a candidate for further exploration in combating oral cancer. Aim This study intends to identify and evaluate the anticancer properties of capsaicin on oral cancer cells through in vitro investigations. Methodology Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) technique, the cell viability of oral cancer cells treated with capsaicin was evaluated. Capsaicin was applied to the KB1 cells in a range of concentrations (25-150 µg/mL) over 24 hours. The morphological alterations of the cells were assessed using a phase contrast microscope. Nuclear factor kappa B (NFκB) and tumor necrosis factor-alpha (TNFα) were subjected to quantitative real-time polymerase chain reaction (PCR) gene expression analysis. To investigate nuclear morphological changes, oral cancer cells were stained with acridine orange/ethidium bromide (AO/EtBr). The apoptotic nuclei were visualized using a fluorescent microscope. A scratch wound healing test was performed to check for capsaicin's anti-migratory potential. Result In our investigation of oral cancer cells treated with capsaicin, there was a significant drop in cell viability between the control and treatment groups (p < 0.05). The inhibitory concentration (IC50) was found to be 74.4 μM/mL in oral cancer cells. Following treatment, fewer cells were present, and those that were present shriveled and exhibited cytoplasmic membrane blebbing. Under AO/EtBr staining, treated cells exhibited chromatin condensation and nuclear disintegration. Furthermore, the migration of capsaicin-treated cells was significantly lower than that of control cells. The results of gene expression analysis demonstrated a considerable downregulation of TNFα and NFκB following capsaicin administration. Conclusion The study's findings suggest that capsaicin may have anti-tumor properties in oral cancer cells. More research is desperately needed to fully understand the mechanism underlying capsaicin's anticancer potential and therapeutic applicability.
Collapse
Affiliation(s)
- Niranjana Arivalagan
- Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Abinaya Ramakrishnan
- Ophthalmology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Jospin Sindya
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Jeevitha Rajanathadurai
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Elumalai Perumal
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
8
|
Singla P, Jain A. Deciphering the complex landscape of post-translational modifications on PKM2: Implications in head and neck cancer pathogenesis. Life Sci 2024; 349:122719. [PMID: 38759866 DOI: 10.1016/j.lfs.2024.122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
In the vast landscape of human health, head and neck cancer (HNC) poses a significant health burden globally, necessitating the exploration of novel diagnostics and therapeutics. Metabolic alterations occurring within tumor microenvironment are crucial to understand the foundational cause of HNC. Post-translational modifications (PTMs) have recently emerged as a silent foe exerting a significantly heightened influence on various aspects of the biological processes associated with the onset and advancement of cancer, particularly in the context of HNC. There are numerous targets involved in HNC but recently, the enzyme pyruvate kinase M2 (PKM2) has come out as a hot target due to its involvement in glycolysis resulting in metabolic reprogramming of cancer cells. Various PTMs have been reported to affect the structure and function of PKM2 by modulating its activity. This review aims to investigate the impact of PTMs on the interaction between PKM2 and several signaling pathways and transcription factors in the context of HNC. These interactions possess significant ramification for cellular proliferation, apoptosis, angiogenesis and metastasis. This review primarily explores the role of PTMs influencing PKM2 and its involvement in tumor development. While acknowledging the significance of PKM2 interactions with other tumor regulators, the emphasis lies on dissecting PTM-related mechanisms rather than solely scrutinizing individual regulators. It lays the framework for the development of more sophisticated diagnostic tools and uncovers exciting possibilities for precision medicine essential for effectively addressing the complexity of this malignancy in a precise and focused manner.
Collapse
Affiliation(s)
- Palak Singla
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India
| | - Alok Jain
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
9
|
Yakut S, Atcalı T, Çaglayan C, Ulucan A, Kandemir FM, Kara A, Anuk T. Therapeutic Potential of Silymarin in Mitigating Paclitaxel-Induced Hepatotoxicity and Nephrotoxicity: Insights into Oxidative Stress, Inflammation, and Apoptosis in Rats. Balkan Med J 2024; 41:193-205. [PMID: 38700358 PMCID: PMC11077923 DOI: 10.4274/balkanmedj.galenos.2024.2024-1-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Background Paclitaxel (PAX) is a widely used chemotherapy drug for various cancer types but often induces significant toxicity in multiple organ systems. Silymarin (SIL), a natural flavonoid, has shown therapeutic potential due to its multiple benefits. Aims To evaluate the therapeutic efficacy of SIL in mitigating liver and kidney damage induced by PAX in rats, focusing on oxidative stress, inflammation, and apoptosis pathways. Study Design Experimental animal model. Methods The study included 28 male Wistar rats aged 12-14 weeks weighing 270-300 g. The rats were divided into four groups: control, SIL, PAX, and PAX + SIL, with seven in each group. The rats received intraperitoneal (i.p.) injections at a dose of 2 mg per kilogram of body weight of PAX for 5 successive days, followed by oral gavage with 200 mg/kg body mass of SIL for 10 uninterrupted days. We examined the effect of SIL on specific serum biochemical parameters using an autoanalyzer and rat-specific kits. The spectrophotometric methods was used to investigate oxidative stress indicators in kidney and liver tissues. Aquaporin-2 (AQP-2), B-cell lymphoma-2 (Bcl-2), cysteine aspartate-specific protease-3 (caspase-3), interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), and streptavidin-biotin staining were used to assess immunoreactivity in PAX-induced liver and kidney injury models. Results SIL treatment significantly reduced serum levels of alanine aminotransferase, aspartate aminotransferase, creatinine, urea, and C-reactive protein, indicating its effectiveness in treating PAX-induced liver and kidney injury. SIL treatment significantly reduced oxidative stress by increasing essential antioxidant parameters, such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione. It also reduced malondialdehyde levels in liver and kidney tissues of SIL-PAX groups (p < 0.05). SIL administration reduced NF-κB, caspase-3, and IL-6 expression while increasing Bcl-2 and AQP2 levels in liver and kidney tissues of rats treated with SIL and PAX (p < 0.05). Conclusion Our findings indicate the potential of SIL to alleviate PAX-induced liver and kidney damage in rats by reducing oxidative stress, inflammation, and apoptotic processes.
