1
|
Lee CC, Fan H, Tsopmo A, Regenstein JM, Ashaolu TJ. Plant-based antioxidant peptides: impact on oxidative stress and gut microbiota. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40219794 DOI: 10.1080/10408398.2025.2490270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Plant-based peptides can be obtained from natural and climate-friendly sources. These peptides show various bioactivities including antioxidant activity. Oxidative stress has an impact on the gut microbiota causing inflammation, insulin resistance, osteoporosis, cancer, and several chronic diseases like type 2 diabetes, arthritis, hypertension, and atherosclerosis. Therefore, antioxidant peptides may significantly affect oxidative stress as a potential alternative to conventional medication. The production of antioxidant peptides from plant-based protein sources through conventional and innovative approaches may provide promising strategies to improve gut microbiota. Recent studies in plant-based antioxidant peptides (PBAP) focus on their advanced identification and characterization techniques, structure-activity relationship, improvement of extraction and purification, cellular and molecular mechanisms, specific health applications in preventing and managing conditions with gut microbiota, and commercial applications in nutraceuticals. Short-chain fatty acids and reactive sulfur species are specific gut-derived metabolites that can improve metabolic function by modulating oxidative stress and the immune system. This review highlights the influence of food oxidants on the gut microbiota and PBAP-induced modulation of gut microbiota. Moreover, the production of PBAP and the challenges in their application will be discussed.
Collapse
Affiliation(s)
- Chi Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
- Department of Food Technology and Nutrition, Faculty of Technologies, Klaipeda State University of Applied Sciences, Klaipeda, Lithuania
| | - Hongbing Fan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Canada
| | - Joe M Regenstein
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
2
|
Hao MY, Li HJ, Han HS, Chu T, Wang YW, Si WR, Jiang QY, Wu DD. Recent advances in the role of gasotransmitters in necroptosis. Apoptosis 2025; 30:616-635. [PMID: 39833633 DOI: 10.1007/s10495-024-02057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Necroptosis is a finely regulated programmed cell death process involving complex molecular mechanisms and signal transduction networks. Among them, receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein are the key molecules regulating this process. In recent years, gasotransmitters such as nitric oxide, carbon monoxide and hydrogen sulfide have been suggested to play a regulatory role in necroptosis. This paper reviews the evidence that these gasotransmitters are involved in the regulation of necroptosis by influencing the production of reactive oxygen species, regulating the modification of S subunits of RIPK1 and RIPK3, regulating inflammatory mediators, and signal transduction. In addition, this review explores the potential therapeutic applications of these gasotransmitters in pathological conditions such as cardiovascular disease and ischemia-reperfusion injury. Although some studies have revealed the important role of gasotransmitters in necroptosis, the specific mechanism of action is still not fully understood. Future research is needed to further elucidate the molecular mechanisms of gasotransmitters in precisely regulating necroptosis, which will help develop new therapeutic strategies to prevent and treat related diseases.
Collapse
Affiliation(s)
- Meng-Yuan Hao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hong-Jie Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang-Shen Han
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Wei-Rong Si
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
3
|
Munteanu C, Galaction AI, Onose G, Turnea M, Rotariu M. Hydrogen Sulfide (H 2S- or H 2S n-Polysulfides) in Synaptic Plasticity: Modulation of NMDA Receptors and Neurotransmitter Release in Learning and Memory. Int J Mol Sci 2025; 26:3131. [PMID: 40243915 PMCID: PMC11988931 DOI: 10.3390/ijms26073131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Hydrogen sulfide (H2S) has emerged as a pivotal gaseous transmitter in the central nervous system, influencing synaptic plasticity, learning, and memory by modulating various molecular pathways. This review examines recent evidence regarding how H2S regulates NMDA receptor function and neurotransmitter release in neuronal circuits. By synthesizing findings from animal and cellular models, we investigate the impacts of enzymatic H2S production and exogenous H2S on excitatory synaptic currents, long-term potentiation, and intracellular calcium signaling. Data suggest that H2S interacts directly with NMDA receptor subunits, altering receptor function and modulating neuronal excitability. Simultaneously, H2S promotes the release of neurotransmitters such as glutamate and GABA, shaping synaptic dynamics and plasticity. Furthermore, reports indicate that disruptions in H2S metabolism contribute to cognitive impairments and neurodegenerative disorders, underscoring the potential therapeutic value of targeting H2S-mediated pathways. Although the precise mechanisms of H2S-induced changes in synaptic strength remain elusive, a growing body of evidence positions H2S as a significant regulator of memory formation processes. This review calls for more rigorous exploration into the molecular underpinnings of H2S in synaptic plasticity, paving the way for novel pharmacological interventions in cognitive dysfunction.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| |
Collapse
|
4
|
Munteanu C, Galaction AI, Onose G, Turnea M, Rotariu M. The Janus Face of Oxidative Stress and Hydrogen Sulfide: Insights into Neurodegenerative Disease Pathogenesis. Antioxidants (Basel) 2025; 14:360. [PMID: 40227410 PMCID: PMC11939184 DOI: 10.3390/antiox14030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/09/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Oxidative stress plays an essential role in neurodegenerative pathophysiology, acting as both a critical signaling mediator and a driver of neuronal damage. Hydrogen sulfide (H2S), a versatile gasotransmitter, exhibits a similarly "Janus-faced" nature, acting as a potent antioxidant and cytoprotective molecule at physiological concentrations, but becoming detrimental when dysregulated. This review explores the dual roles of oxidative stress and H2S in normal cellular physiology and pathophysiology, focusing on neurodegenerative disease progression. We highlight potential therapeutic opportunities for targeting redox and sulfur-based signaling systems in neurodegenerative diseases by elucidating the intricate balance between these opposing forces.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| |
Collapse
|
5
|
Sufian A, Bhattacherjee D, Barman P, Kesarwani R, Das S, Bhabak KP. Synthetic organic polysulfanes as H 2S donors and anticancer agents. Chem Commun (Camb) 2025; 61:4647-4661. [PMID: 40017264 DOI: 10.1039/d5cc00252d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Organic polysulfanes are one of the major classes of organic sulfur compounds (OSCs) with pharmaceutical and medicinal implications for various diseases. The biological impacts of organic polysulfanes, particularly their role as hydrogen sulfide (H2S) donors, have gained significant attention in scientific research over the past two decades. Notably, H2S has been recognized for its multiple bio-potentials, including its ability to inhibit the proliferation of cancer cells. The feasible reaction of the polysulfane unit of organopolysulfanes with nucleophilic biothiols leads to the sustained release of H2S. The released H2S from various organopolysulfanes opens up new therapeutic windows for utilizing them as potent anticancer and chemopreventive agents for treating different organ-specific cancers. Despite these promising therapeutic implications, a comprehensive understanding of the synthesis and capability of various synthetic organopolysulfanes to release H2S, along with the implications of the released H2S for their pharmacological potentials, remain elusive. Therefore, this review aims to fill the gap by exploring the synthesis and H2S donating capacities of various synthetic organopolysulfanes and their pharmacological benefits for cancer treatment. The insights provided here will help correlate synthetic organopolysulfanes as H2S donors with their therapeutic potentials, offering a clearer perspective on their roles in drug development.
