1
|
Xie D, Sun Y, Li X, Zheng J, Ren S. Study of the effect of calcium signal participating in the antioxidant mechanism of yeast under high-sugar environment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5776-5788. [PMID: 38390983 DOI: 10.1002/jsfa.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Saccharomyces cerevisiae is susceptible to high-sugar stress in the production of bioethanol, wine and bread. Calcium signal is widely involved in various physiological and metabolic activities of cells. The present study aimed to explore the effects of Ca2+ signal on the antioxidant mechanism of yeast during high-sugar fermentation. RESULTS Compared to yeast without available Ca2+, yeast in the high glucose with Ca2+ group had higher dry weight, higher ethanol output at 12 and 24 h and higher glycerol output at 24 and 36 h. During the whole growth process, the trehalose synthesis capacity of yeast in the high glucose with Ca2+ group was lower and intracellular reactive oxygen species content was higher compared to yeast without available Ca2+. Intracellular malondialdehyde content of yeast under high glucose with Ca2+ was significantly lower than yeast under high glucose without available Ca2+ except for 6 h. The superoxide dismutase and catalase activities of yeast and glutathione content were higher in the high glucose with Ca2+ group compared to yeast in high glucose without available Ca2+. The expression levels of SOD1, GSH1, GPX2 genes were higher for high glucose without available Ca2+ at 6 h, while yeast in the high glucose with Ca2+ group had a higher expression of antioxidant-related genes except SOD1 and CTT1 at 12 h. The expression levels of antioxidant-related genes of yeast for high glucose with Ca2+ were higher at 24 h, and those of genes except SOD1 of yeast in the high glucose with Ca2+ group were higher at 36 h. CONCLUSION High-glucose stress limited the growth of yeast, while a moderate extracellular Ca2+ signal could improve the antioxidant capacity of yeast in a high-glucose environment by regulating protectant metabolism and enhancing the antioxidant enzyme activity and expression of antioxidant genes in a high-sugar environment. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Xie
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingqi Sun
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xing Li
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jiaxin Zheng
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
2
|
Kusza DA, Venter GA, Mabunda M, Biwi J, Samanta SK, Klinck JD, Singh SV, Hunter R, Kaschula CH. Finding the Ajoene Sweet-Spot: Structure-Activity Relations that Govern its Blood Stability and Cancer Cytotoxicity. ChemMedChem 2024; 19:e202400087. [PMID: 38532643 DOI: 10.1002/cmdc.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Ajoene is an organosulfur compound found in crushed garlic that exerts its anti-cancer activity by S-thiolating cysteine residues on proteins. Its development is hampered due to limited bioavailability, so in this study, we synthesised analogues of ajoene to probe the significance of the ajoene vinyl disulfide/sulfoxide core with respect to cytotoxicity and blood stability. Polar side groups were also incorporated to improve aqueous solubility. It was found that derivatives containing a vinyl disulfide functional group (4-7, as in ajoene), were more cytotoxic compared to analogues in which the double bond was removed, although the latter showed superior blood stability. It was also found that the allyl-S sulfur of the disulfide was more electrophilic to S-thiolysis based on the global electrophilicity index (ω) and the condensed electrophilic Fukui functionf k + ${{ f}_{\rm{k}}^{\rm{ + }} }$ . S-Thiolysis was found to be exergonic for the vinyl disulfides based on entropy and enthalpy computations with a deprotonated thiolate. Derivatisation to the dihydro (10, 12) and deoxydihydroajoenes (9, 11) produced analogues that were slightly less potent but with greatly improved blood stability. Taken together, the deoxydihydroajoenes present themselves as good candidates for further therapeutic development.
