1
|
Shanaida M, Lysiuk R, Mykhailenko O, Hudz N, Abdulsalam A, Gontova T, Oleshchuk O, Ivankiv Y, Shanaida V, Lytkin D, Bjørklund G. Alpha-lipoic Acid: An Antioxidant with Anti-aging Properties for Disease Therapy. Curr Med Chem 2025; 32:23-54. [PMID: 38644711 DOI: 10.2174/0109298673300496240416114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
The anti-aging effects of alpha-lipoic acid (αLA), a natural antioxidant synthesized in human tissues, have attracted a growing interest in recent years. αLA is a short- -chain sulfur-containing fatty acid occurring in the mitochondria of all kinds of eukaryotic cells. Both the oxidized disulfide of αLA and its reduced form (dihydrolipoic acid, DHLA) exhibit prominent antioxidant function. The amount of αLA inside the human body gradually decreases with age resulting in various health disorders. Its lack can be compensated by supplying from external sources such as dietary supplements or medicinal dosage forms. The primary objectives of this study were the analysis of updated information on the latest two-decade research regarding the use of αLA from an anti-aging perspective. The information was collected from PubMed, Wiley Online Library, Scopus, ScienceDirect, SpringerLink, Google Scholar, and clinicaltrials.gov. Numerous in silico, in vitro, in vivo, and clinical studies revealed that αLA shows a protective role in biological systems by direct or indirect reactive oxygen/nitrogen species quenching. αLA demonstrated beneficial properties in the prevention and treatment of many age-related disorders such as neurodegeneration, metabolic disorders, different cancers, nephropathy, infertility, and skin senescence. Its preventive effects in case of Alzheimer's and Parkinson's diseases are of particular interest. Further mechanistic and clinical studies are highly recommended to evaluate the wide spectrum of αLA therapeutic potential that could optimize its dietary intake for prevention and alleviation disorders related to aging.
Collapse
Affiliation(s)
- Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Olha Mykhailenko
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
- Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy; 29-39 Brunswick Square, WC1N 1AX, London, United Kingdom
- CONEM Ukraine Bromatology and Medicinal Chemistry Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Nataliia Hudz
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052, Opole, Poland
| | | | - Tetiana Gontova
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | | | - Yana Ivankiv
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Department of Research Ternopil Ivan Puluj National Technical University, Ternopil, 46001, Ukraine
| | - Dmytro Lytkin
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | - Geir Bjørklund
- Department of Research Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
2
|
Su R, Pan X, Chen Q, Wang J, Kong X, Li Y, Liu H, Hou X, Wang Y. Nicotinamide mononucleotide mitigates neuroinflammation by enhancing GPX4-mediated ferroptosis defense in microglia. Brain Res 2024; 1845:149197. [PMID: 39216693 DOI: 10.1016/j.brainres.2024.149197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Numerous neurological diseases involving neuroinflammation, particularly microglia, contribute to neuronal death. Ferroptosis is implicated in various diseases characterized by neuronal injury. Studies showed that nicotinamide mononucleotide (NMN) inhibits both neuroinflammation and ferroptosis. However, the mechanisms of NMN in both ferroptosis and neuroinflammation remain unclear. We aimed to explore the effects of NMN on neuroinflammation and the susceptibility of microglia to ferroptosis. METHODS Ferroptosis markers in macroglia exposed to lipopolysaccharides (LPS) were analyzed using CCK8, flow cytometry, ELISA, and quantitative RT-PCR. The effects of NMN on LPS-induced ferroptosis in microglia were evaluated through flow cytometry, western blot, and immunofluorescence staining. RT-PCR analysis assessed the inflammatory cytokine production of microglia subjected to Ferrostatin-1-regulated ferroptosis. RNA sequencing elucidated the underlying mechanism of NMN-involved microglia ferroptosis under LPS induction. In BV2 microglia, an inhibitor of GPX4, RSL3, was employed to suppress GPX4 expression. Intracerebroventricular injection of LPS was performed to evaluate neuroinflammation and microglia activation in vivo. RESULTS NMN effectively rescued LPS-induced ferroptosis and improved cell viability in microglia. Co-administration of NMN and ferrostatin-1 significantly reduced proinflammatory cytokine production in microglia following the introduction of LPS stimuli. Mechanistically, NMN facilitated glutathione (GSH) production, and enhanced resistance to lipid peroxidation occurred in a manner dependent on GPX4, repressing cytokine transcription and protecting cells from ferroptosis. RNA sequencing elucidated the underlying mechanism of NMN-associated microglia ferroptosis under LPS induction. Furthermore, simultaneous injection of NMN ameliorated LPS-induced ferroptosis and neuroinflammation in mouse brains. The data from the present study indicated that NMN enhances GPX4-mediated ferroptosis defense against LPS-induced ferroptosis in microglia by recruiting GSH, thereby inhibiting neuroinflammation. CONCLUSION Therapeutic approaches to effectively target ferroptosis in diseases using NMN, consideration should be given to both its anti-ferroptosis and anti-inflammatory effects to attain optimal outcomes, presenting promising strategies for treating neuroinflammation-related diseases or disorders.