Collapse
Affiliation(s)
- Seda Yakut
- Department of Histology and Embryology, Burdur Mehmet Akif Ersoy University Faculty of Veterinary Medicine, Burdur, Türkiye
| | - Tuğçe Atcalı
- Department of Physiology, Bingöl University Faculty of Veterinary Medicine, Bingöl, Türkiye
| | - Cüneyt Çaglayan
- Department of Biochemistry, Bilecik Şeyh Edebali University Faculty of Medicine, Bilecik, Türkiye
| | - Aykut Ulucan
- Department of Medical Services and Techniques, Bingöl University, Vocational School of Health Services, Bingöl, Türkiye
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Aksaray University Faculty of Medicine, Aksaray, Türkiye
| | - Adem Kara
- Department of Molecular Biology and Genetics, Erzurum Technique University Faculty of Science, Erzurum, Türkiye
| | - Turgut Anuk
- Clinic of General Surgery, University of Health Sciences Türkiye, Erzurum Regional Training and Research Hospital, Erzurum, Türkiye
| |
Collapse
|
10
|
Purohit S, Girisa S, Ochiai Y, Kunnumakkara AB, Sahoo L, Yanase E, Goud VV. Scirpusin B isolated from Passiflora edulis Var. flavicarpa attenuates carbohydrate digestive enzymes, pathogenic bacteria and oral squamous cell carcinoma. 3 Biotech 2024; 14:28. [PMID: 38173823 PMCID: PMC10758380 DOI: 10.1007/s13205-023-03876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Passiflora edulis Var. flavicarpa (passion fruit) generates vast waste (60-70%) in the form of peel and seed after the juice extraction. The study aimed to isolate Scirpusin B (SB) from passion fruit (PF) seed waste collected from Northeast India and to analyse its anti-radical, antibacterial, anti-diabetic, and anti-oral cancer activities. Scirpusin B was isolated following hydro-alcoholic extraction, fractionation, and column chromatography. The isolated fraction was further identified through NMR and mass spectroscopy. SB exhibited significant antiradical activity against six standard antioxidant compounds, indicating its commercial application. SB inhibited α-amylase (IC50 Value: 76.38 ± 0.25 µg/mL) and α-glucosidase digestive enzymes (IC50 Value: 2.32 ± 0.04 µg/mL), signifying its antidiabetic properties. In addition, SB showed profound antibacterial activity against eight gram-positive and gram-negative bacteria reported for the first time. Furthermore, SB inhibited SAS and TTN oral cancer cell proliferation up to 95% and 83%, respectively. SB significantly inhibited colonies of SAS and TTn cells in the clonogenic assay, attributing to its anticancer properties. The PI-FACS assay confirmed the ability of SB (75 µM) to kill SAS and TTn cells by 40.26 and 44.3% in 72 h. The mechanism of SB inhibiting oral cancer cell proliferation was understood through western blot analysis, where SB significantly suppressed different cancer hallmark proteins, such as TNF-α, survivin, COX-2, cyclin D1, and VEGF-A. The present study suggests that SB isolated from PF seed can add noteworthy value to the waste biomass for various industrial and medical applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03876-6.
Collapse
Affiliation(s)
- Sukumar Purohit
- School of Energy Science and Engineering, Indian Institute of Technology, Guwahati, India
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Sosmitha Girisa
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Yuto Ochiai
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | - Lingaraj Sahoo
- School of Energy Science and Engineering, Indian Institute of Technology, Guwahati, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Vaibhav V. Goud
- School of Energy Science and Engineering, Indian Institute of Technology, Guwahati, India
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
11
|
Bains A, Sridhar K, Singh BN, Kuhad RC, Chawla P, Sharma M. Valorization of onion peel waste: From trash to treasure. CHEMOSPHERE 2023; 343:140178. [PMID: 37714483 DOI: 10.1016/j.chemosphere.2023.140178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Globally, fruits and vegetables are consumed as raw, processed, or as an additive, accounting for approximately 50% of total food wastage. Among the fruits and vegetables, onion is well known for its potential bioactive components; however, peels of onion are a major concern for the environmental health and food industries. Effective utilization methods for valorizing the onion peel should be needed to develop value-added products, which are more eco-friendly, cost-effective, and sustainable. Therefore, this review attempts to emphasize the conventional and emerging valorization techniques for onion peel waste to generate value-added products. Several vital applications including anticancerous, antiobesity, antimicrobial, and anti-inflammatory activities are thoroughly discussed. The findings showed that the use of advanced technologies like ultrasound-assisted extraction, microwave-assisted extraction, and enzymatic extraction, demonstrated improved extraction efficiency and higher yield of bioactive compounds, which showed the anticancerous, antiobesity, antimicrobial, and anti-inflammatory properties. However, in-depth studies are recommended to elucidate the mechanisms of action and potential synergistic effects of the bioactive compounds derived from onion peel waste, and to promote the sustainable utilization of onion peel waste in the long-term.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, 641021, India
| | - Brahma Nand Singh
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Ramesh Chander Kuhad
- Sharda School of Basic Sciences and Research, Sharda University, Greater Noida - 201310, Uttar Pradesh, India; DPG Institute of Management and Technology, Sector-34, Gurugram - 122004, Haryana, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Minaxi Sharma
- CARAH ASBL, Rue Paul Pastur, 11, Ath, 7800, Belgium.