Collapse
Affiliation(s)
- Daniel A Kusza
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Gerhard A Venter
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Mandla Mabunda
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - James Biwi
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Suman K Samanta
- Faculty of Science, Assam down town University, Sankar Madhab Path, Gandi Nagar, Panikhaiti, Guwahati, 781026, Assam, India
| | - Johan D Klinck
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, 7600, South Africa
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, UPMC Hillman Cancer Centre, Pittsburgh, Pennsylvania, USA
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, 7600, South Africa
| |
Collapse
|
3
|
Wang XQ, Yuan B, Zhang FL, Liu CG, Auesukaree C, Zhao XQ. Novel Roles of the Greatwall Kinase Rim15 in Yeast Oxidative Stress Tolerance through Mediating Antioxidant Systems and Transcriptional Regulation. Antioxidants (Basel) 2024; 13:260. [PMID: 38539794 PMCID: PMC10967648 DOI: 10.3390/antiox13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
The Greatwall-family protein kinase Rim15 is associated with the nutrient starvation response, whereas its role in oxidative stress responses remains unclear. Here, acetic acid and peroxide were used as two oxidative stress elicitors. The antioxidant indicator assay under acetic acid stress revealed the impaired growth in rim15Δ related to the regulation of antioxidant systems. Comparative transcriptome analysis revealed that differentially expressed genes (DEGs) are predicted to be mostly regulated by oxidative stress-responsive transcriptional factor Yap1. Among the DEGs, acetic acid stress-induced genes were found, and YAP1 disruption also inhibited their induction. The deletion of Rim15 or the Rim15 kinase domain in yap1Δ did not further decrease the gene expression, suggesting that Rim15 functions together with Yap1 in regulating acetic acid stress-induced genes, which requires Rim15 kinase activity. Additionally, Rim15 regulated H2O2 stress tolerance through partially similar but special mechanisms in that Rim15 kinase activity impacted acetic acid and H2O2 stress tolerance in different degrees, indicating the different mechanisms underlying Rim15-mediated redox regulation against different stressors. These results benefit the better understanding of stress signaling pathways related to Rim15. Given that Rim15 and some of its target genes are conserved across eukaryotes, these results also provide a basis for studies of oxidative stress-related processes in other organisms.
Collapse
Affiliation(s)
- Xue-Qing Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Bing Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Feng-Li Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Choowong Auesukaree
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| |
Collapse
|
4
|
Schier C, Gruhlke MCH, Reucher G, Slusarenko AJ, Rink L. Combating Black Fungus: Using Allicin as a Potent Antifungal Agent against Mucorales. Int J Mol Sci 2023; 24:17519. [PMID: 38139348 PMCID: PMC10743604 DOI: 10.3390/ijms242417519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Invasive fungal (IF) diseases are a leading global cause of mortality, particularly among immunocompromised individuals. The SARS-CoV-2 pandemic further exacerbated this scenario, intensifying comorbid IF infections such as mucormycoses of the nasopharynx. In the work reported here, it is shown that zygomycetes, significant contributors to mycoses, are sensitive to the natural product allicin. Inhibition of Mucorales fungi by allicin in solution and by allicin vapor was demonstrated. Mathematical modeling showed that the efficacy of allicin vapor is comparable to direct contact with the commercially available antifungal agent amphotericin B (ampB). Furthermore, the study revealed a synergistic interaction between allicin and the non-volatile ampB. The toxicity of allicin solution to human cell lines was evaluated and it was found that the half maximal effective concentration (EC50) of allicin was 25-72 times higher in the cell lines as compared to the fungal spores. Fungal allicin sensitivity depends on the spore concentration, as demonstrated in a drop test. This study shows the potential of allicin, a sulfur-containing defense compound from garlic, to combat zygomycete fungi. The findings underscore allicin's promise for applications in infections of the nasopharynx via inhalation, suggesting a novel therapeutic avenue against challenging fungal infections.
Collapse
Affiliation(s)
- Christina Schier
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany; (C.S.); (A.J.S.)
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Martin C. H. Gruhlke
- GENAWIF e.V.—Society for Natural Compound and Active Ingredient Research, Lukasstraße 1, 52070 Aachen, Germany;
- Institute of Applied Microbiology—iAMB, Aachener Biology and Biotechnology—ABBt, RWTH Aachen University, 52074 Aachen, Germany
| | - Georg Reucher
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Alan J. Slusarenko
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany; (C.S.); (A.J.S.)