Collapse
Affiliation(s)
- Abu Sufian
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Debojit Bhattacherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Pallavi Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Rahul Kesarwani
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Samanaway Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
6
|
Gupta SM, Mohite PS, Chakrapani H. Mercapto-NSAIDs generate a non-steroidal anti-inflammatory drug (NSAID) and hydrogen sulfide. Chem Sci 2025; 16:4695-4702. [PMID: 39958646 PMCID: PMC11826334 DOI: 10.1039/d4sc08525f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/04/2025] [Indexed: 02/18/2025] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the frontline treatments for inflammation and pain. Hydrogen sulfide (H2S) and related persulfide (RS-SH) are important mediators of antioxidant response and protect cells from oxidative stress. Hybrids of these pharmacological agents have shown promise in clinical trials and are superior to the parent NSAID. Here, we report a new class of NSAID-H2S hybrids, where a strategic placement of a sulfhydryl group adjacent to a carbonyl of a NSAID facilitates the enzymatic generation of H2S. We show that α-mercapto-nabumetone, a derivative of the clinical drug nabumetone, is a substrate for 3-mercaptopyruvate sulfurtransferase (3-MST), an enzyme involved in H2S biosynthesis. The key step of 3-MST catalysis is the cleavage of a C-S bond adjacent to a carbonyl group, which generates an enolate and 3-MST persulfide, which in turn is cleaved under reducing conditions to generate H2S. Guided by a molecular docking study with 3-MST, we prepared two mercapto-nabumetone derivatives, protected as their thioacetates. In the presence of 3-MST, both mercapto-nabumetone derivatives generated H2S and the NSAID in a nearly quantitative yield, produced glutathione persulfide (GS-SH), an important mediator of cellular antioxidant response, and permeated cells to generate H2S. Lastly, to gain insights into the scope of this strategy, we prepared mercapto-NSAID derivatives containing a carboxylic acid. We found that the propensity to generate H2S depended on the nature of the enol that is produced during the transformation of the mercapto-NSAID into the parent NSAID. This offers new insights into 3-MST catalysis and how reaction outcomes can be modulated by the keto-enol equilibrium. Taken together, the atom economical transformation of a clinical NSAID with one strategically placed sulfhydryl group to generate H2S presents new opportunities to enhance the properties of NSAIDs through participation in endogenous H2S biosynthesis.
Collapse
Affiliation(s)
- Simran M Gupta
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Pratiksha S Mohite
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| |
Collapse
|
7
|
Lv J, Wu T, Xue J, Shen C, Gao W, Chen X, Guo Y, Liu M, Yu J, Huang X, Zheng B. ASB1 engages with ELOB to facilitate SQOR ubiquitination and H 2S homeostasis during spermiogenesis. Redox Biol 2025; 79:103484. [PMID: 39733518 PMCID: PMC11743861 DOI: 10.1016/j.redox.2024.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024] Open
Abstract
Male infertility, frequently driven by oxidative stress, impacts half of infertile couples globally. Despite its significance, the precise mechanisms governing this process remain elusive. In this study, we demonstrate that ASB1, the substrate recognition subunit of a ubiquitin ligase, is highly expressed in the mouse testis. Mice lacking the Asb1 gene exhibit severe fertility impairment, characterized by oligoasthenoteratozoospermia. Subsequent investigations unveiled that Asb1 knockout (Asb1-KO) mice encountered excessive oxidative stress and decreased hydrogen sulfide (H2S) levels in their testes, and severe sperm DNA damage. Notably, the compromised fertility and sperm quality in Asb1-KO mice was significantly ameliorated by administering NaHS, a H2S donor. Mechanistically, ASB1 interacts with ELOB to induce the instability of sulfide-quinone oxidoreductase (SQOR) by enhancing its K48-linked ubiquitination on residues K207 and K344, consequently triggering proteasomal degradation. This process is crucial for preserving H2S homeostasis and redox balance. Overall, our findings offer valuable insights into the role of ASB1 during spermiogenesis and propose H2S supplementation as a promising therapeutic approach for oxidative stress-related male infertility.
Collapse
Affiliation(s)
- Jinxing Lv
- Center for Reproduction, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, 215124, China.
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jiajia Xue
- Center for Reproduction, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, 215124, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Wenxin Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xia Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China.
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
8
|
Dandić A, Samardžić M, Budetić M, Panić ID, Drenjančević I, Kolobarić N, Mikle G, Kovács B, Széchenyi A. Design and Characterization of Novel Naphthalimide Fluorescent Probe for H 2S Detection in Human Serum. J Fluoresc 2024:10.1007/s10895-024-04071-3. [PMID: 39714555 DOI: 10.1007/s10895-024-04071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024]
Abstract
In this work, a novel fluorescent probe (compound 2) based on the Intramolecular charge transfer (ICT) mechanism was designed and successfully applied to determine H2S in human serum. Fluorophore 1,8-naphthalimide was chosen, while the azide group was the recognition group for H2S determination. By introducing p-toluidine moiety on the imide part of the molecule, a donor-acceptor (D-A) conjugated system was formed. Prepared compound 2 was characterized using 1H, 13C NMR spectroscopy, and elemental analysis. Fluorescence spectra measurements were carried out, and several influences on fluorescence intensity were investigated, including pH, time dependence, selective response, and influence of H2S concentration. Conducted experiments, including the calculated detection limit of the prepared fluorescent probe, which was found to be 0.085 µmol·L- 1, showing that compound 2 could be applied for H2S detection in human serum and could detect low micromolar concentrations of H2S. Finally, compound 2 was successfully applied to detect H2S in a human serum sample, whereby the concentration of H2S was 17.2 µmol·L- 1. The accuracy of the H2S determination was confirmed with the standard addition method.