| |
Collapse
|
12
|
Burcher JT, DeLiberto LK, Allen AM, Kilpatrick KL, Bishayee A. Bioactive phytocompounds for oral cancer prevention and treatment: A comprehensive and critical evaluation. Med Res Rev 2023; 43:2025-2085. [PMID: 37143373 DOI: 10.1002/med.21969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
The high incidence of oral cancer combined with excessive treatment cost underscores the need for novel oral cancer preventive and therapeutic options. The value of natural agents, including plant secondary metabolites (phytochemicals), in preventing carcinogenesis and representing expansive source of anticancer drugs have been established. While fragmentary research data are available on antioral cancer effects of phytochemicals, a comprehensive and critical evaluation of the potential of these agents for the prevention and intervention of human oral malignancies has not been conducted according to our knowledge. This study presents a complete and critical analysis of current preclinical and clinical results on the prevention and treatment of oral cancer using phytochemicals. Our in-depth analysis highlights anticancer effects of various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, against numerous oral cancer cells and/or in vivo oral cancer models by antiproliferative, proapoptotic, cell cycle-regulatory, antiinvasive, antiangiogenic, and antimetastatic effects. Bioactive phytochemicals exert their antineoplastic effects by modulating various signaling pathways, specifically involving the epidermal growth factor receptor, cytokine receptors, toll-like receptors, and tumor necrosis factor receptor and consequently alter the expression of downstream genes and proteins. Interestingly, phytochemicals demonstrate encouraging effects in clinical trials, such as reduction of oral lesion size, cell growth, pain score, and development of new lesions. While most phytochemicals displayed minimal toxicity, concerns with bioavailability may limit their clinical application. Future directions for research include more in-depth mechanistic in vivo studies, administration of phytochemicals using novel formulations, investigation of phytocompounds as adjuvants to conventional treatment, and randomized clinical trials.
Collapse
Affiliation(s)
- Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Andrea M Allen
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Kaitlyn L Kilpatrick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
13
|
Kumar M, Jha AK. Exploring the potential of dietary factors and plant extracts as chemopreventive agents in oral squamous cell carcinoma treatment. FRONTIERS IN ORAL HEALTH 2023; 4:1246873. [PMID: 37859687 PMCID: PMC10582632 DOI: 10.3389/froh.2023.1246873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Oral cancer, particularly oral squamous cell carcinoma (OSCC), is a prevalent malignancy having a significant fatality rate worldwide. Despite advancements in conventional treatment modalities, the overall survival rate for OSCC remains low. Therefore, there is a critical need to explore alternative therapeutic approaches that can improve patient outcomes. This review focuses on the potential of dietary factors and plant extracts as chemopreventive agents in treating oral cancer. These compounds possess diverse biological functions encompassing a range of attributes, such as antioxidative, anti-inflammatory, and anticancer capabilities. By targeting multiple cellular pathways involved in carcinogenesis, they possess the capacity to hinder tumor growth and development, promote programmed cell death, and impede the progression of oral cancer. Signaling pathways targeted by natural compounds that have been included in this review include Akt/mTOR/NF-κB signaling, Hippo-Tafazzin signaling pathway, notch signaling pathway, mitochondrial pathway, and Sonic Hedgehog pathway.
Collapse
Affiliation(s)
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| |
Collapse
|
14
|
Haghshenas B, Nami Y, Kiani A, Moazami N, Tavallaei O. Cytotoxic effect of potential probiotic Lactiplantibacillus plantarum KUMS-Y8 isolated from traditional dairy samples on the KB and OSCC human cancer cell lines. Heliyon 2023; 9:e20147. [PMID: 37809760 PMCID: PMC10559912 DOI: 10.1016/j.heliyon.2023.e20147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Oral cancer is one of the leading causes of death worldwide, and its prevalence is especially high in developing countries. As an oral cancer treatment, traditional therapies are commonly used. Nonetheless, these treatments frequently result in a variety of side effects. As a consequence, there is an urgent need to enhance oral cancer therapies. Probiotics have recently demonstrated intriguing properties as therapeutic options for cancer treatment. Thus, the purpose of this study was to investigate the anticancer effect of probiotic Lactobacillus strains on the mouth epidermal carcinoma cells (KB) and oral squamous cell carcinoma (OSCC) cell lines. In this study, we looked at 21 Lactobacillus strains isolated from traditional dairy products in the Kermanshah province of western Iran to see if they had any inhibitory effects on oral cancer cell lines in vitro. We isolated and characterized Lactobacillus strains before assessing and comparing their probiotic potential and safety. Using the MTT assay, the bacterial extract was then prepared and used as an anti-proliferative agent on oral cancer (KB and OSCC) and normal (fibroblast and human umbilical vein endothelial cells (HUVEK) cell lines. Finally, acridine orange/ethidium bromide staining was used to determine whether cell death was caused by apoptosis. Four Lactobacillus isolates (C14, M22, M42, and Y8) were shown to have beneficial probiotic qualities. Lactobacillus extracts (of a protein nature) decreased the survival and proliferation of the KB and OSCC cancer cell lines (dose- and time-dependent) by inducing apoptosis, with no basic damaging effects on normal cells. The staining with acridine orange/ethidium bromide revealed that the cell death was caused by apoptosis. Furthermore, of the four Lactobacillus strains examined, isolate Y8 (Lactiplantibacillus plantarum) showed the strongest probiotic potential for suppressing KB and OSCC cell proliferation when compared to anticancer medicines (doxorubicin and paclitaxel). The current research found that Lactobacillus extract might reduce the growth and viability of the KB and OSCC cancer cell lines by inducing apoptosis, increasing the survival rate of oral cancer patients.