Collapse
Affiliation(s)
- Ruiqiong Su
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoyue Pan
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Qiuyuan Chen
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Junyan Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Xuerui Kong
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Yunhong Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Huan Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester 14620, USA
| | - Xiaolin Hou
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| | - Yin Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
3
|
da Silva J, de Souza LO, Severo MPA, Rodrigues SLC, Molz P, Schonhofen P, Herlinger AL, Schröder N. Effects of the AMPAR Antagonist, Perampanel, on Cognitive Function in Rats Exposed to Neonatal Iron Overload. Mol Neurobiol 2024; 61:10083-10096. [PMID: 38696064 DOI: 10.1007/s12035-024-04180-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/12/2024] [Indexed: 11/24/2024]
Abstract
Iron accumulation has been associated with the pathogenesis of neurodegenerative diseases and memory decline. As previously described by our research group, iron overload in the neonatal period induces persistent memory deficits and increases oxidative stress and apoptotic markers. The neuronal insult caused by iron excess generates an energetic imbalance that can alter glutamate concentrations and thus trigger excitotoxicity. Drugs that block glutamatergic receptor eligibly mitigate neurotoxicity; among them is perampanel (PER), a reversible AMPA receptor (AMPAR) antagonist. In the present study, we sought to investigate the neuroprotective effects of PER in rats subjected to iron overload in the neonatal period. Recognition and aversive memory were evaluated, AMPAR subunit phosphorylation, as well as the relative expression of genes such as GRIA1, GRIA2, DLG4, and CAC, which code proteins involved in AMPAR anchoring. Male rats received vehicle or carbonyl iron (30 mg/kg) from the 12th to the 14th postnatal day and were treated with vehicle or PER (2 mg/kg) for 21 days in adulthood. The excess of iron caused recognition memory deficits and impaired emotional memory, and PER was able to improve the rodents' memory. Iron increased the phosphorylation of GLUA1 subunit, which was reversed by PER. Furthermore, iron overload increased the expression of the GRIA1 gene and decreased the expression of the DLG4 gene, demonstrating the influence of metal accumulation on the metabolism of AMPAR. These results suggest that iron can interfere with AMPAR functionality, through altered phosphorylation of its subunits, and the expression of genes that code for proteins critically involved in the assembly and anchoring of AMPAR. The blockade of AMPAR with PER is capable of partially reversing the cognitive deficits caused by iron overload.
Collapse
Affiliation(s)
- José da Silva
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Lariza Oliveira de Souza
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Maria Paula Arakaki Severo
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Sarah Luize Camargo Rodrigues
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Patrícia Molz
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Patrícia Schonhofen
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasilia, Brazil
| | - Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, Brazil
| | - Nadja Schröder
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil.
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasilia, Brazil.
| |
Collapse
|
4
|
Wadhwa R, Hegde M, Zhang H, Kaul A, Wang J, Ishida Y, Terao K, Kunnumakkara AB, Kaul SC. Antistress and Antiaging Potentials of Alpha-Lipoic Acid: Insights from Cell Culture-Based Experiments. Appl Biochem Biotechnol 2024; 196:8791-8808. [PMID: 38941028 DOI: 10.1007/s12010-024-04994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Chronic stress has been linked to a large number of pathologies, including cancer, premature aging, and neurodegenerative diseases. The accumulation of molecular waste resulting from oxidative and heavy metal-induced stress has been ascribed as a major factor contributing to these diseases. With this in mind, we started by screening 13 small molecules to determine their antistress potential in heavy metal stress-exposed C6 glioblastoma and found that alpha-lipoic acid (ALA) (a natural antioxidant abundantly present in yeast, spinach, broccoli, and meat) was the most effective candidate. We then conducted molecular analyses to validate its mechanism of action. Dose-dependent toxicity assays of cells treated with two ALA enantiomers, R-ALA and S-ALA, showed that they are nontoxic and can be tolerated at relatively high doses. Cells exposed to heavy metal, heat, and oxidative stress showed better recovery when cultured in R-ALA-/S-ALA-supplemented medium, supported by reduction of reactive oxygen species (ROS), aggregated proteins, and mitochondrial and deoxyribonucleic acid (DNA) damage. Molecular analyses revealed protection against stress-induced apoptosis and induction of autophagy in R-ALA- and S-ALA-treated C6/U2OS cells. Consistent with these findings, normal human fibroblasts showed lifespan extension. Taken together, this study demonstrates that lipoic acid has antiaging and antistress potential and warrants further attention in laboratory and clinical studies.