Collapse
Affiliation(s)
- Andrea Dandić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia
| | - Mirela Samardžić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia
| | - Mateja Budetić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia
| | - Izabella Doris Panić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek,, J. J. Strossmayer University of Osijek, J. Huttlera 4, Osijek, 31000, Croatia
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Osijek,, J. J. Strossmayer University of Osijek, J. Huttlera 4, Osijek, 31000, Croatia
| | - Gábor Mikle
- Department of General and Inorganic Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs, 7624, Hungary
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary
- Research Group for Selective Chemical Syntheses, HUN-REN-PTE, Ifjúság útja 6., H-7624, Pécs, Hungary
| | - Barna Kovács
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Rokus utca 4, Pécs, 7624, Hungary
| | - Aleksandar Széchenyi
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia.
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary.
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Rokus utca 4, Pécs, 7624, Hungary.
| |
Collapse
|
9
|
Munteanu C, Onose G, Rotariu M, Poștaru M, Turnea M, Galaction AI. Role of Microbiota-Derived Hydrogen Sulfide (H 2S) in Modulating the Gut-Brain Axis: Implications for Alzheimer's and Parkinson's Disease Pathogenesis. Biomedicines 2024; 12:2670. [PMID: 39767577 PMCID: PMC11727295 DOI: 10.3390/biomedicines12122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Microbiota-derived hydrogen sulfide (H2S) plays a crucial role in modulating the gut-brain axis, with significant implications for neurodegenerative diseases such as Alzheimer's and Parkinson's. H2S is produced by sulfate-reducing bacteria in the gut and acts as a critical signaling molecule influencing brain health via various pathways, including regulating inflammation, oxidative stress, and immune responses. H2S maintains gut barrier integrity at physiological levels and prevents systemic inflammation, which could impact neuroinflammation. However, as H2S has a dual role or a Janus face, excessive H2S production, often resulting from gut dysbiosis, can compromise the intestinal barrier and exacerbate neurodegenerative processes by promoting neuroinflammation and glial cell dysfunction. This imbalance is linked to the early pathogenesis of Alzheimer's and Parkinson's diseases, where the overproduction of H2S exacerbates beta-amyloid deposition, tau hyperphosphorylation, and alpha-synuclein aggregation, driving neuroinflammatory responses and neuronal damage. Targeting gut microbiota to restore H2S homeostasis through dietary interventions, probiotics, prebiotics, and fecal microbiota transplantation presents a promising therapeutic approach. By rebalancing the microbiota-derived H2S, these strategies may mitigate neurodegeneration and offer novel treatments for Alzheimer's and Parkinson's diseases, underscoring the critical role of the gut-brain axis in maintaining central nervous system health.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| |
Collapse
|
10
|
Munteanu C, Onose G, Poștaru M, Turnea M, Rotariu M, Galaction AI. Hydrogen Sulfide and Gut Microbiota: Their Synergistic Role in Modulating Sirtuin Activity and Potential Therapeutic Implications for Neurodegenerative Diseases. Pharmaceuticals (Basel) 2024; 17:1480. [PMID: 39598392 PMCID: PMC11597776 DOI: 10.3390/ph17111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
The intricate relationship between hydrogen sulfide (H2S), gut microbiota, and sirtuins (SIRTs) can be seen as a paradigm axis in maintaining cellular homeostasis, modulating oxidative stress, and promoting mitochondrial health, which together play a pivotal role in aging and neurodegenerative diseases. H2S, a gasotransmitter synthesized endogenously and by specific gut microbiota, acts as a potent modulator of mitochondrial function and oxidative stress, protecting against cellular damage. Through sulfate-reducing bacteria, gut microbiota influences systemic H2S levels, creating a link between gut health and metabolic processes. Dysbiosis, or an imbalance in microbial populations, can alter H2S production, impair mitochondrial function, increase oxidative stress, and heighten inflammation, all contributing factors in neurodegenerative diseases such as Alzheimer's and Parkinson's. Sirtuins, particularly SIRT1 and SIRT3, are NAD+-dependent deacetylases that regulate mitochondrial biogenesis, antioxidant defense, and inflammation. H2S enhances sirtuin activity through post-translational modifications, such as sulfhydration, which activate sirtuin pathways essential for mitigating oxidative damage, reducing inflammation, and promoting cellular longevity. SIRT1, for example, deacetylates NF-κB, reducing pro-inflammatory cytokine expression, while SIRT3 modulates key mitochondrial enzymes to improve energy metabolism and detoxify reactive oxygen species (ROS). This synergy between H2S and sirtuins is profoundly influenced by the gut microbiota, which modulates systemic H2S levels and, in turn, impacts sirtuin activation. The gut microbiota-H2S-sirtuin axis is also essential in regulating neuroinflammation, which plays a central role in the pathogenesis of neurodegenerative diseases. Pharmacological interventions, including H2S donors and sirtuin-activating compounds (STACs), promise to improve these pathways synergistically, providing a novel therapeutic approach for neurodegenerative conditions. This suggests that maintaining gut microbiota diversity and promoting optimal H2S levels can have far-reaching effects on brain health.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| |
Collapse
|
11
|
Dev W, Sultana F, He S, Waqas M, Hu D, Aminu IM, Geng X, Du X. An insight into heat stress response and adaptive mechanism in cotton. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154324. [PMID: 39167998 DOI: 10.1016/j.jplph.2024.154324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
The growing worldwide population is driving up demand for cotton fibers, but production is hampered by unpredictable temperature rises caused by shifting climatic conditions. Numerous research based on breeding and genomics have been conducted to increase the production of cotton in environments with high and low-temperature stress. High temperature (HT) is a major environmental stressor with global consequences, influencing several aspects of cotton plant growth and metabolism. Heat stress-induced physiological and biochemical changes are research topics, and molecular techniques are used to improve cotton plants' heat tolerance. To preserve internal balance, heat stress activates various stress-responsive processes, including repairing damaged proteins and membranes, through various molecular networks. Recent research has investigated the diverse reactions of cotton cultivars to temperature stress, indicating that cotton plant adaptation mechanisms include the accumulation of sugars, proline, phenolics, flavonoids, and heat shock proteins. To overcome the obstacles caused by heat stress, it is crucial to develop and choose heat-tolerant cotton cultivars. Food security and sustainable agriculture depend on the application of genetic, agronomic, and, biotechnological methods to lessen the impacts of heat stress on cotton crops. Cotton producers and the textile industry both benefit from increased heat tolerance. Future studies should examine the developmental responses of cotton at different growth stages, emphasize the significance of breeding heat-tolerant cultivars, and assess the biochemical, physiological, and molecular pathways involved in seed germination under high temperatures. In a nutshell, a concentrated effort is required to raise cotton's heat tolerance due to the rising global temperatures and the rise in the frequency of extreme weather occurrences. Furthermore, emerging advances in sequencing technologies have made major progress toward successfully se sequencing the complex cotton genome.