Collapse
Affiliation(s)
- Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nesa Moazami
- Students Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
Matías-Reyes AE, Alvarado-Noguez ML, Pérez-González M, Carbajal-Tinoco MD, Estrada-Muñiz E, Fuentes-García JA, Vega-Loyo L, Tomás SA, Goya GF, Santoyo-Salazar J. Direct Polyphenol Attachment on the Surfaces of Magnetite Nanoparticles, Using Vitis vinifera, Vaccinium corymbosum, or Punica granatum. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2450. [PMID: 37686958 PMCID: PMC10490419 DOI: 10.3390/nano13172450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
This study presents an alternative approach to directly synthesizing magnetite nanoparticles (MNPs) in the presence of Vitis vinifera, Vaccinium corymbosum, and Punica granatum derived from natural sources (grapes, blueberries, and pomegranates, respectively). A modified co-precipitation method that combines phytochemical techniques was developed to produce semispherical MNPs that range in size from 7.7 to 8.8 nm and are coated with a ~1.5 nm thick layer of polyphenols. The observed structure, composition, and surface properties of the MNPs@polyphenols demonstrated the dual functionality of the phenolic groups as both reducing agents and capping molecules that are bonding with Fe ions on the surfaces of the MNPs via -OH groups. Magnetic force microscopy images revealed the uniaxial orientation of single magnetic domains (SMDs) associated with the inverse spinel structure of the magnetite (Fe3O4). The samples' inductive heating (H0 = 28.9 kA/m, f = 764 kHz), measured via the specific loss power (SLP) of the samples, yielded values of up to 187.2 W/g and showed the influence of the average particle size. A cell viability assessment was conducted via the MTT and NRu tests to estimate the metabolic and lysosomal activities of the MNPs@polyphenols in K562 (chronic myelogenous leukemia, ATCC) cells.
Collapse
Affiliation(s)
- Ana E. Matías-Reyes
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Margarita L. Alvarado-Noguez
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Mario Pérez-González
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, UAEH, Mineral de la Reforma 42184, Mexico;
| | - Mauricio D. Carbajal-Tinoco
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Elizabeth Estrada-Muñiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico (L.V.-L.)
| | - Jesús A. Fuentes-García
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Libia Vega-Loyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico (L.V.-L.)
| | - Sergio A. Tomás
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Gerardo F. Goya
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jaime Santoyo-Salazar
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| |
Collapse
|
16
|
Germination and its role in phenolic compound bioaccessibility for black mustard grains: A study using INFOGEST protocol. Food Chem 2023; 413:135648. [PMID: 36791665 DOI: 10.1016/j.foodchem.2023.135648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Germination has been regarded as a promising natural process to improve the antioxidant properties of mustard. However, there ís one question to be solved in this area: does germination improve mustard phenolics' bioaccessibility? The aim of this study was to answer this question by using INFOGEST protocol to simulate in vitro digestion. Resveratrol, formononetin and cryptochlorogenic acid were identified for the first time as evaluated by liquid chromatography-mass spectrometry. In general, digestion positively impacted the antioxidant potential of soluble phenolics from non-germinated and germinated grains, which were probably released from cell wall matrix by digestive enzymes. Although digestion seemed to nullify the antioxidant improvement caused by germination, phenolic quantities were distinctive. The main difference was found for sinapic acid, as its concentration reached a value 1.75-fold higher in germinated digested mustard compared to non-germinated. The results obtained suggested that germination improved the phenolic bioaccessibility of mustard grains, which encourages its use and investigations.
Collapse
|
17
|
Esquivel-Chirino C, Bolaños-Carrillo MA, Carmona-Ruiz D, Lopéz-Macay A, Hernández-Sánchez F, Montés-Sánchez D, Escuadra-Landeros M, Gaitán-Cepeda LA, Maldonado-Frías S, Yáñez-Ocampo BR, Ventura-Gallegos JL, Laparra-Escareño H, Mejía-Velázquez CP, Zentella-Dehesa A. The Protective Role of Cranberries and Blueberries in Oral Cancer. PLANTS (BASEL, SWITZERLAND) 2023; 12:2330. [PMID: 37375955 PMCID: PMC10301243 DOI: 10.3390/plants12122330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Oral cancer has a high prevalence worldwide, and this disease is caused by genetic, immunological, and environmental factors. The main risk factors associated with oral cancer are smoking and alcohol. RESULTS There are various strategies to reduce risk factors, including prevention programs as well as the consumption of an adequate diet that includes phytochemical compounds derived from cranberries (Vaccinium macrocarpon A.) and blueberries (Vaccinium corymbosum L.); these compounds exhibit antitumor properties. RESULTS The main outcome of this review is as follows: the properties of phytochemicals derived from cranberries were evaluated for protection against risk factors associated with oral cancer. CONCLUSIONS The secondary metabolites of cranberries promote biological effects that provide protection against smoking and alcoholism. An alternative for the prevention of oral cancer can be the consumption of these cranberries and blueberries.
Collapse
Affiliation(s)
- César Esquivel-Chirino
- Área de Básicas Médicas, División de Estudios Profesionales, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Mario Augusto Bolaños-Carrillo
- Área de Ciencias Naturales, Departamento de Bachillerato, Universidad del Valle de México, Campus Guadalajara Sur, Guadalajara 045601, Mexico;
| | - Daniela Carmona-Ruiz
- Área de Ortodoncia, División de Estudios Profesionales, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ambar Lopéz-Macay
- Laboratorio de Liquído Sinovial, Instituto Nacional de Rehabilitación LGII, Ciudad de México 14389, Mexico
| | - Fernando Hernández-Sánchez
- Departamento de Virología y Micología, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México 04502, Mexico
| | - Delina Montés-Sánchez
- Investigación Biomédica Básica, Licenciatura en Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 75770, Mexico
| | | | - Luis Alberto Gaitán-Cepeda
- Departamento de Medicina y Patología Oral Clínica, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Silvia Maldonado-Frías
- Laboratorio de Bioingeniería de Tejidos, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04360, Mexico;
| | - Beatriz Raquel Yáñez-Ocampo
- Especialidad en Periodoncia e Implantología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Luis Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México 04510, Mexico
| | - Hugo Laparra-Escareño
- Departamento de Cirugía, Sección de Cirugía Vascular y Terapia, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Claudia Patricia Mejía-Velázquez
- Departamento de Patología, Medicina Bucal y Maxilofacial, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México 04510, Mexico
- Unidad de Bioquímica, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| |
Collapse
|
18
|
Yadav S. Management of Oral Squamous Papilloma Using Annona squamosa (Custard Apple) Leaves: A Novel Case. Cureus 2023; 15:e34806. [PMID: 36915838 PMCID: PMC10008032 DOI: 10.7759/cureus.34806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 02/11/2023] Open
Abstract