Collapse
Affiliation(s)
- Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Mangala Hegde
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Guwahati, Assam, 781 039, India
| | - Huayue Zhang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Ashish Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Jia Wang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Yoshiyuki Ishida
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-Ku, Kobe, 650 0047, Japan
| | - Keiji Terao
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-Ku, Kobe, 650 0047, Japan
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Guwahati, Assam, 781 039, India.
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan.
| |
Collapse
|
5
|
Bagwe Parab S, Kaur G. Emoxypine succinate modulates behavioral and molecular responses in zebrafish model of iron Overload-Induced neuroinflammation via CDK5/GSK3- β and NLRP3 inflammasome pathway. Brain Res 2024; 1846:149236. [PMID: 39270994 DOI: 10.1016/j.brainres.2024.149236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Excessive iron accumulation in the brain plays a significant role in neurodegenerative processes, contributing to the pathogenesis of Alzheimer's disease (AD). AD, a prominent neurological disorder affecting the central nervous system, is characterized by the accumulation of beta-amyloid (Aβ) and tau phosphorylation. This accumulation leads to the subsequent development of cognitive impairments, particularly in learning and memory functions. This study investigates the neuroprotective effects of emoxypine succinate in a zebrafish model of iron overload-induced neurodegeneration. Iron was administered to the zebrafish for 28 days to induce neurodegeneration. Following induction, Emoxypine succinate was employed as a treatment intervention for 14 days (concentrations of 4 mg/L, 8 mg/L, and 12 mg/L). Following the end of the treatment, behavioral tests (Y maze test, Novel tank test) were conducted on the zebrafish, and the biochemical (MDA, Catalase, SOD, GSH) and molecular parameters (AchE, Iron levels, IL-1β, TNF-α, CDK-5, GSK-3β, and NLRP3) of the zebrafish brain were also assessed. In the novel tank test, emoxypine succinate-treated groups exhibited significantly increased time in the upper zone (p < 0.001), higher distance travelled (p < 0.001), and shorter latency to the top (p < 0.001) compared to the negative control. Similarly, the Y-maze test revealed improved time in the novel arm (p < 0.001) and total distance travelled (p < 0.001) in treated groups versus the negative control. Assessment of oxidative stress parameters demonstrated significant reductions in oxidative stress in emoxypine succinate-treated groups. Furthermore, AChE activity decreased significantly (p < 0.001), and brain iron levels decreased substantially (p < 0.001) in treated groups, indicating positive therapeutic outcomes. Molecular analysis showed a significant reduction in pro-inflammatory markers like IL-1β, TNF-α, CDK-5, GSK-3β, and NLRP3 (p < 0.001). This comprehensive study highlights the potential efficacy of emoxypine succinate in mitigating neurodegeneration associated with iron dysregulation.
Collapse
Affiliation(s)
- Siddhi Bagwe Parab
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai 56, India; Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai 56, India.
| |
Collapse
|
6
|
D'Aprile S, Denaro S, Lavoro A, Candido S, Giallongo S, Torrisi F, Salvatorelli L, Lazzarino G, Amorini AM, Lazzarino G, Magro G, Tibullo D, Libra M, Giallongo C, Vicario N, Parenti R. Glioblastoma mesenchymal subtype enhances antioxidant defence to reduce susceptibility to ferroptosis. Sci Rep 2024; 14:20770. [PMID: 39237744 PMCID: PMC11377710 DOI: 10.1038/s41598-024-72024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024] Open
Abstract
Glioblastoma (GBM) represents an aggressive brain tumor, characterized by intra- and inter-tumoral heterogeneity and therapy resistance, leading to unfavourable prognosis. An increasing number of studies pays attention on the regulation of ferroptosis, an iron-dependent cell death, as a strategy to reverse drug resistance in cancer. However, the debate on whether this strategy may have important implications for the treatment of GBM is still ongoing. In the present study, we used ferric ammonium citrate and erastin to evaluate ferroptosis induction effects on two human GBM cell lines, U-251 MG, with proneural characteristics, and T98-G, with a mesenchymal profile. The response to ferroptosis induction was markedly different between cell lines, indeed T98-G cells showed an enhanced antioxidant defence, with increased glutathione levels, as compared to U-251 MG cells. Moreover, using bioinformatic approaches and analysing publicly available datasets from patients' biopsies, we found that GBM with a mesenchymal phenotype showed an up-regulation of several genes involved in antioxidant mechanisms as compared to proneural subtype. Thus, our results suggest that GBM subtypes differently respond to ferroptosis induction, emphasizing the significance of further molecular studies on GBM to better discriminate between various tumor subtypes and progressively move towards personalized therapy.