Collapse
Affiliation(s)
- Washu Dev
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fahmida Sultana
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Muhammad Waqas
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China
| | - Isah Mansur Aminu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China.
| |
Collapse
|
12
|
Zhang Z, Zhang H, Shi J, Wang Z, Liang Y, Yu J, Wang H, Song Z, Tang Z, Zhang D, Yao J. Isorhamnetin Alleviates Renal Fibrosis by Inducing Endogenous Hydrogen Sulfide and Regulating Thiol-Based Redox State in Obstructed Kidneys. Biomolecules 2024; 14:1233. [PMID: 39456167 PMCID: PMC11506782 DOI: 10.3390/biom14101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Isorhamnetin (ISO) is an active flavonoid compound mainly isolated from the fruits of Hippophae rhamnoides L. and the leaves of Ginkgo biloba L. Previous studies have revealed the antifibrotic action of ISO in the liver and lungs, although its potential protective effects against renal fibrosis and the underlying mechanisms are still poorly understood. Given that many actions of ISO could be similarly attained by hydrogen sulfide (H2S), we speculated that ISO may work through the induction of endogenous H2S. To test the hypothesis, we established the unilateral ureteral obstruction (UUO) renal fibrosis rat model and transforming growth factor-β1(TGF-β1)-induced fibrosis in cultured renal tubular cells. ISO treatment inhibited epithelial-mesenchymal transition (EMT) formation, decreased extracellular matrix (ECM) deposition, and relieved renal fibrosis. Further analysis revealed that ISO stimulated the expression of the H2S-synthesizing enzyme cystathionine lyase (CSE) and cystathionine beta-synthase (CBS), and promoted H2S production in vivo and in vitro. The elevated H2S attenuated oxidative stress and elevated the thiol level. It induced Keap1 sulfhydration, disrupted Keap1-Nrf2 interaction, and promoted the entry of Nrf2 into the nucleus. Finally, we found that circulating H2S mainly derived from the liver, and not the kidney. Collectively, our study revealed that ISO alleviated renal fibrosis by inducing endogenous H2S and regulating Keap1-Nrf2 interaction through sulfhydration of Keap1. Endogenous H2S could be an important mediator underlying the pharmacological actions of ISO. Due to the multifunctional properties of H2S, the H2S-inducing nature of ISO could be exploited to treat various diseases.
Collapse
Affiliation(s)
- Zhen Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Z.); (H.Z.); (J.S.); (Z.W.); (Y.L.); (J.Y.); (Z.S.); (Z.T.)
| | - Haiyan Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Z.); (H.Z.); (J.S.); (Z.W.); (Y.L.); (J.Y.); (Z.S.); (Z.T.)
| | - Jianyu Shi
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Z.); (H.Z.); (J.S.); (Z.W.); (Y.L.); (J.Y.); (Z.S.); (Z.T.)
| | - Zheng Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Z.); (H.Z.); (J.S.); (Z.W.); (Y.L.); (J.Y.); (Z.S.); (Z.T.)
| | - Yanni Liang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Z.); (H.Z.); (J.S.); (Z.W.); (Y.L.); (J.Y.); (Z.S.); (Z.T.)
| | - Jingao Yu
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Z.); (H.Z.); (J.S.); (Z.W.); (Y.L.); (J.Y.); (Z.S.); (Z.T.)
| | - Hongbo Wang
- Department of the Thyroid and Breast Surgery, Xianyang Central Hospital, Xianyang 712000, China;
| | - Zhongxing Song
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Z.); (H.Z.); (J.S.); (Z.W.); (Y.L.); (J.Y.); (Z.S.); (Z.T.)
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Z.); (H.Z.); (J.S.); (Z.W.); (Y.L.); (J.Y.); (Z.S.); (Z.T.)
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongbo Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Z.); (H.Z.); (J.S.); (Z.W.); (Y.L.); (J.Y.); (Z.S.); (Z.T.)
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| |
Collapse
|
13
|
Munteanu C, Popescu C, Vlădulescu-Trandafir AI, Onose G. Signaling Paradigms of H 2S-Induced Vasodilation: A Comprehensive Review. Antioxidants (Basel) 2024; 13:1158. [PMID: 39456412 PMCID: PMC11505308 DOI: 10.3390/antiox13101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Hydrogen sulfide (H2S), a gas traditionally considered toxic, is now recognized as a vital endogenous signaling molecule with a complex physiology. This comprehensive study encompasses a systematic literature review that explores the intricate mechanisms underlying H2S-induced vasodilation. The vasodilatory effects of H2S are primarily mediated by activating ATP-sensitive potassium (K_ATP) channels, leading to membrane hyperpolarization and subsequent relaxation of vascular smooth muscle cells (VSMCs). Additionally, H2S inhibits L-type calcium channels, reducing calcium influx and diminishing VSMC contraction. Beyond ion channel modulation, H2S profoundly impacts cyclic nucleotide signaling pathways. It stimulates soluble guanylyl cyclase (sGC), increasing the production of cyclic guanosine monophosphate (cGMP). Elevated cGMP levels activate protein kinase G (PKG), which phosphorylates downstream targets like vasodilator-stimulated phosphoprotein (VASP) and promotes smooth muscle relaxation. The synergy between H2S and nitric oxide (NO) signaling further amplifies vasodilation. H2S enhances NO bioavailability by inhibiting its degradation and stimulating endothelial nitric oxide synthase (eNOS) activity, increasing cGMP levels and potent vasodilatory responses. Protein sulfhydration, a post-translational modification, plays a crucial role in cell signaling. H2S S-sulfurates oxidized cysteine residues, while polysulfides (H2Sn) are responsible for S-sulfurating reduced cysteine residues. Sulfhydration of key proteins like K_ATP channels and sGC enhances their activity, contributing to the overall vasodilatory effect. Furthermore, H2S interaction with endothelium-derived hyperpolarizing factor (EDHF) pathways adds another layer to its vasodilatory mechanism. By enhancing EDHF activity, H2S facilitates the hyperpolarization and relaxation of VSMCs through gap junctions between endothelial cells and VSMCs. Recent findings suggest that H2S can also modulate transient receptor potential (TRP) channels, particularly TRPV4 channels, in endothelial cells. Activating these channels by H2S promotes calcium entry, stimulating the production of vasodilatory agents like NO and prostacyclin, thereby regulating vascular tone. The comprehensive understanding of H2S-induced vasodilation mechanisms highlights its therapeutic potential. The multifaceted approach of H2S in modulating vascular tone presents a promising strategy for developing novel treatments for hypertension, ischemic conditions, and other vascular disorders. The interaction of H2S with ion channels, cyclic nucleotide signaling, NO pathways, ROS (Reactive Oxygen Species) scavenging, protein sulfhydration, and EDHF underscores its complexity and therapeutic relevance. In conclusion, the intricate signaling paradigms of H2S-induced vasodilation offer valuable insights into its physiological role and therapeutic potential, promising innovative approaches for managing various vascular diseases through the modulation of vascular tone.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.V.-T.); (G.O.)