This report presents the case of a 36-year-old male who was diagnosed with oral squamous papilloma in the palatal region. Excision was planned. The patient in the meantime chewed upon custard apple leaves and reported that the lesion prolapsed over the next few days. On examination, the site showed no signs of scarring or contracture and presented with healthy palatal tissue. The patient was prevented from requiring surgery, which would have shown a longer healing period with heavy reliance on an expensive resource base. This novel observation highlights the benefits of custard apple (Annona squamosa) leaves and warrants that its hepatoprotective, anticancer, antidiabetic, antioxidant, antibacterial, anti-obesity, and lipid-lowering properties are studied in an astute scientific setup with a well-drawn-out research plan.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Dentistry, All India Institute of Medical Sciences, Mangalagiri, Mangalagiri, IND
| |
Collapse
|
19
|
Chemopreventive and Anticancer Role of Resveratrol against Oral Squamous Cell Carcinoma. Pharmaceutics 2023; 15:pharmaceutics15010275. [PMID: 36678905 PMCID: PMC9866019 DOI: 10.3390/pharmaceutics15010275] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevailing and aggressive head and neck cancers, featuring high morbidity and mortality. The available conventional treatments suffer from several adverse effects and are often inefficient in terms of their survival rates. Thus, seeking novel therapeutic agents and adjuvants is of the utmost importance for modern society. Natural polyphenolic compounds have recently emerged as promising chemopreventive and anticancer agents. Specifically, the natural compound resveratrol (RSV) has recently gained momentum for this purpose. RSV is useful for treating OSCC due to its antiproliferative, antimetastatic, and proapoptotic effects. Additionally, RSV acts against tumor cells while synergically cooperating with chemotherapeutics, overcoming drug resistance phenomena. Despite these wide-spectrum effects, there are few specific investigations regarding RSV's effects against OSCC animal models that consider different routes and vehicles for the administration of RSV. Interestingly, an injectable RSV-loaded liposome-based formulation was proven to be effective against both in vitro and in vivo OSCC models, demonstrating that the development of RSV-loaded drug delivery systems for systemic and/or loco-regional applications may be the turning point in oral cancer treatment, leading to benefits from both RSV's properties as well as from targeted delivery. Given these premises, this review offers a comprehensive overview of the in vitro and in vivo effects of RSV and its main derivative, polydatin (PD), against OSCC-related cell lines and animal models, aiming to guide the scientific community in regard to RSV and PD use in the treatment of oral precancerous and cancerous lesions.
Collapse
|
20
|
Bartík P, Šagát P, Pyšná J, Pyšný L, Suchý J, Trubák Z, Petrů D. The Effect of High Nicotine Dose on Maximum Anaerobic Performance and Perceived Pain in Healthy Non-Smoking Athletes: Crossover Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1009. [PMID: 36673765 PMCID: PMC9859273 DOI: 10.3390/ijerph20021009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Background: In recent years, there has been intensive discussion about the positive effect of nicotine usage on enhancing sports performance. It is frequently applied through a non-burned tobacco form before physical activity. Nicotine is under the World Anti-Doping Agency (WADA) 2021 monitoring program. Therefore, study results that reveal either positive or negative effects are expected. This is the pilot study that reports the effect of 8 mg dose of nicotine on performance and perceived pain. Material and Methods: This research aimed to explore the oral intake effect of a high-nicotine dose (8 mg) on the maximum anaerobic performance and other selected physical performance parameters in healthy, well-trained adult athletes (n = 15, age 30.7 ± 3.6, BMI 25.3 ± 1.7). The cross-sectional study protocol included the oral administration of either sublingual nicotine or placebo tablets before the anaerobic load assessed by a standardized 30 s Wingate test of the lower limbs. Afterward, the Borg subjective perception of pain (CR 10) and Borg rating of perceived exertion (RPE) were evaluated. Wilcoxon signed-rank test was used for the analysis of data with a 0.05 level of significance. Results: The results revealed that oral administration of an 8 mg nicotine dose does not significantly improve any of the physical performance parameters monitored. We only reported the statistically significant positive effect in RPE (p = 0.03). Conclusion: Lower perception of pain intensity that we reported after nicotine application might be an important factor that affects performance. However, we did not report any improvement in physical performance parameters.
Collapse
Affiliation(s)
- Peter Bartík
- Health and Physical Education Department, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Peter Šagát
- Health and Physical Education Department, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Jana Pyšná
- Department of Physical Education and Sport, Faculty of Education, J. E. Purkyne University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| | - Ladislav Pyšný
- Department of Physical Education and Sport, Faculty of Education, J. E. Purkyne University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| | - Jiří Suchý
- Department of Physical Education, Faculty of Education, Charles University, 116 39 Prague, Czech Republic
| | - Zdeněk Trubák
- Department of Physical Education and Sport, Faculty of Education, J. E. Purkyne University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| | - Dominika Petrů
- Department of Physical Education and Sport, Faculty of Education, J. E. Purkyne University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| |
Collapse
|
21
|
Nilash AB, Jahanbani J, Jolehar M. Effect of Nasturtium Extract on Oral Cancer. Adv Biomed Res 2023; 12:53. [PMID: 37057243 PMCID: PMC10086664 DOI: 10.4103/abr.abr_305_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 04/15/2023] Open
Abstract
Background Considering the global prevalence of cancers and the complications of common cancer treatments, there is growing interest in using medicinal herbs to complement cancer treatments and reduce treatment's side effects. Therefore, we investigate the effect of the extract of Nasturtium on the viability of oral cancer cells. Materials and Methods In this experimental study, we prepared aqueous extract from Nasturtium leaves and human oral cancer cells (OCC-24) and normal fibroblast cells (HF2FF cell line) from a cell bank. Then the toxic effect of different concentrations of the extract on cell viability after 24-48 hours of exposure was investigated with the methylthiazol tetrazolium assay. Ultimately, the optical density was measured at 570 nm by an Elisa Reader. Analysis of inhibitory concentration 50 (IC50) was also performed. The data were analyzed by paired Student's t-test and one-way analysis of variance. Results Data showed that the extract had statistically significant anticancer effects in concentrations above 0.125 mg/ml for 24-hour exposure and in concentrations above 0.5 mg/ml for 48-hour exposure (p-value <0.05). Also, this extract had an adverse effect on the viability of normal cells; however, this effect occurred in high doses of the extract (p-value <0.05). Analysis of IC50 criteria indicates that with increasing time, a higher concentration of the extract is required to inhibit the viability of cancer cells. Conclusion Because of the results, this aqueous extract can be suggested as a potential therapeutic agent in oral cancer. The best concentration of the extract was found to be 1 mg/ml.