- GENAWIF e.V.—Society for Natural Compound and Active Ingredient Research, Lukasstraße 1, 52070 Aachen, Germany;
| | - Lothar Rink
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany;
| |
Collapse
|
5
|
Effects of Selenium Nanoparticles on Preventing Patulin-Induced Liver, Kidney and Gastrointestinal Damage. Foods 2022; 11:foods11050749. [PMID: 35267382 PMCID: PMC8909330 DOI: 10.3390/foods11050749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Patulin (PAT) is a toxic fungal metabolite, and oxidative damage was proved to be its important toxicity mechanism. Selenium nanoparticles (SeNPs) were prepared by reducing sodium selenite with chitosan as a stabilizer and used for preventing PAT-induced liver, kidney and gastrointestinal damage. SeNPs have good dispersibility, in vitro antioxidant activity, and are much less cytotoxic than sodium selenite. Cell culture studies indicated that SeNPs can effectively alleviate PAT-induced excessive production of intracellular ROS, the decline of glutathione peroxidase activity, and the suppression of cell viability. Evaluation of serum biochemical parameters, histopathology, oxidative stress biomarkers and activities of antioxidant enzymes in a mouse model showed that pre-treatment with SeNPs (2 mg Se/kg body weight) could ameliorate PAT-induced oxidative damage to the liver and kidneys of mice, but PAT-induced gastrointestinal oxidative damage and barrier dysfunction were not recovered by SeNPs, possibly because the toxin doses suffered by the gastrointestinal as the first exposed tissues exceeded the regulatory capacity of SeNPs. These results suggested that a combination of other strategies may be required to completely block PAT toxicity.
Collapse
|
6
|
Oxidized Forms of Ergothioneine Are Substrates for Mammalian Thioredoxin Reductase. Antioxidants (Basel) 2022; 11:antiox11020185. [PMID: 35204068 PMCID: PMC8868364 DOI: 10.3390/antiox11020185] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Ergothioneine (EGT) is a sulfur-containing amino acid analog that is biosynthesized in fungi and bacteria, accumulated in plants, and ingested by humans where it is concentrated in tissues under oxidative stress. While the physiological function of EGT is not yet fully understood, EGT is a potent antioxidant in vitro. Here we report that oxidized forms of EGT, EGT-disulfide (ESSE) and 5-oxo-EGT, can be reduced by the selenoenzyme mammalian thioredoxin reductase (Sec-TrxR). ESSE and 5-oxo-EGT are formed upon reaction with biologically relevant reactive oxygen species. We found that glutathione reductase (GR) can reduce ESSE, but only with the aid of glutathione (GSH). The reduction of ESSE by TrxR was found to be selenium dependent, with non-selenium-containing TrxR enzymes having little or no ability to reduce ESSE. In comparing the reduction of ESSE by Sec-TrxR in the presence of thioredoxin to that of GR/GSH, we find that the glutathione system is 10-fold more efficient, but Sec-TrxR has the advantage of being able to reduce both ESSE and 5-oxo-EGT directly. This represents the first discovered direct enzymatic recycling system for oxidized forms of EGT. Based on our in vitro results, the thioredoxin system may be important for EGT redox biology and requires further in vivo investigation.
Collapse
|
7
|
Lu Y, Zhang M, Huang D. Dietary Organosulfur-Containing Compounds and Their Health-Promotion Mechanisms. Annu Rev Food Sci Technol 2022; 13:287-313. [DOI: 10.1146/annurev-food-052720-010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary organosulfur-containing compounds (DOSCs) in fruits, vegetables, and edible mushrooms may hold the key to the health-promotion benefits of these foods. Yet their action mechanisms are not clear, partially due to their high reactivity, which leads to the formation of complex compounds during postharvest processing. Among postharvest processing methods, thermal treatment is the most common way to process these edible plants rich in DOSCs, which undergo complex degradation pathways with the generation of numerous derivatives over a short time. At low temperatures, DOSCs are biotransformed slowly during fermentation to different metabolites (e.g., thiols, sulfides, peptides), whose distinctive biological activity remains largely unexplored. In this review, we discuss the bioavailability of DOSCs in human digestion before illustrating their potential mechanisms for health promotion related to cardiovascular health, cancer chemoprevention, and anti-inflammatory and antimicrobial activities. In particular, it is interesting that different DOSCs react with glutathione or cysteine, leading to the slow release of hydrogen sulfide (H2S), which has broad bioactivity in chronic disease prevention. In addition, DOSCs may interact with protein thiol groups of different protein targets of importance related to inflammation and phase II enzyme upregulation, among other action pathways critical for health promotion. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Molan Zhang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| |