Collapse
Affiliation(s)
- Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Simona Denaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Filippo Torrisi
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, University of Catania, 95123, Catania, Italy
| | - Giacomo Lazzarino
- Departmental Faculty of Medicine, UniCamillus-Saint Camillus International University of Health Sciences, Via Di Sant'Alessandro 8, 00131, Rome, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, University of Catania, 95123, Catania, Italy.
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| |
Collapse
|
7
|
Steinmaurer A, Riedl C, König T, Testa G, Köck U, Bauer J, Lassmann H, Höftberger R, Berger T, Wimmer I, Hametner S. The relation between BTK expression and iron accumulation of myeloid cells in multiple sclerosis. Brain Pathol 2024; 34:e13240. [PMID: 38254312 PMCID: PMC11328345 DOI: 10.1111/bpa.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Activation of Bruton's tyrosine kinase (BTK) has been shown to play a crucial role in the proinflammatory response of B cells and myeloid cells upon engagement with B cell, Fc, Toll-like receptor, and distinct chemokine receptors. Previous reports suggest BTK actively contributes to the pathogenesis of multiple sclerosis (MS). The BTK inhibitor Evobrutinib has been shown to reduce the numbers of gadolinium-enhancing lesions and relapses in relapsing-remitting MS patients. In vitro, BTK inhibition resulted in reduced phagocytic activity and modulated BTK-dependent inflammatory signaling of microglia and macrophages. Here, we investigated the protein expression of BTK and CD68 as well as iron accumulation in postmortem control (n = 10) and MS (n = 23) brain tissue, focusing on microglia and macrophages. MS cases encompassed active, chronic active, and inactive lesions. BTK+ and iron+ cells positively correlated across all regions of interests and, along with CD68, revealed highest numbers in the center of active and at the rim of chronic active lesions. We then studied the effect of BTK inhibition in the human immortalized microglia-like HMC3 cell line in vitro. In particular, we loaded HMC3 cells with iron-dextran and subsequently administered the BTK inhibitor Evobrutinib. Iron treatment alone induced a proinflammatory phenotype and increased the expression of iron importers as well as the intracellular iron storage protein ferritin light chain (FTL). BTK inhibition of iron-laden cells dampened the expression of microglia-related inflammatory genes as well as iron-importers, whereas the iron-exporter ferroportin was upregulated. Our data suggest that BTK inhibition not only dampens the proinflammatory response but also reduces iron import and storage in activated microglia and macrophages with possible implications on microglial iron accumulation in chronic active lesions in MS.
Collapse
Affiliation(s)
- Anja Steinmaurer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christian Riedl
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Giulia Testa
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Köck
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Simon Hametner
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Lin CH, Chin Y, Zhou M, Sobol RW, Hung MC, Tan M. Protein lipoylation: mitochondria, cuproptosis, and beyond. Trends Biochem Sci 2024; 49:729-744. [PMID: 38714376 DOI: 10.1016/j.tibs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yeh Chin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School and Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Mien-Chie Hung
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
9
|
Spampinato M, Zuppelli T, Dulcamare I, Longhitano L, Sambataro D, Santisi A, Alanazi AM, Barbagallo IA, Vicario N, Parenti R, Romano A, Musumeci G, Li Volti G, Palumbo GA, Di Raimondo F, Nicolosi A, Giallongo S, Del Fabro V. Enhanced Antitumor Activity by the Combination of Dasatinib and Selinexor in Chronic Myeloid Leukemia. Pharmaceuticals (Basel) 2024; 17:894. [PMID: 39065744 PMCID: PMC11279392 DOI: 10.3390/ph17070894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Chronic myeloid leukemia is a hematological malignancy characterized by the abnormal proliferation of leukemic cells. Despite significant progress with tyrosine kinase inhibitors, such as Dasatinib, resistance remains a challenge. The aim of the present study was to investigate the potential of Selinexor, an Exportin-1 inhibitor, to improve TKI effectiveness on CML. METHODS Human CML cell lines (LAMA84 and K562) were treated with Selinexor, Dasatinib, or their combination. Apoptosis, mitochondrial membrane potential, and mitochondrial mass were assessed using flow cytometry. Real-time RT-PCR was used to evaluate the expression of genes related to mitochondrial function. Western blot and confocal microscopy examined PINK and heme oxygenase-1 (HO-1) protein levels. RESULTS Selinexor induced apoptosis and mitochondrial depolarization in CML cell lines, reducing cell viability. The Dasatinib/Selinexor combination further enhanced cytotoxicity, modified mitochondrial fitness, and downregulated HO-1 nuclear translocation, which has been associated with drug resistance in different models. CONCLUSIONS In conclusion, this study suggests that Dasatinib/Selinexor could be a promising therapeutic strategy for CML, providing new insights for new targeted therapies.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (M.S.); (T.Z.); (L.L.); (I.A.B.); (G.L.V.)
| | - Tatiana Zuppelli
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (M.S.); (T.Z.); (L.L.); (I.A.B.); (G.L.V.)
| | - Ilaria Dulcamare
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (I.D.); (D.S.)