| | - Cristina Popescu
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.V.-T.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Andreea-Iulia Vlădulescu-Trandafir
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.V.-T.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.V.-T.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| |
Collapse
|
14
|
Huang J, Tong Y, Wang S, Tagawa T, Seki Y, Ma S, Zhang Z, Cao T, Kobori H, Suzuki K. 8-Week Kaempferia parviflora Extract Administration Improves Submaximal Exercise Capacity in Mice by Enhancing Skeletal Muscle Antioxidant Gene Expression and Plasma Antioxidant Capacity. Antioxidants (Basel) 2024; 13:1147. [PMID: 39334806 PMCID: PMC11428225 DOI: 10.3390/antiox13091147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Black ginger (Kaempferia parviflora) extract (KPE) is extracted from a ginger family plant grown in Thailand. The polyphenolic components have potential antioxidant effects and have been reported to enhance exercise performance. However, the impact of long-term KPE administration combined with long-term training on the endurance exercise performance of healthy individuals has not been fully studied. In this study, a healthy mouse model was used to investigate the effects of 8 weeks KPE administration and voluntary wheel running on the submaximal endurance exercise capacity and its mechanism. The results showed that 8 weeks of KPE administration significantly enhanced the submaximal endurance exercise capacity of mice and extended the daily voluntary wheel running distance. By measuring oxidative stress markers in plasma and the mRNA expression of antioxidant genes in skeletal muscle, we found that KPE significantly increased plasma antioxidant levels and activated the Nrf2 (Nuclear factor erythroid 2-related factor 2)/ARE (Antioxidant Response Element) pathway and its downstream antioxidant genes expression in skeletal muscle. These results suggest that KPE may enhance the antioxidant capacity of plasma and skeletal muscle by activating the Nrf2-ARE-centered antioxidant pathway, thereby increasing the daily running distance and improving the submaximal endurance exercise capacity of mice.
Collapse
Affiliation(s)
- Jiapeng Huang
- Graduate School of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 359-1192, Japan
| | - Yishan Tong
- Graduate School of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 359-1192, Japan
| | - Shuo Wang
- Graduate School of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 359-1192, Japan
| | - Takashi Tagawa
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama 729-3102, Japan
| | - Yasuhiro Seki
- Graduate School of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 359-1192, Japan
| | - Sihui Ma
- Faculty of Human Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Ziwei Zhang
- Graduate School of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 359-1192, Japan
| | - Tiehan Cao
- Graduate School of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 359-1192, Japan
| | - Haruki Kobori
- Graduate School of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 359-1192, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
15
|
Munteanu C, Galaction AI, Turnea M, Blendea CD, Rotariu M, Poștaru M. Redox Homeostasis, Gut Microbiota, and Epigenetics in Neurodegenerative Diseases: A Systematic Review. Antioxidants (Basel) 2024; 13:1062. [PMID: 39334720 PMCID: PMC11429174 DOI: 10.3390/antiox13091062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases encompass a spectrum of disorders marked by the progressive degeneration of the structure and function of the nervous system. These conditions, including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Multiple sclerosis (MS), often lead to severe cognitive and motor deficits. A critical component of neurodegenerative disease pathologies is the imbalance between pro-oxidant and antioxidant mechanisms, culminating in oxidative stress. The brain's high oxygen consumption and lipid-rich environment make it particularly vulnerable to oxidative damage. Pro-oxidants such as reactive nitrogen species (RNS) and reactive oxygen species (ROS) are continuously generated during normal metabolism, counteracted by enzymatic and non-enzymatic antioxidant defenses. In neurodegenerative diseases, this balance is disrupted, leading to neuronal damage. This systematic review explores the roles of oxidative stress, gut microbiota, and epigenetic modifications in neurodegenerative diseases, aiming to elucidate the interplay between these factors and identify potential therapeutic strategies. We conducted a comprehensive search of articles published in 2024 across major databases, focusing on studies examining the relationships between redox homeostasis, gut microbiota, and epigenetic changes in neurodegeneration. A total of 161 studies were included, comprising clinical trials, observational studies, and experimental research. Our findings reveal that oxidative stress plays a central role in the pathogenesis of neurodegenerative diseases, with gut microbiota composition and epigenetic modifications significantly influencing redox balance. Specific bacterial taxa and epigenetic markers were identified as potential modulators of oxidative stress, suggesting novel avenues for therapeutic intervention. Moreover, recent evidence from human and animal studies supports the emerging concept of targeting redox homeostasis through microbiota and epigenetic therapies. Future research should focus on validating these targets in clinical settings and exploring the potential for personalized medicine strategies based on individual microbiota and epigenetic profiles.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Corneliu Dan Blendea
- Department of Medical-Clinical Disciplines, General Surgery, Faculty of Medicine, "Titu Maiorescu" University of Bucharest, 0400511 Bucharest, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| |
Collapse
|
16
|