Collapse
|
8
|
Kaixin Z, Xuedie G, Jing L, Yiming Z, Khoso PA, Zhaoyi L, Shu L. Selenium-deficient diet induces inflammatory response in the pig adrenal glands by activating TLR4/NF-κB pathway via miR-30d-R_1. Metallomics 2021; 13:6300451. [PMID: 34132350 DOI: 10.1093/mtomcs/mfab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 01/07/2023]
Abstract
Selenium (Se) is an important trace element to maintain the body's dynamic balance. Lack of Se can cause inflammation. Studies have shown that inflammation often leads to disorders of the hypothalamic-pituitary-adrenal axis, but the mechanism by which Se deficiency causes inflammation of the porcine adrenal glands is still unclear. In order to study the effect of Se deficiency on the adrenal glands of pigs, we obtained Se-deficient pig adrenal glands through a low-Se diet. The results of mass spectrometry showed that the Se content in the Se-deficient group was only one-tenth of the control group. We detected the expression of the toll-like receptor 4 (TLR4) and downstream factors by qRT-PCR and Western blotting, and found that the lack of Se affected the TLR4/NF-κB pathway. It is known that miR-155-3p, miR-30d-R_1, and miR-146b have all been verified for targeting relationship with TLR4. We confirmed by qRT-PCR that miR-30d-R_1 decreased most significantly in the Se-deficient pig model. Then we tested 25 selenoproteins and some indicators of oxidative stress. It is confirmed that Se deficiency reduces the antioxidant capacity and induces oxidative stress in pig adrenal tissue. In short, a diet lacking Se induces oxidative stress in pig adrenal tissues and leads to inflammation through the miR-30d-R_1/TLR4 pathway. This study provides a reference for the prevention of adrenal inflammation in pigs from a nutritional point of view.
Collapse
Affiliation(s)
- Zhang Kaixin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Gu Xuedie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lan Jing
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhang Yiming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pervez Ahmed Khoso
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, Pakistan
| | - Liu Zhaoyi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
9
|
Pearson SA, Cowan JA. Glutathione-coordinated metal complexes as substrates for cellular transporters. Metallomics 2021; 13:mfab015. [PMID: 33770183 PMCID: PMC8086996 DOI: 10.1093/mtomcs/mfab015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 11/15/2022]
Abstract
Glutathione is the major thiol-containing species in both prokaryotes and eukaryotes and plays a wide variety of roles, including detoxification of metals by sequestration, reduction, and efflux. ABC transporters such as MRP1 and MRP2 detoxify the cell from certain metals by exporting the cations as a metal-glutathione complex. The ability of the bacterial Atm1 protein to efflux metal-glutathione complexes appears to have evolved over time to become the ABCB7 transporter in mammals, located in the inner mitochondrial membrane. No longer needed for the role of cellular detoxification, ABCB7 appears to be used to transport glutathione-coordinated iron-sulfur clusters from mitochondria to the cytosol.
Collapse
Affiliation(s)
- Stephen A Pearson
- The Ohio State University Biophysics Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - J A Cowan
- The Ohio State University Biophysics Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Allicin, the Odor of Freshly Crushed Garlic: A Review of Recent Progress in Understanding Allicin's Effects on Cells. Molecules 2021; 26:molecules26061505. [PMID: 33801955 PMCID: PMC8001868 DOI: 10.3390/molecules26061505] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
The volatile organic sulfur compound allicin (diallyl thiosulfinate) is produced as a defense substance when garlic (Allium sativum) tissues are damaged, for example by the activities of pathogens or pests. Allicin gives crushed garlic its characteristic odor, is membrane permeable and readily taken up by exposed cells. It is a reactive thiol-trapping sulfur compound that S-thioallylates accessible cysteine residues in proteins and low molecular weight thiols including the cellular redox buffer glutathione (GSH) in eukaryotes and Gram-negative bacteria, as well as bacillithiol (BSH) in Gram-positive firmicutes. Allicin shows dose-dependent antimicrobial activity. At higher doses in eukaryotes allicin can induce apoptosis or necrosis, whereas lower, biocompatible amounts can modulate the activity of redox-sensitive proteins and affect cellular signaling. This review summarizes our current knowledge of how bacterial and eukaryotic cells are specifically affected by, and respond to, allicin.