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (M.S.); (T.Z.); (L.L.); (I.A.B.); (G.L.V.)
| | - Domenico Sambataro
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (I.D.); (D.S.)
| | - Annalisa Santisi
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.S.); (G.A.P.)
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ignazio A. Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (M.S.); (T.Z.); (L.L.); (I.A.B.); (G.L.V.)
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Alessandra Romano
- Division of Hematology, Department of General Surgery and Medical-Surgical Specialties, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (F.D.R.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95123 Catania, Italy;
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (M.S.); (T.Z.); (L.L.); (I.A.B.); (G.L.V.)
| | - Giuseppe A. Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.S.); (G.A.P.)
| | - Francesco Di Raimondo
- Division of Hematology, Department of General Surgery and Medical-Surgical Specialties, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (F.D.R.)
| | - Anna Nicolosi
- Hospital Pharmacy Unit, Ospedale Cannizzaro, 95125 Catania, Italy;
| | - Sebastiano Giallongo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.S.); (G.A.P.)
| | - Vittorio Del Fabro
- Division of Hematology with BMT, A.O.U. Policlinico “G.Rodolico-San Marco”, 95123 Catania, Italy;
| |
Collapse
|
10
|
Li H, Cao Z, Liu C, Wang Y, Wang L, Tang Y, Yao P. Quercetin Inhibits Neuronal Pyroptosis and Ferroptosis by Modulating Microglial M1/M2 Polarization in Atherosclerosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12156-12170. [PMID: 38755521 DOI: 10.1021/acs.jafc.4c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Atherosclerosis (AS) with iron and lipid overload and systemic inflammation is a risk factor for Alzheimer's disease. M1 macrophage/microglia participate in neuronal pyroptosis and recently have been reported to be the ferroptosis-resistant phenotype. Quercetin plays a prominent role in preventing and treating neuroinflammation, but the protective mechanism against neurodegeneration caused by iron deposition is poorly understood. ApoE-/- mice were fed a high-fat diet with or without quercetin treatment. The Morris water maze and novel object recognition tests were conducted to assess spatial learning and memory, and nonspatial recognition memory, respectively. Prussian blue and immunofluorescence staining were performed to assess the iron levels in the whole brain and in microglia, microglia polarization, and the degree of microglia/neuron ferroptosis. In vitro, we further explored the molecular biological alterations associated with microglial polarization, neuronal pyroptosis, and ferroptosis via Western blot, flow cytometry, CCK8, LDH, propidium iodide, and coculture system. We found that quercetin improved brain lesions and spatial learning and memory in AS mice. Iron deposition in the whole brain or microglia was reversed by the quercetin treatment. In the AS group, the colocalization of iNOS with Iba1 was increased, which was reversed by quercetin. However, the colocalization of iNOS with PTGS2/TfR was not increased in the AS group, suggesting a character resisting ferroptosis. Quercetin induced the expression of Arg-1 and decreased the colocalizations of Arg-1 with PTGS2/TfR. In vitro, ox-LDL combined with ferric ammonium citrate treatment (OF) significantly shifted the microglial M1/M2 phenotype balance and increased the levels of free iron, ROS, and lipid peroxides, which was reversed by quercetin. M1 phenotype induced by OF caused neuronal pyroptosis and was promoted to ferroptosis by L-NIL treatment, which contributed to neuronal ferroptosis as well. However, quercetin induced the M1 to M2 phenotype and inhibited M2 macrophages/microglia and neuron pyroptosis or ferroptosis. In summary, quercetin alleviated neuroinflammation by inducing the M1 to M2 phenotype to inhibit neuronal pyroptosis and protected neurons from ferroptosis, which may provide a new idea for neuroinflammation prevention and treatment.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqiang Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Chen X, Liu H, Liu S, Zhang Z, Li X, Mao J. Excessive dietary iron exposure increases the susceptibility of largemouth bass (Micropterus salmoides) to Aeromonas hydrophila by interfering with immune response, oxidative stress, and intestinal homeostasis. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109430. [PMID: 38325595 DOI: 10.1016/j.fsi.2024.109430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Iron is an essential cofactor in the fundamental metabolic pathways of organisms. Moderate iron intake can enhance animal growth performance, while iron overload increases the risk of pathogen infection. Although the impact of iron on the pathogen-host relationship has been confirmed in higher vertebrates, research in fish is extremely limited. The effects and mechanisms of different levels of iron exposure on the infection of Aeromonas hydrophila in largemouth bass (Micropterus salmoides) remain unclear. In this study, experimental diets were prepared by adding 0, 800, 1600, and 3200 mg/kg of FeSO4∙7H2O to the basal feed, and the impact of a 56-day feeding period on the mortality rate of largemouth bass infected with A. hydrophila was analyzed. Additionally, the relationships between mortality rate and tissue iron content, immune regulation, oxidative stress, iron homeostasis, gut microbiota, and tissue morphology were investigated. The results showed that the survival rate of largemouth bass infected with A. hydrophila decreased with increasing iron exposure levels. Excessive dietary iron intake significantly increased iron deposition in the tissues of largemouth bass, reduced the expression and activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, increased the content of lipid peroxidation product malondialdehyde, and thereby induced oxidative stress. Excessive iron supplementation could influence the immune response of largemouth bass by upregulating the expression of pro-inflammatory cytokines in the intestine and liver, while downregulating the expression of anti-inflammatory cytokines. Additionally, excessive iron intake could also affect iron metabolism by inducing the expression of hepcidin, disrupt intestinal homeostasis by interfering with the composition and function of the gut microbiota, and induce damage in the intestinal and hepatic tissues. These research findings provide a partial theoretical basis for deciphering the molecular mechanisms underlying the influence of excessive iron exposure on the susceptibility of largemouth bass to pathogenic bacteria.