Munteanu C, Galaction AI, Poștaru M, Rotariu M, Turnea M, Blendea CD. Hydrogen Sulfide Modulation of Matrix Metalloproteinases and CD147/EMMPRIN: Mechanistic Pathways and Impact on Atherosclerosis Progression. Biomedicines 2024; 12:1951. [PMID: 39335465 PMCID: PMC11429404 DOI: 10.3390/biomedicines12091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory condition marked by endothelial dysfunction, lipid accumulation, inflammatory cell infiltration, and extracellular matrix (ECM) remodeling within arterial walls, leading to plaque formation and potential cardiovascular events. Key players in ECM remodeling and inflammation are matrix metalloproteinases (MMPs) and CD147/EMMPRIN, a cell surface glycoprotein expressed on endothelial cells, vascular smooth muscle cells (VSMCs), and immune cells, that regulates MMP activity. Hydrogen sulfide (H₂S), a gaseous signaling molecule, has emerged as a significant modulator of these processes including oxidative stress mitigation, inflammation reduction, and vascular remodeling. This systematic review investigates the mechanistic pathways through which H₂S influences MMPs and CD147/EMMPRIN and assesses its impact on atherosclerosis progression. A comprehensive literature search was conducted across PubMed, Scopus, and Web of Science databases, focusing on studies examining H₂S modulation of MMPs and CD147/EMMPRIN in atherosclerosis contexts. Findings indicate that H₂S modulates MMP expression and activity through transcriptional regulation and post-translational modifications, including S-sulfhydration. By mitigating oxidative stress, H₂S reduces MMP activation, contributing to plaque stability and vascular remodeling. H₂S also downregulates CD147/EMMPRIN expression via transcriptional pathways, diminishing inflammatory responses and vascular cellular proliferation within plaques. The dual regulatory role of H₂S in inhibiting MMP activity and downregulating CD147 suggests its potential as a therapeutic agent in stabilizing atherosclerotic plaques and mitigating inflammation. Further research is warranted to elucidate the precise molecular mechanisms and to explore H₂S-based therapies for clinical application in atherosclerosis.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Corneliu Dan Blendea
- Department of Medical-Clinical Disciplines, General Surgery, Faculty of Medicine, "Titu Maiorescu" University of Bucharest, 0400511 Bucharest, Romania
| |
Collapse
|
17
|
Bhuker S, Kaur A, Rajauria K, Tuli HS, Saini AK, Saini RV, Gupta M. Allicin: a promising modulator of apoptosis and survival signaling in cancer. Med Oncol 2024; 41:210. [PMID: 39060753 DOI: 10.1007/s12032-024-02459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
According to the World Health Organization, cancer is the foremost cause of mortality globally. Various phytochemicals from natural sources have been extensively studied for their anticancer properties. Allicin, a powerful organosulfur compound derived from garlic, exhibits anticancer, antioxidant, anti-inflammatory, antifungal, and antibacterial properties. This review aims to update and evaluate the chemistry, composition, mechanisms of action, and pharmacokinetics Allicin. Allicin has garnered significant attention for its potential role in modulating Fas-FasL, Bcl2-Bax, PI3K-Akt-mTOR, autophagy, and miRNA pathways. At the molecular level, allicin induces the release of cytochrome c from the mitochondria and enhances the activation of caspases-3, -8, and -9. This is accompanied by the simultaneous upregulation of Bax and Fas expression in tumor cells. Allicin can inhibit excessive autophagy by activating the PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways. Allicin-loaded nano-formulations efficiently induce apoptosis in cancer cells while minimizing toxicity to normal cells. Safety and clinical aspects are meticulously scrutinized, providing insights into the tolerability and adverse effects associated with allicin administration, along with an overview of current clinical trials evaluating its therapeutic potential. In conclusion, this review underscores the promising prospects of allicin as a dietary-derived medicinal compound for cancer therapy. It emphasizes the need for further research to elucidate its precise mechanisms of action, optimize delivery strategies, and validate its efficacy in clinical settings.
Collapse
Affiliation(s)
- Sunaina Bhuker
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Avneet Kaur
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Kanitha Rajauria
- SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu, 603203, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Adesh K Saini
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
- Central Research Laboratory, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Reena V Saini
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India.
- Central Research Laboratory, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India.
- Central Research Laboratory and Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India.
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| |
Collapse
|
18
|
Liu F, Wei L, Zheng B, Su X, Ju J, Liu G, Liu Q. Value of exhaled hydrogen sulfide in early diagnosis of esophagogastric junction adenocarcinoma. Oncol Lett 2024; 28:321. [PMID: 38807679 PMCID: PMC11130606 DOI: 10.3892/ol.2024.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 05/30/2024] Open
Abstract
Esophagogastric junction adenocarcinoma (EJA) has increased in recent years, and it exhibits a poor prognosis and a short survival period for patients. Hydrogen sulfide (H2S) plays an important role in the pathogenesis of cancer and has been studied as a diagnostic factor in some tumor diseases. However, few studies have explored the diagnostic value of H2S for EJA. In the present study, a total of 56 patients with early-stage EJA were enrolled while 57 healthy individuals were selected as the healthy control group. Clinical features were recorded, and exhaled H2S and blood samples were collected from both groups. Exhaled H2S and serum interleukin-8 (IL-8) expression levels were detected in both groups. The correlation between exhaled H2S and serum IL-8 levels was analyzed using Pearson's correlation method. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of exhaled H2S combined with IL-8 detection in EJA. The results showed that patients with EJA exhaled more H2S than healthy individuals. In addition, exhaled H2S was positively correlated with increased IL-8 expression. The ROC curve revealed that the exhaled H2S test had an acceptable diagnostic effect and could be used to diagnose EJA. The increase in H2S exhaled by patients with EJA indicated that H2S may be related to the occurrence and development of EJA; however, the in vivo mechanism needs to be further explored. Collectively, it was determined in the present study that exhaled H2S was significantly higher in patients with early-stage EJA than in healthy controls and combined diagnosis with patient serum IL-8 could improve diagnostic accuracy, which has potential diagnostic value for early diagnosis and screening of EJA.