Collapse
Affiliation(s)
- Amid B. Nilash
- General Dentist, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Jahanfar Jahanbani
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Jolehar
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Address for correspondence: Dr. Maryam Jolehar, No. 9, 9 Neyestan St., Pasdaran St., Tehran, Iran. E-mail:
| |
Collapse
|
22
|
Hyphaene thebaica (Areceaeae) as a Promising Functional Food: Extraction, Analytical Techniques, Bioactivity, Food, and Industrial Applications. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractHyphaene thebaica, also known as doum, is a wild plant growing in Egypt, Sudan, and other African countries. It is usually used to prepare nutritive diets, tasty beverages, and other food products. This review aimed to highlight the phytochemical composition of the doum plant using NMR, GC–MS, HPLC, and UPLC/Qtof/MS. The reported active constituents are also described, with flavonoids, phenolic acids, and saponins being the most dominant components. Extraction methods, both conventional and non-conventional, and their existing parameters were summarized. The in vitro and in vivo studies on the extracts and active constituents were also reported. We focused on different applications of doum in functional food products, animal feeding systems, and pharmaceutical applications. Doum is considered a promising dietary and therapeutic candidate to be applied on a wider scale. Proteomic analysis of doum and clinical assessment are still lacking and warrant further investigations in the future.
Collapse
|
23
|
Popovici V, Matei E, Cozaru GC, Bucur L, Gîrd CE, Schröder V, Ozon EA, Mitu MA, Musuc AM, Petrescu S, Atkinson I, Rusu A, Mitran RA, Anastasescu M, Caraiane A, Lupuliasa D, Aschie M, Dumitru E, Badea V. Design, Characterization, and Anticancer and Antimicrobial Activities of Mucoadhesive Oral Patches Loaded with Usnea barbata (L.) F. H. Wigg Ethanol Extract F-UBE-HPMC. Antioxidants (Basel) 2022; 11:1801. [PMID: 36139875 PMCID: PMC9495557 DOI: 10.3390/antiox11091801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
The oral cavity's common pathologies are tooth decay, periodontal disease, and oral cancer; oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high mortality rate. Our study aims to formulate, develop, characterize, and pharmacologically investigate the oral mucoadhesive patches (F-UBE-HPMC) loaded with Usnea barbata (L.) F.H. Wigg dry ethanol extract (UBE), using HPMC K100 as a film-forming polymer. Each patch contains 312 µg UBE, with a total phenolic content (TPC) of 178.849 µg and 33.924 µg usnic acid. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed for their morphological characterization, followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Pharmacotechnical evaluation involved the measurement of the specific parameters for mucoadhesive oral patches as follows: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time. Thus, each F-UBE-HPMC has 104 ± 4.31 mg, a pH = 7.05 ± 0.04, a disintegration time of 130 ± 4.14 s, a swelling ratio of 272 ± 6.31% after 6 h, and a mucoadhesion time of 102 ± 3.22 min. Then, F-UBE-HPMCs pharmacological effects were investigated using brine shrimp lethality assay (BSL assay) as a cytotoxicity prescreening test, followed by complex flow cytometry analyses on blood cell cultures and oral epithelial squamous cell carcinoma CLS-354 cell line. The results revealed significant anticancer effects by considerably increasing oxidative stress and blocking DNA synthesis in CLS-354 cancer cells. The antimicrobial potential against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 was assessed by a Resazurin-based 96-well plate microdilution method. The patches moderately inhibited both bacteria strains growing and displayed a significant antifungal effect, higher on C. albicans than on C. parapsilosis. All these properties lead to considering F-UBE-HPMC suitable for oral disease prevention and therapy.