Collapse
|
11
|
The Sulfilimine Analogue of Allicin, S-Allyl- S-( S-allyl)- N-Cyanosulfilimine, Is Antimicrobial and Reacts with Glutathione. Antioxidants (Basel) 2020; 9:antiox9111086. [PMID: 33158268 PMCID: PMC7694261 DOI: 10.3390/antiox9111086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
When cells of garlic (Allium sativum) are disrupted by wounding, they produce the defense substance allicin (diallylthiosulfinate). Allicin is an efficient thiol trap and readily passes through cell membranes into the cytosol, where it behaves as a redox toxin by oxidizing the cellular glutathione (GSH) pool and producing S-allylmercaptoglutathione (GSSA). An N-cyanosulfilimine analogue of allicin (CSA), which was predicted to have similar reactivity towards thiol groups but be more stable in storage, was synthesized and its properties investigated. Similarly to allicin, CSA was shown to inhibit the growth of various bacteria, a fungus (baker’s yeast), and Arabidopsis roots. A chemogenetic screen showed that yeast mutants with compromised GSH levels and metabolism were hypersensitive to CSA. GSH reacted with CSA to produce allyltrisulfanylglutathione (GS3A), which was a white solid virtually insoluble in water. Yeast Δgsh1 mutants are unable to synthesize GSH because they lack the γ-glutamylcysteine synthetase (GSH1) gene, and they are unable to grow without GSH supplementation in the medium. GS3A in the growth medium supported the auxotrophic requirement for GSH in Δgsh1 mutants. This result suggests that GS3A is being reduced to GSH in vivo, possibly by the enzyme glutathione reductase (GR), which has been shown to accept GSSA as a substrate. The results suggest that CSA has a mode of action similar to allicin and is effective at similar concentrations.
Collapse
|
12
|
Schultz CR, Gruhlke MC, Slusarenko AJ, Bachmann AS. Allicin, a Potent New Ornithine Decarboxylase Inhibitor in Neuroblastoma Cells. JOURNAL OF NATURAL PRODUCTS 2020; 83:2518-2527. [PMID: 32786875 PMCID: PMC9162488 DOI: 10.1021/acs.jnatprod.0c00613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The natural product allicin is a reactive sulfur species (RSS) from garlic (Allium sativum L.). Neuroblastoma (NB) is an early childhood cancer arising from the developing peripheral nervous system. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the biosynthesis of polyamines, which are oncometabolites that contribute to cell proliferation in NB and other c-MYC/MYCN-driven cancers. Both c-MYC and MYCN directly transactivate the E-box gene ODC1, a validated anticancer drug target. We identified allicin as a potent ODC inhibitor in a specific radioactive in vitro assay using purified human ODC. Allicin was ∼23 000-fold more potent (IC50 = 11 nM) than DFMO (IC50 = 252 μM), under identical in vitro assay conditions. ODC is a homodimer with 12 cysteines per monomer, and allicin reversibly S-thioallylates cysteines. In actively proliferating human NB cells allicin inhibited ODC enzyme activity, reduced cellular polyamine levels, inhibited cell proliferation (IC50 9-19 μM), and induced apoptosis. The natural product allicin is a new ODC inhibitor and could be developed for use in conjunction with other anticancer treatments, the latter perhaps at a lower than usual dosage, to achieve drug synergism with good prognosis and reduced adverse effects.