Collapse
Affiliation(s)
- Xiaoli Chen
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, 511458, China
| | - Hong Liu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475001, China
| | - Shuangping Liu
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, 511458, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zhifeng Zhang
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, 511458, China
| | - Xiong Li
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, 511458, China
| | - Jian Mao
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, 511458, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
12
|
Mulè S, Ferrari S, Rosso G, Brovero A, Botta M, Congiusta A, Galla R, Molinari C, Uberti F. The Combined Antioxidant Effects of N-Acetylcysteine, Vitamin D3, and Glutathione from the Intestinal-Neuronal In Vitro Model. Foods 2024; 13:774. [PMID: 38472887 DOI: 10.3390/foods13050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic oxidative stress has been consistently linked to age-related diseases, conditions, and degenerative syndromes. Specifically, the brain is the organ that significantly contributes to declining quality of life in ageing. Since the body cannot completely counteract the detrimental effects of oxidative stress, nutraceuticals' antioxidant properties have received significant attention in recent years. This study assesses the potential health benefits of a novel combination of glutathione, vitamin D3, and N-acetylcysteine. To examine the combination's absorption and biodistribution and confirm that it has no harmful effects, the bioavailability of the mixture was first evaluated in a 3D model that mimicked the intestinal barrier. Further analyses on the blood-brain barrier was conducted to determine the antioxidant effects of the combination in the nervous system. The results show that the combination reaches the target and successfully crosses the blood-brain and intestinal barriers, demonstrating enhanced advantages on the neurological system, such as a reduction (about 10.5%) in inflammation and enhancement in cell myelination (about 20.4%) and brain tropism (about 18.1%) compared to the control. The results support the cooperative effect of N-acetylcysteine, vitamin D3, and glutathione to achieve multiple health benefits, outlining the possibility of an alternative nutraceutical approach.
Collapse
Affiliation(s)
- Simone Mulè
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
| | - Sara Ferrari
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
| | - Giorgia Rosso
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
| | - Arianna Brovero
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Mattia Botta
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
| | - Alessia Congiusta
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
- Noivita S.r.l.s., Spin Off of University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Claudio Molinari
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy
| |
Collapse
|
13
|
Carota G, Distefano A, Spampinato M, Giallongo C, Broggi G, Longhitano L, Palumbo GA, Parenti R, Caltabiano R, Giallongo S, Di Rosa M, Polosa R, Bramanti V, Vicario N, Li Volti G, Tibullo D. Correction: Carota et al. Neuroprotective Role of α-Lipoic Acid in Iron-Overload-Mediated Toxicity and Inflammation in In Vitro and In Vivo Models. Antioxidants 2022, 11, 1596. Antioxidants (Basel) 2023; 12:2099. [PMID: 38136252 PMCID: PMC10740845 DOI: 10.3390/antiox12122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
In the original publication [...].
Collapse
Affiliation(s)
- Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (A.D.); (M.S.); (L.L.); (R.P.); (S.G.); (M.D.R.); (D.T.)
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (A.D.); (M.S.); (L.L.); (R.P.); (S.G.); (M.D.R.); (D.T.)
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (A.D.); (M.S.); (L.L.); (R.P.); (S.G.); (M.D.R.); (D.T.)
| | - Cesarina Giallongo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.G.); (G.B.); (G.A.P.); (R.C.)
| | - Giuseppe Broggi
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.G.); (G.B.); (G.A.P.); (R.C.)
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (A.D.); (M.S.); (L.L.); (R.P.); (S.G.); (M.D.R.); (D.T.)
| | - Giuseppe A. Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.G.); (G.B.); (G.A.P.); (R.C.)