Collapse
Affiliation(s)
- Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, Sf. Apostol Andrei Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Laura Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mirela Adriana Mitu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Adina Magdalena Musuc
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Simona Petrescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Atkinson
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Rusu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Raul-Augustin Mitran
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Aureliana Caraiane
- Department of Oral Rehabilitation, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mariana Aschie
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, Sf. Apostol Andrei Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Eugen Dumitru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Department of Gastroenterology, Emergency Hospital of Constanța, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Victoria Badea
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| |
Collapse
|
24
|
Ahuja A, Tyagi PK, Kumar M, Sharma N, Prakash S, Radha, Chandran D, Dhumal S, Rais N, Singh S, Dey A, Senapathy M, Saleena LAK, Shanavas A, Mohankumar P, Rajalingam S, Murugesan Y, Vishvanathan M, Sathyaseelan SK, Viswanathan S, Kumar KK, Natta S, Mekhemar M. Botanicals and Oral Stem Cell Mediated Regeneration: A Paradigm Shift from Artificial to Biological Replacement. Cells 2022; 11:2792. [PMID: 36139367 PMCID: PMC9496740 DOI: 10.3390/cells11182792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Stem cells are a well-known autologous pluripotent cell source, having excellent potential to develop into specialized cells, such as brain, skin, and bone marrow cells. The oral cavity is reported to be a rich source of multiple types of oral stem cells, including the dental pulp, mucosal soft tissues, periodontal ligament, and apical papilla. Oral stem cells were useful for both the regeneration of soft tissue components in the dental pulp and mineralized structure regeneration, such as bone or dentin, and can be a viable substitute for traditionally used bone marrow stem cells. In recent years, several studies have reported that plant extracts or compounds promoted the proliferation, differentiation, and survival of different oral stem cells. This review is carried out by following the PRISMA guidelines and focusing mainly on the effects of bioactive compounds on oral stem cell-mediated dental, bone, and neural regeneration. It is observed that in recent years studies were mainly focused on the utilization of oral stem cell-mediated regeneration of bone or dental mesenchymal cells, however, the utility of bioactive compounds on oral stem cell-mediated regeneration requires additional assessment beyond in vitro and in vivo studies, and requires more randomized clinical trials and case studies.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, India
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Naveen Sharma
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi 110029, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sci-ences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer 305004, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo P.O. Box 138, Ethiopia
| | - Lejaniya Abdul Kalam Saleena
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lampur 56000, Malaysia
| | - Arjun Shanavas
- Division of Medicine, Indian Veterinary Research Institute, Bareilly 243122, India
| | - Pran Mohankumar
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Yasodha Murugesan
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Marthandan Vishvanathan
- Department of Seed Science and Technology, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | | | - Sabareeshwari Viswanathan
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Keerthana Krishna Kumar
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Suman Natta
- ICAR—National Research Centre for Orchids, Pakyong 737106, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Chris-tian-Albrecht’s University, 24105 Kiel, Germany
| |
Collapse
|
25
|
Bandyopadhyay A, Dey A. Medicinal pteridophytes: ethnopharmacological, phytochemical, and clinical attributes. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Almost from the very beginning of human existence, man has been interacting with plants. Throughout human history, plants have provided humans with basic needs such as sustenance, firewood, livestock feed, and wood. The world has approximately 3 million vascular plants. The treatment of primary health problems is provided primarily by traditional medicines by around 80% of the world's population. Compared to other vascular plants, pteridophytes remain underexplored in ethnobotanical aspects, despite being regarded as a valuable component of healthcare for centuries. As an alternative medicine, pteridophytes are being investigated for their pharmacological activity. Almost 2000 years ago, humans were exploring and using plant species from this lineage because of its beneficial properties since pteridophytes were the first vascular plants.
Main body of the abstract
All popular search engines such as PubMed, Google Scholar, ScienceDirect, and Scopus were searched to retrieve the relevant literature using various search strings relevant to the topic. Pteridophytes belonging to thirty different families have been documented as medicinal plants. For instance, Selaginella sp. has been demonstrated to have numerous therapeutic properties, including antioxidative, inflammation-reducing, anti-carcinogenic, diabetes-fighting, virucidal, antibacterial, and anti-senile dementia effects. In addition, clinical trials and studies performed on pteridophytes and derived compounds are also discussed in details.
Short conclusion
This review offers a compilation of therapeutically valuable pteridophytes utilized by local ethnic groups, as well as the public.
Graphical Abstract
Collapse
|
26
|
Rajasree R, Ittiyavirah SP, Poonkuzhi Naseef P, Saheer Kuruniyan M, Elayadeth-Meethal M, Sankar S. The anti-inflammatory properties of the methanolic extract of Cucumis melo Linn. against prostate enlargement in Wistar rats. Saudi J Biol Sci 2022; 29:103396. [PMID: 35942162 PMCID: PMC9356295 DOI: 10.1016/j.sjbs.2022.103396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
In different parts of the world, Cucumis melo Linn. (C melo) is used for its medicinal properties. The present study examined the effects of a methanolic extract of C melo Linn. (F1 hybrid, MECM) on benign prostatic hyperplasia in adult male Wistar rats and evaluated its anti-inflammatory activity in vivo. MECM treatment reduced prostate weight mildly. Histopathological studies showed that the extract produced a strong protective effect against the development of BPH by testosterone. The MECM also showed protection from testosterone-induced benign prostatic hyperplasia (BPH). MECM was tested against carrageenan-induced inflammation in rats' paws to determine its anti-inflammatory activity. It was shown that MECM had a pronounced effect on the inflammatory response in the late phase, i.e., one hour after carrageenan injection. Prostaglandins and nitric oxide are primarily responsible for this phase indicating that MECM can modify the production and release of prostaglandin and nitric oxide. A novel formulation containing C melo may be able to treat the conditions mentioned above.
Collapse
Affiliation(s)
- R.S. Rajasree
- College of Pharmaceutical Sciences, Government Thirumala Devaswom Medical College, Alappuzha 688005, India
| | - Sibi P. Ittiyavirah
- Department of Pharmaceutical Sciences, Centre for Professional and Advanced Sciences Cheruvandoor, Kottayam 686631, India
| | - Punnoth Poonkuzhi Naseef
- Department of Pharmaceutics, Moulana College of Pharmacy, Perinthalmanna 679321, India
- Corresponding author.
| | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammed Elayadeth-Meethal
- Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad 675621, India
| | - S Sankar
- Department of Pathology, Govt Medical College, Kottayam 686008, India
| |
Collapse
|
27
|
Formulation and Development of Bioadhesive Oral Films Containing Usnea barbata (L.) F.H.Wigg Dry Ethanol Extract (F-UBE-HPC) with Antimicrobial and Anticancer Properties for Potential Use in Oral Cancer Complementary Therapy. Pharmaceutics 2022; 14:pharmaceutics14091808. [PMID: 36145557 PMCID: PMC9505056 DOI: 10.3390/pharmaceutics14091808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 02/06/2023] Open
Abstract
Medical research explores plant extracts’ properties to obtain potential anticancer drugs. The present study aims to formulate, develop, and characterize the bioadhesive oral films containing Usnea barbata (L.) dry ethanol extract (F-UBE-HPC) and to investigate their anticancer potential for possible use in oral cancer therapy. The physicochemical and morphological properties of the bioadhesive oral films were analyzed through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), thermogravimetric analysis (TG), and X-ray diffraction techniques. Pharmacotechnical evaluation (consisting of the measurement of the specific parameters: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time) completed the bioadhesive films’ analysis. Next, oxidative stress, caspase 3/7 activity, nuclear condensation, lysosomal activity, and DNA synthesis induced by F-UBE-HPC in normal blood cell cultures and oral epithelial squamous cell carcinoma (CLS-354) cell line and its influence on both cell types’ division and proliferation was evaluated. The results reveal that each F-UBE-HPC contains 0.330 mg dry extract with a usnic acid (UA) content of 0.036 mg. The bioadhesive oral films are thin (0.093 ± 0.002 mm), reveal a neutral pH (7.10 ± 0.02), a disintegration time of 118 ± 3.16 s, an ex vivo bioadhesion time of 98 ± 3.58 min, and show a swelling ratio after 6 h of 289 ± 5.82%, being suitable for application on the oral mucosa. They displayed in vitro anticancer activity on CLS-354 tumor cells. By considerably increasing cellular oxidative stress and caspase 3/7 activity, they triggered apoptotic processes in oral cancer cells, inducing high levels of nuclear condensation and lysosomal activity, cell cycle arrest in G0/G1, and blocking DNA synthesis. All these properties lead to considering the UBE-loaded bioadhesive oral films suitable for potential application as a complementary therapy in oral cancer.