Collapse
Affiliation(s)
- Fang Liu
- Department of Hospital Quality and Control, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Lai Wei
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Bosheng Zheng
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Xin Su
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Jianmei Ju
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Guangjie Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Qingyi Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| |
Collapse
|
19
|
Anwar S, Alrumaihi F, Sarwar T, Babiker AY, Khan AA, Prabhu SV, Rahmani AH. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024; 14:697. [PMID: 38927099 PMCID: PMC11201554 DOI: 10.3390/biom14060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, a potentially harmful byproduct of cellular metabolism. This reaction detoxifies H2O2 and prevents oxidative damage. Catalase has been extensively studied as a therapeutic antioxidant. Its applications range from direct supplementation in conditions characterized by oxidative stress to gene therapy approaches to enhance endogenous catalase activity. The enzyme's stability, bioavailability, and the specificity of its delivery to target tissues are significant hurdles. Furthermore, studies employing conventional catalase formulations often face issues related to enzyme purity, activity, and longevity in the biological milieu. Addressing these challenges necessitates rigorous scientific inquiry and well-designed clinical trials. Such trials must be underpinned by sound experimental designs, incorporating advanced catalase formulations or novel delivery systems that can overcome existing limitations. Enhancing catalase's stability, specificity, and longevity in vivo could unlock its full therapeutic potential. It is necessary to understand the role of catalase in disease-specific contexts, paving the way for precision antioxidant therapy that could significantly impact the treatment of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, Mohan Institute of Nursing and Paramedical Sciences, Mohan Group of Institutions, Bareilly 243302, India;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Sitrarasu Vijaya Prabhu
- Department of Biotechnology, Microbiology and Bioinformatics, National College (Autonomous), Tiruchirapalli 620001, India;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
20
|
He Z, Zhu Y, Ma H, Shen Q, Chen X, Wang X, Shao H, Wang Y, Yang S. Hydrogen sulfide regulates macrophage polarization and necroptosis to accelerate diabetic skin wound healing. Int Immunopharmacol 2024; 132:111990. [PMID: 38574702 DOI: 10.1016/j.intimp.2024.111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Hydrogen sulfide (H2S), recognized as the third gasotransmitter, plays a pivotal role in the pathophysiological processes of various diseases. Cystathionine γ-lyase (CSE) is the main enzyme for H2S production in the skin. However, effects and mechanisms of H2S in diabetic skin wound healing remain unclear. Our findings revealed a decrease in plasma H2S content in diabetic patients with skin wounds. CSE knockout (KO) diabetic mice resulted in delayed wound healing, reduced blood perfusion, and CD31 expression around the wounds. It also led to increased infiltration of inflammatory cells and M1-type macrophages, decreased collagen levels, α-smooth muscle actin (α-SMA), and proliferating cell nuclear antigen (PCNA) expression. Additionally, there were enhanced expressions of necroptosis related proteins, including receptor interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain like protein (MLKL). In comparison, sodium hydrosulfide (NaHS), H2S donor, accelerated skin wound healing in leptin receptor deficiency (db/db) mice. This acceleration was accompanied by increased blood perfusion and CD31 expression, reduced infiltration of inflammatory cells and M1-type macrophages, elevated collagen levels, α-SMA, and PCNA expressions, and decreased necroptosis-related protein expressions together with nuclear factor-κB (NF-κB) p65 phosphorylation. In conclusion, H2S regulates macrophage polarization and necroptosis, contributing to the acceleration of diabetic skin wound healing. These findings offer a novel strategy for the treatment of diabetic skin wounds.
Collapse
Affiliation(s)
- Ziying He
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yue Zhu
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Haojie Ma
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Qiyan Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xudong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hongmei Shao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yuqin Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
21
|
Pandey T, Pandey V. Hydrogen sulfide (H2S) metabolism: Unraveling cellular regulation, disease implications, and therapeutic prospects for precision medicine. Nitric Oxide 2024; 144:20-28. [PMID: 38242281 DOI: 10.1016/j.niox.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Hydrogen sulfide (H2S), traditionally recognized as a noxious gas with a pungent odor, has emerged as a fascinating metabolite originating from proteinaceous foods. This review provides a comprehensive examination of H2S regulatory metabolism in cell. Dysregulation of cellular processes plays a pivotal role in the pathogenesis of numerous diseases. Recent development explores the chemistry of biosynthesis and degradation of H2S in cells. The consequences of dysregulation causing diseases and the emerging role of hydrogen sulfide (H2S) modulation as a promising therapeutic platform has not been explored much. These disturbances can manifest as oxidative stress, inflammation, and aberrant cellular signaling pathways, contributing to the development and progression of diseases such as cancer, cardiovascular disorders, neurodegenerative diseases, and diabetes. Hydrogen sulfide has gained recognition as a key player in cellular regulation. H2S is involved in numerous physiological processes, including vasodilation, inflammation control, and cytoprotection. Recent advances in research have focused on modulating H2S levels to restore cellular balance and mitigate disease progression. This approach involves both exogenous H2S donors and inhibitors of H2S -producing enzymes. By harnessing the versatile properties of H2S, researchers and clinicians may develop innovative therapies that address the root causes of dysregulation-induced diseases. As our understanding of H2S biology deepens, the potential for precision medicine approaches tailored to specific diseases becomes increasingly exciting, holding the promise of improved patient outcomes and a new era in therapeutics.
Collapse
Affiliation(s)
- Tejasvi Pandey
- Department of Forensic Sciences, School for Bioengineering and Biosciences Sciences, Lovely Professional University, Phagwara, India
| | - Vivek Pandey
- Department of Chemistry, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
22
|
Ma XX, Geng MH, Cheng XY, Zhang TS, Li ZL, Zhao K. Excellent ratiometric two-photon fluorescent probes for hydrogen sulfide detection based on the fluorescence resonance energy transfer mechanism. Phys Chem Chem Phys 2024; 26:6008-6021. [PMID: 38293905 DOI: 10.1039/d3cp05329f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Fluorescence resonance energy transfer (FRET) is an important mechanism to design ratiometric fluorescent probes that are able to detect analytes quantitatively according to the ratio of two well-resolved emission signals. Two-photon (TP) fluorescent probes can realize the detection in living cells and tissues with deeper penetration depth, higher resolution, and lower photodamage in contrast to one-photon fluorescent probes. However, to date, fabricating TP-FRET ratiometric fluorescent probes possessing large two-photon absorption (TPA), high fluorescence quantum yield and perfect FRET efficiency is still challenging. Consequently, to develop excellent TP-FRET ratiometric probes and explore the relationship between their molecular structures and TP fluorescence properties, in this paper, we designed a series of H2S-detecting TP fluorescent probes employing the FRET mechanism based on an experimental probe BCD. Thereafter, we comprehensively evaluated the TP sensing performance of these probes by means of time-dependent density functional theory and quadratic response theory. Furthermore, we determined energy transfer efficiency and fluorescence quantum yield. Significantly, through regulating benzene-fused positions, we successfully improved fluorescence quantum yield and TPA cross-section simultaneously. Large spectral overlap between energy donor emission and acceptor absorption was achieved and near perfect energy transfer efficiency was acquired for all the studied probes. We revealed that these probes exhibit two well-resolved TPA bands, which are contributed by FRET donors and acceptors, respectively. Especially, both the wavelengths and the cross-sections of the two TPA bands agree well with those of energy donors and acceptors, which is the unique TPA spectral profile of FRET probes and has never been previously reported. Moreover, we proposed an excellent TP-FRET probe BCD3 and its product molecule BCD3-H2S, which exhibit large Stokes (141 nm and 88 nm) and emission shifts (5931 cm-1), as well as greatly increased TP action cross-sections (24-fold and 60-fold) in the near-infrared region with respect to BCD and BCD-H2S. Our detailed study can give an insight into the efficient design of novel TP-FRET fluorescent probes.