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (A.D.); (M.S.); (L.L.); (R.P.); (S.G.); (M.D.R.); (D.T.)
| | - Rosario Caltabiano
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.G.); (G.B.); (G.A.P.); (R.C.)
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (A.D.); (M.S.); (L.L.); (R.P.); (S.G.); (M.D.R.); (D.T.)
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (A.D.); (M.S.); (L.L.); (R.P.); (S.G.); (M.D.R.); (D.T.)
| | - Riccardo Polosa
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Vincenzo Bramanti
- Division of Clinical Pathology, “Giovanni Paolo II” Hospital-A.S.P. Ragusa, 97100 Ragusa, Italy;
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (A.D.); (M.S.); (L.L.); (R.P.); (S.G.); (M.D.R.); (D.T.)
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (A.D.); (M.S.); (L.L.); (R.P.); (S.G.); (M.D.R.); (D.T.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (A.D.); (M.S.); (L.L.); (R.P.); (S.G.); (M.D.R.); (D.T.)
| |
Collapse
|
14
|
D'Aprile S, Denaro S, Pavone AM, Giallongo S, Giallongo C, Distefano A, Salvatorelli L, Torrisi F, Giuffrida R, Forte S, Tibullo D, Li Volti G, Magro G, Vicario N, Parenti R. Anaplastic thyroid cancer cells reduce CD71 levels to increase iron overload tolerance. J Transl Med 2023; 21:780. [PMID: 37924062 PMCID: PMC10625232 DOI: 10.1186/s12967-023-04664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Follicular thyroid cancer (FTC) is a prevalent form of differentiated thyroid cancer, whereas anaplastic thyroid cancer (ATC) represents a rare, fast-growing, undifferentiated, and highly aggressive tumor, posing significant challenges for eradication. Ferroptosis, an iron-dependent cell death mechanism driven by the excessive production of reactive oxygen species and subsequent lipid peroxidation, emerges as a promising therapeutic strategy for cancer. It has been observed that many cancer cells exhibit sensitivity to ferroptosis, while some other histotypes appear to be resistant, by counteracting the metabolic changes and oxidative stress induced by iron overload. METHODS Here we used human biopsies and in vitro approaches to analyse the effects of iron-dependent cell death. We assessed cell proliferation and viability through MTT turnover, clonogenic assays, and cytofluorimetric-assisted analysis. Lipid peroxidation assay and western blot were used to analyse molecular mechanisms underlying ferroptosis modulation. Two distinct thyroid cancer cell lines, FTC-133 (follicular) and 8505C (anaplastic), were utilized. These cell lines were exposed to ferroptosis inducers, Erastin and RSL3, while simulating an iron overload condition using ferric ammonium citrate. RESULTS Our evidence suggests that FTC-133 cell line, exposed to iron overload, reduced their viability and showed increased ferroptosis. In contrast, the 8505C cell line seems to better tolerate ferroptosis, responding by modulating CD71, which is involved in iron internalization and seems to have a role in resistance to iron overload and consequently in maintaining cell viability. CONCLUSIONS The differential tolerance to ferroptosis observed in our study may hold clinical implications, particularly in addressing the unmet therapeutic needs associated with ATC treatment, where resistance to ferroptosis appears more pronounced compared to FTC.
Collapse
Affiliation(s)
- Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Simona Denaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Anna Maria Pavone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, University of Catania, 95123, Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, University of Catania, 95123, Catania, Italy
| | - Filippo Torrisi
- Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | | | | | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, University of Catania, 95123, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| |
Collapse
|
15
|
Kleniewska P, Pawliczak R. Alpha-lipoic acid, apocynin or probiotics influence glutathione status and selected inflammatory parameters in C57/BL6 mice when combined with a low-fat diet. Pharmacol Rep 2023; 75:1166-1176. [PMID: 37730940 PMCID: PMC10539412 DOI: 10.1007/s43440-023-00527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The aim of the study was to determine the potential of a low-fat diet (LFD) to protect against oxidative and inflammatory damage in the course of asthma and obesity when combined with antioxidants (alpha-lipoic acid-ALA, apocynin-APO) or a probiotic (P) (Lactobacillus casei). METHODS The experiments were carried out on ten groups of male C57/BL6 mice that were fed standard fat (SFD), low-fat (LFD), or high-fat (HFD) diets. Ovalbumin (OVA, administered subcutaneously and by inhalation) was used to sensitize the animals. IL-1α, IL-10, eotaxin-1, leptin, and TNF-α concentrations were examined in blood, while total glutathione (GSHt), reduced glutathione (GSH), oxidized glutathione (GSSG) and -SH groups were measured in lung homogenates. RESULTS LFD in combination with the analyzed compounds (APO, P, ALA) significantly decreased the concentration of IL-1α compared to the OVA + HFD group (p < 0.01; p = 0.025; p = 0.002, respectively). Similarly, the treated mice demonstrated lower eotaxin-1 concentrations compared to the HFD group (p < 0.001). Moreover, supplementation of LFD with probiotics significantly increased the concentration of IL-10 vs. controls (p < 0.001) and vs. untreated OVA-sensitized and challenged/obese mice (p < 0.001). Animals administered APO/ALA with LFD displayed a significant decrease in TNF-α concentration compared to OVA + HFD mice (p = 0.013; p = 0.002 respectively). Those treated with ALA displayed significantly improved GSH levels (p = 0.035) compared to OVA + HFD mice. CONCLUSIONS Supplementation of the tested compounds with LFD appears to have a positive influence on the glutathione redox status of pulmonary tissues and selected inflammatory parameters in mouse blood.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9 (Bldg 2 Rm 177), 90-752, Łódź, Poland.