Collapse
|
28
|
Apitherapy and Periodontal Disease: Insights into In Vitro, In Vivo, and Clinical Studies. Antioxidants (Basel) 2022; 11:antiox11050823. [PMID: 35624686 PMCID: PMC9137511 DOI: 10.3390/antiox11050823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Periodontal diseases are caused mainly by inflammation of the gums and bones surrounding the teeth or by dysbiosis of the oral microbiome, and the Global Burden of Disease study (2019) reported that periodontal disease affects 20-50% of the global population. In recent years, more preference has been given to natural therapies compared to synthetic drugs in the treatment of periodontal disease, and several oral care products, such as toothpaste, mouthwash, and dentifrices, have been developed comprising honeybee products, such as propolis, honey, royal jelly, and purified bee venom. In this study, we systematically reviewed the literature on the treatment of periodontitis using honeybee products. A literature search was performed using various databases, including PubMed, Web of Science, ScienceDirect, Scopus, clinicaltrials.gov, and Google Scholar. A total of 31 studies were reviewed using eligibility criteria published between January 2016 and December 2021. In vitro, in vivo, and clinical studies (randomized clinical trials) were included. Based on the results of these studies, honeybee products, such as propolis and purified bee venom, were concluded to be effective and safe for use in the treatment of periodontitis mainly due to their antimicrobial and anti-inflammatory activities. However, to obtain reliable results from randomized clinical trials assessing the effectiveness of honeybee products in periodontal treatment with long-term follow-up, a broader sample size and assessment of various clinical parameters are needed.
Collapse
|
29
|
Garlic ( Allium sativum L.) Bioactives and Its Role in Alleviating Oral Pathologies. Antioxidants (Basel) 2021; 10:antiox10111847. [PMID: 34829718 PMCID: PMC8614839 DOI: 10.3390/antiox10111847] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Garlic (Allium sativa L.) is a bulbous flowering plant belongs to the family of Amaryllidaceae and is a predominant horticultural crop originating from central Asia. Garlic and its products are chiefly used for culinary and therapeutic purposes in many countries. Bulbs of raw garlic have been investigated for their role in oral health, which are ascribed to a myriad of biologically active compounds such as alliin, allicin, methiin, S-allylcysteine (SAC), diallyl sulfide (DAS), S-ally-mercapto cysteine (SAMC), diallyl disulphide (DADS), diallyl trisulfide (DATS) and methyl allyl disulphide. A systematic review was conducted following the PRISMA statement. Scopus, PubMed, Clinicaltrials.gov, and Science direct databases were searched between 12 April 2021 to 4 September 2021. A total of 148 studies were included and the qualitative synthesis phytochemical profile of GE, biological activities, therapeutic applications of garlic extract (GE) in oral health care system, and its mechanism of action in curing various oral pathologies have been discussed. Furthermore, the safety of incorporation of GE as food supplements is also critically discussed. To conclude, GE could conceivably make a treatment recourse for patients suffering from diverse oral diseases.
Collapse
|
30
|
Anti-Inflammatory Potential of Complex Extracts of Ligularia stenocephala Matsum. & Koidz. and Secale cereale L. Sprout in Chronic Gingivitis: In Vitro Investigation and Randomized Clinical Trial. Antioxidants (Basel) 2021; 10:antiox10101586. [PMID: 34679720 PMCID: PMC8533477 DOI: 10.3390/antiox10101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
Complex extracts of Ligularia stenocephala Matsum. & Koidz. (LSE) and Secale cereale L. sprout (SCSE) (TEES-10®) were prepared. The purposes of the study were to evaluate anti-inflammatory activities of TEES-10® in vitro and to observe resolution of gingivitis in human with oral administration of TEES-10®. The effects of TEES-10® on normal periodontal ligament (PDL) cell viability, lipopolysaccharide (LPS) induced PDL cell viability and the changes of inflammatory mediator expression were evaluated in vitro. In the clinical trial, 150 mg of TEES-10® powder containing capsule was administered twice daily to the test group, while the control group administered placebos in a total 100 participants with gingivitis. Probing depth (PD), bleeding on probing (BOP), clinical attachment loss, gingival index (GI) and plaque index (PI) were measured at baseline and 4 weeks. Administering TEES-10® showed significant increase in PDL cell viability compared to administering LSE or SCSE alone. In addition, treating TEES-10® to LPS induced PDL cell significantly increased PDL cell viability compared to control. TEES-10® suppressed expression of NF-κB, p-ERK, ERK, COX-2, c-Fos and p-STAT and promoted expression of PPARγ in LPS induced PDL cells. In the clinical trial, significant improvement of GI and BOP was observed in the test group at 4 weeks. In addition, the number of patients diagnosed with gingivitis was significantly reduced in the test group at 4 weeks. Salivary MMP-8 and MMP-9 was also significantly decreased compared to placebo group. Within the limitations of this study, the TEES-10® would have an anti-inflammatory potential clinically in the chronic gingivitis patients.
Collapse
|