Collapse
Affiliation(s)
- Chad R. Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Martin C.H. Gruhlke
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Alan J. Slusarenko
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
- Corresponding Authors: André S. Bachmann, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave, NW, Grand Rapids, MI 49503, USA. Tel: +616-234-2841, or Alan J. Slusarenko, Department of Plant Physiology, RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany. Tel: +49-241-80-266-50,
| | - André S. Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Corresponding Authors: André S. Bachmann, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave, NW, Grand Rapids, MI 49503, USA. Tel: +616-234-2841, or Alan J. Slusarenko, Department of Plant Physiology, RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany. Tel: +49-241-80-266-50,
| |
Collapse
|
13
|
Borlinghaus J, Bolger A, Schier C, Vogel A, Usadel B, Gruhlke MC, Slusarenko AJ. Genetic and molecular characterization of multicomponent resistance of Pseudomonas against allicin. Life Sci Alliance 2020; 3:e202000670. [PMID: 32234751 PMCID: PMC7119367 DOI: 10.26508/lsa.202000670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023] Open
Abstract
The common foodstuff garlic produces the potent antibiotic defense substance allicin after tissue damage. Allicin is a redox toxin that oxidizes glutathione and cellular proteins and makes garlic a highly hostile environment for non-adapted microbes. Genomic clones from a highly allicin-resistant Pseudomonas fluorescens (PfAR-1), which was isolated from garlic, conferred allicin resistance to Pseudomonas syringae and even to Escherichia coli Resistance-conferring genes had redox-related functions and were on core fragments from three similar genomic islands identified by sequencing and in silico analysis. Transposon mutagenesis and overexpression analyses revealed the contribution of individual candidate genes to allicin resistance. Taken together, our data define a multicomponent resistance mechanism against allicin in PfAR-1, achieved through horizontal gene transfer.
Collapse
Affiliation(s)
- Jan Borlinghaus
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Anthony Bolger
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Christina Schier
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Alexander Vogel
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Björn Usadel
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Martin Ch Gruhlke
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Alan J Slusarenko
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| |
Collapse
|
14
|
Reiter J, Borlinghaus J, Dörner P, Schröder W, Gruhlke MC, Klaas M, Slusarenko AJ. Investigation of the deposition behaviour and antibacterial effectivity of allicin aerosols and vapour using a lung model. Exp Ther Med 2020; 19:1541-1549. [PMID: 32010336 PMCID: PMC6966168 DOI: 10.3892/etm.2019.8387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022] Open
Abstract
Allicin is a natural antibiotic produced by garlic as a defence against pathogens and pests. Due to the worldwide increase in antibiotic resistance, new antibiotics are desperately required. Allicin is such a candidate and is active against several multidrug-resistant (MDR) strains of human pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). When administered orally, allicin is titrated out by glutathione in the cells and blood, and effective therapeutic concentrations are difficult to achieve at the site of an infection. However, in the case of lung infections, allicin can be delivered directly to pathogens via the pulmonary route. In this study, we designed and constructed an in vitro lung test rig, which allowed us to model accurately the exposure of lung air-passage surfaces to allicin and gentamicin, in order to examine the feasibility of combating lung infections by direct inhalation. A prototype test rig of lung bronchi with three bifurcations was constructed, which could be coated internally with a thin layer of bacteria-seeded agar medium. The deposition of antimicrobial aerosols on the modelled bronchial surfaces was followed in preliminary tests without the need for animal experiments. The differential sensitivity of the test bacteria to different antibiotics and the dose-dependency of inhibition was shown using the model. Furthermore, a synergistic effect of allicin vapour and ethanol in inhibiting bacterial growth was demonstrated. The modelling of the axial velocity air-flow distribution correlated with the regions indicating the inhibition of bacterial growth, demonstrating that the model has predictive value and can reduce the requirement for animal sacrifice in pre-clinical trials of novel antibiotics.