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9 (Bldg 2 Rm 177), 90-752, Łódź, Poland
| |
Collapse
|
16
|
Kontoghiorghes GJ. Iron Load Toxicity in Medicine: From Molecular and Cellular Aspects to Clinical Implications. Int J Mol Sci 2023; 24:12928. [PMID: 37629109 PMCID: PMC10454416 DOI: 10.3390/ijms241612928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is essential for all organisms and cells. Diseases of iron imbalance affect billions of patients, including those with iron overload and other forms of iron toxicity. Excess iron load is an adverse prognostic factor for all diseases and can cause serious organ damage and fatalities following chronic red blood cell transfusions in patients of many conditions, including hemoglobinopathies, myelodyspasia, and hematopoietic stem cell transplantation. Similar toxicity of excess body iron load but at a slower rate of disease progression is found in idiopathic haemochromatosis patients. Excess iron deposition in different regions of the brain with suspected toxicity has been identified by MRI T2* and similar methods in many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Based on its role as the major biological catalyst of free radical reactions and the Fenton reaction, iron has also been implicated in all diseases associated with free radical pathology and tissue damage. Furthermore, the recent discovery of ferroptosis, which is a cell death program based on free radical generation by iron and cell membrane lipid oxidation, sparked thousands of investigations and the association of iron with cardiac, kidney, liver, and many other diseases, including cancer and infections. The toxicity implications of iron in a labile, non-protein bound form and its complexes with dietary molecules such as vitamin C and drugs such as doxorubicin and other xenobiotic molecules in relation to carcinogenesis and other forms of toxicity are also discussed. In each case and form of iron toxicity, the mechanistic insights, diagnostic criteria, and molecular interactions are essential for the design of new and effective therapeutic interventions and of future targeted therapeutic strategies. In particular, this approach has been successful for the treatment of most iron loading conditions and especially for the transition of thalassemia from a fatal to a chronic disease due to new therapeutic protocols resulting in the complete elimination of iron overload and of iron toxicity.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3, Ammochostou Street, Limassol 3021, Cyprus
| |
Collapse
|
17
|
Yang S, Yin X, Wang J, Li H, Shen H, Sun Q, Li X. MIC19 Exerts Neuroprotective Role via Maintaining the Mitochondrial Structure in a Rat Model of Intracerebral Hemorrhage. Int J Mol Sci 2023; 24:11553. [PMID: 37511310 PMCID: PMC10380515 DOI: 10.3390/ijms241411553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
As an essential constituent of the mitochondrial contact site and cristae organization system (MICOS), MIC19 plays a crucial role in maintaining the stability of mitochondrial function and microstructure. However, the mechanisms and functions of MIC19 in intracerebral hemorrhage (ICH) remain unknown and need to be investigated. Sprague Dawley (SD) rats injected with autologous blood obtained from the caudal artery, and cultured neurons exposed to oxygen hemoglobin (OxyHb) were used to establish and emulate the ICH model in vivo and in vitro. Lentiviral vector encoding MIC19 or MIC19 short hairpin ribonucleic acid (shRNA) was constructed and administered to rats by intracerebroventricular injection to overexpress or knock down MIC19, respectively. First, MIC19 protein levels were increased after ICH modeling. After virus transfection and subsequent ICH modeling, we observed that overexpression of MIC19 could mitigate cell apoptosis and neuronal death, as well as abnormalities in mitochondrial structure and function, oxidative stress within mitochondria, and neurobehavioral deficits in rats following ICH. Conversely, knockdown of MIC19 had the opposite effect. Moreover, we found that the connection between MIC19 and SAM50 was disrupted after ICH, which may be a reason for the impairment of the mitochondrial structure after ICH. In conclusion, MIC19 exerts a protective role in the subsequent injury induced by ICH. The investigation of MIC19 may offer clinicians novel therapeutic insights for patients afflicted with ICH.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xulong Yin
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiahe Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| |
Collapse
|