Collapse
Affiliation(s)
- Xue-Xue Ma
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Ming-Hui Geng
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Xia-Yu Cheng
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Tong-Shu Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Zong-Liang Li
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Ke Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| |
Collapse
|
23
|
Zhou L, Lu G, Nie Y, Ren Y, Shi JS, Xue Y, Xu ZH, Geng Y. Restricted intake of sulfur-containing amino acids reversed the hepatic injury induced by excess Desulfovibrio through gut-liver axis. Gut Microbes 2024; 16:2370634. [PMID: 38935546 PMCID: PMC11212577 DOI: 10.1080/19490976.2024.2370634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Diet is a key player in gut-liver axis. However, the effect of different dietary patterns on gut microbiota and liver functions remains unclear. Here, we used rodent standard chow and purified diet to mimic two common human dietary patterns: grain and plant-based diet and refined-food-based diet, respectively and explored their impacts on gut microbiota and liver. Gut microbiota experienced a great shift with notable increase in Desulfovibrio, gut bile acid (BA) levels elevated significantly, and liver inflammation was observed in mice fed with the purified diet. Liver inflammation and elevated gut BA levels also occurred in mice fed with the chow diet after receiving Desulfovibrio desulfuricans ATCC 29,577 (DSV). Restriction of sulfur-containing amino acids (SAAs) prevented liver injury mainly through higher hepatic antioxidant and detoxifying ability and reversed the elevated BA levels due to excess Desulfovibrio. Ex vivo fermentation of human fecal microbiota with primary BAs demonstrated that DSV enhanced production of secondary BAs. Higher concentration of both primary and secondary BAs were found in the gut of germ-free mice after receiving DSV. In conclusion, Restriction of SAAs in diet may become an effective dietary intervention to prevent liver injury associated with excess Desulfovibrio in the gut.
Collapse
Affiliation(s)
- Lingxi Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Gexue Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yawen Nie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zheng-Hong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
MA YANAN, WANG SHANSHAN, DING HUIGUO. Bioinformatics analysis and experimental validation of cystathionine-gamma-lyase as a potential prognosis biomarker in hepatocellular carcinoma. BIOCELL 2024; 48:463-471. [DOI: 10.32604/biocell.2024.048244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 04/17/2025]
|
25
|
Rodkin S, Nwosu C, Raevskaya M, Khanukaev M, Bekova K, Vasilieva I, Vishnyak D, Tolmacheva A, Efremova E, Gasanov M, Tyurin A. The Role of Hydrogen Sulfide in the Localization and Expression of p53 and Cell Death in the Nervous Tissue in Traumatic Brain Injury and Axotomy. Int J Mol Sci 2023; 24:15708. [PMID: 37958692 PMCID: PMC10650615 DOI: 10.3390/ijms242115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and death worldwide. It is characterized by various molecular-cellular events, with the main ones being apoptosis and damage to axons. To date, there are no clinically effective neuroprotective drugs. In this study, we examined the role of hydrogen sulfide (H2S) in the localization and expression of the key pro-apoptotic protein p53, as well as cell death in the nervous tissue in TBI and axotomy. We used a fast donor (sodium sulphide, Na2S) H2S and a classic inhibitor (aminooxyacetic acid, AOAA) of cystathionine β-synthase (CBS), which is a key enzyme in H2S synthesis. These studies were carried out on three models of neurotrauma in vertebrates and invertebrates. As a result, it was found that Na2S exhibits a pronounced neuroprotective effect that reduces the number of TUNEL-positive neurons and glial cells in TBI and apoptotic glia in axotomy. This effect could be realized through the Na2S-dependent decrease in the level of p53 in the cells of the nervous tissue of vertebrates and invertebrates, which we observed in our study. We also observed the opposite effect when using AOAA, which indicates the important role of CBS in the regulation of p53 expression and death of neurons and glial cells in TBI and axotomy.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Maxim Khanukaev
- Department of Instrumentation and Biomedical Engineering, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Khava Bekova
- Department of Nervous Diseases and Neurosurgery, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- Department of Polyclinic Therapy, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Diana Vishnyak
- Department of Internal Diseases, Surgut State University, Lenina, 1, Nephrology Department, Surgut District Clinical Hospital, Energetikov, 24/3, 628400 Surgut, Russia
| | - Anastasia Tolmacheva
- Department of Faculty Therapy Named after Professor G.D. Zalessky, Novosibirsk State Medical University, Krasny Prospekt, 52, Department of Medical Rehabilitation, Novosibirsk Regional Clinical Hospital of War Veterans No. 3, Demyan the Poor, 71, 630005 Novosibirsk, Russia
| | - Elena Efremova
- Department of Therapy and Occupational Diseases, Ulyanovsk State University, Lev Tolstoy Street 42, 432017 Ulyanovsk, Russia;
| | - Mitkhat Gasanov
- Internal Medicine Department, Institute of Medical Education, The Yaroslav-the-Wise Novgorod State University, Derzhavina St. 6, 173020 Veliky Novgorod, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
26
|
Munteanu C, Iordan DA, Hoteteu M, Popescu C, Postoiu R, Onu I, Onose G. Mechanistic Intimate Insights into the Role of Hydrogen Sulfide in Alzheimer's Disease: A Recent Systematic Review. Int J Mol Sci 2023; 24:15481. [PMID: 37895161 PMCID: PMC10607039 DOI: 10.3390/ijms242015481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
In the rapidly evolving field of Alzheimer's Disease (AD) research, the intricate role of Hydrogen Sulfide (H2S) has garnered critical attention for its diverse involvement in both pathological substrates and prospective therapeutic paradigms. While conventional pathophysiological models of AD have primarily emphasized the significance of amyloid-beta (Aβ) deposition and tau protein hyperphosphorylation, this targeted systematic review meticulously aggregates and rigorously appraises seminal contributions from the past year elucidating the complex mechanisms of H2S in AD pathogenesis. Current scholarly literature accentuates H2S's dual role, delineating its regulatory functions in critical cellular processes-such as neurotransmission, inflammation, and oxidative stress homeostasis-while concurrently highlighting its disruptive impact on quintessential AD biomarkers. Moreover, this review illuminates the nuanced mechanistic intimate interactions of H2S in cerebrovascular and cardiovascular pathology associated with AD, thereby exploring avant-garde therapeutic modalities, including sulfurous mineral water inhalations and mud therapy. By emphasizing the potential for therapeutic modulation of H2S via both donors and inhibitors, this review accentuates the imperative for future research endeavors to deepen our understanding, thereby potentially advancing novel diagnostic and therapeutic strategies in AD.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Daniel Andrei Iordan
- Department of Individual Sports and Kinetotherapy, Faculty of Physical Education and Sport, ‘Dunarea de Jos’ University of Galati, 800008 Galati, Romania;
| | - Mihail Hoteteu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Cristina Popescu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ruxandra Postoiu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ilie Onu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
| | - Gelu Onose
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| |
Collapse
|