Collapse
Affiliation(s)
- Jana Reiter
- Department of Plant Physiology (Bio3), RWTH Aachen University, D-52074 Aachen, Germany
| | - Jan Borlinghaus
- Department of Plant Physiology (Bio3), RWTH Aachen University, D-52074 Aachen, Germany
| | - Philipp Dörner
- Institute of Aerodynamics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Wolfgang Schröder
- Institute of Aerodynamics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Martin C.H. Gruhlke
- Department of Plant Physiology (Bio3), RWTH Aachen University, D-52074 Aachen, Germany
| | - Michael Klaas
- Institute of Aerodynamics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Alan J. Slusarenko
- Department of Plant Physiology (Bio3), RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
15
|
The Disulfide Stress Response and Protein S-thioallylation Caused by Allicin and Diallyl Polysulfanes in Bacillus subtilis as Revealed by Transcriptomics and Proteomics. Antioxidants (Basel) 2019; 8:antiox8120605. [PMID: 31795512 PMCID: PMC6943732 DOI: 10.3390/antiox8120605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Garlic plants (Allium sativum L.) produce antimicrobial compounds, such as diallyl thiosulfinate (allicin) and diallyl polysulfanes. Here, we investigated the transcriptome and protein S-thioallylomes under allicin and diallyl tetrasulfane (DAS4) exposure in the Gram-positive bacterium Bacillus subtilis. Allicin and DAS4 caused a similar thiol-specific oxidative stress response, protein and DNA damage as revealed by the induction of the OhrR, PerR, Spx, YodB, CatR, HypR, AdhR, HxlR, LexA, CymR, CtsR, and HrcA regulons in the transcriptome. At the proteome level, we identified, in total, 108 S-thioallylated proteins under allicin and/or DAS4 stress. The S-thioallylome includes enzymes involved in the biosynthesis of surfactin (SrfAA, SrfAB), amino acids (SerA, MetE, YxjG, YitJ, CysJ, GlnA, YwaA), nucleotides (PurB, PurC, PyrAB, GuaB), translation factors (EF-Tu, EF-Ts, EF-G), antioxidant enzymes (AhpC, MsrB), as well as redox-sensitive MarR/OhrR and DUF24-family regulators (OhrR, HypR, YodB, CatR). Growth phenotype analysis revealed that the low molecular weight thiol bacillithiol, as well as the OhrR, Spx, and HypR regulons, confer protection against allicin and DAS4 stress. Altogether, we show here that allicin and DAS4 cause a strong oxidative, disulfide and sulfur stress response in the transcriptome and widespread S-thioallylation of redox-sensitive proteins in B. subtilis. The results further reveal that allicin and polysulfanes have similar modes of actions and thiol-reactivities and modify a similar set of redox-sensitive proteins by S-thioallylation.
Collapse
|
16
|
Gruhlke MCH, Antelmann H, Bernhardt J, Kloubert V, Rink L, Slusarenko AJ. The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effects. Free Radic Biol Med 2019; 131:144-153. [PMID: 30500420 PMCID: PMC6342545 DOI: 10.1016/j.freeradbiomed.2018.11.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
A single clove of edible garlic (Allium sativum L.) of about 10 g produces up to 5 mg of allicin (diallylthiosulfinate), a thiol-reactive sulfur-containing defence substance that gives injured garlic tissue its characteristic smell. Allicin induces apoptosis or necrosis in a dose-dependent manner but biocompatible doses influence cellular metabolism and signalling cascades. Oxidation of protein thiols and depletion of the glutathione pool are thought to be responsible for allicin's physiological effects. Here, we studied the effect of allicin on post-translational thiol-modification in human Jurkat T-cells using shotgun LC-MS/MS analyses. We identified 332 proteins that were modified by S-thioallylation in the Jurkat cell proteome which causes a mass shift of 72 Da on cysteines. Many S-thioallylated proteins are highly abundant proteins, including cytoskeletal proteins tubulin, actin, cofilin, filamin and plastin-2, the heat shock chaperones HSP90 and HSPA4, the glycolytic enzymes GAPDH, ALDOA, PKM as well the protein translation factor EEF2. Allicin disrupted the actin cytoskeleton in murine L929 fibroblasts. Allicin stimulated the immune response by causing Zn2+ release from proteins and increasing the Zn2+-dependent IL-1-triggered production of IL-2 in murine EL-4 T-cells. Furthermore, allicin caused inhibition of enolase activity, an enzyme considered a cancer therapy target. In conclusion, our study revealed the widespread extent of S-thioallylation in the human Jurkat cell proteome and showed effects of allicin exposure on essential cellular functions of selected targets, many of which are targets for cancer therapy.
Collapse
Affiliation(s)
- Martin C H Gruhlke
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, D-52056 Aachen, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Str. 12-16, D-14195 Berlin, Germany
| | - Jörg Bernhardt
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, D-17489 Greifswald, Germany
| | - Veronika Kloubert
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Alan J Slusarenko
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, D-52056 Aachen, Germany
| |
Collapse
|