1
|
Zhang X, Han S, Zeng Z, Dai J, Jia Y. Selenium-Binding Protein 1-Deficient Dendritic Cells Protect Mice from Sepsis by Increased Treg/Th17. Antioxidants (Basel) 2025; 14:468. [PMID: 40298842 PMCID: PMC12024190 DOI: 10.3390/antiox14040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Selenium-binding protein 1 (SELENBP1) has been implicated in cancer development, neurological disorders, tissue injury, metabolic regulation, and cell differentiation. Sepsis is characterized prominently by immunological dysregulation and severe organ damage. However, whether SELENBP1 improves sepsis by regulating immune cell activity remains unknown. Here, we detected an elevation of SELENBP1 levels in the blood of sepsis patients and in the livers of septic mice. Significantly, SELENBP1 knockout (KO) prolonged survival in septic mice. This phenomenon was accompanied by decreased liver damage, reduced inflammation levels, and an increased regulatory T cell/T helper 17 cell (Treg/Th17) ratio in the spleen. Additionally, SELENBP1 deficiency induced a redox imbalance and inhibited dendritic cell (DC) maturation, resulting in a tolerogenic DC (tolDC) phenotype and an increase in the Treg/Th17 ratio. Furthermore, SELENBP1-KO mature DCs (mDCs) alleviated liver injury by increasing the Treg/Th17 ratio in the spleen, thus improving the survival of septic mice. These findings indicate that SELENBP1 is involved in sepsis by regulating DC immune activity, which might provide a potential way for sepsis treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (X.Z.); (S.H.); (Z.Z.)
| | - Shuang Han
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (X.Z.); (S.H.); (Z.Z.)
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (X.Z.); (S.H.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Jie Dai
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (X.Z.); (S.H.); (Z.Z.)
| | - Yi Jia
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (X.Z.); (S.H.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
2
|
Shahidin, Wang Y, Wu Y, Chen T, Wu X, Yuan W, Zhu Q, Wang X, Zi C. Selenium and Selenoproteins: Mechanisms, Health Functions, and Emerging Applications. Molecules 2025; 30:437. [PMID: 39942544 PMCID: PMC11820089 DOI: 10.3390/molecules30030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Selenium (Se) is an essential trace element crucial for human health that primarily functions as an immunonutrient. It is incorporated into polypeptides such as selenocysteine (SeC) and selenomethionine (SeMet), two key amino acids involved in various biochemical processes. All living organisms can convert inorganic Se into biologically active organic forms, with SeMet being the predominant form and a precursor for SeC production in humans and animals. The human genome encodes 25 selenoprotein genes, which incorporate low-molecular-weight Se compounds in the form of SeC. Organic Se, especially in the form of selenoproteins, is more efficiently absorbed than inorganic Se, driving the demand for selenoprotein-based health products, such as functional foods. Se-enriched functional foods offer a practical means of delivering bioavailable Se and are associated with enhanced antioxidant properties and various health benefits. Recent advancements in selenoprotein synthesis have improved our understanding of their roles in antioxidant defense, cancer prevention, immune regulation, anti-inflammation, hypoglycemia, cardiovascular health, Alzheimer's disease, fertility, and COVID-19. This review highlights key selenoproteins and their biological functions, biosynthetic pathways, and emerging applications while highlighting the need for further research.
Collapse
Affiliation(s)
- Shahidin
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yilong Wu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Taixia Chen
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyun Wu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Wenjuan Yuan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Qiangqiang Zhu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
| | - Xuanjun Wang
- College of Resources, Environment, and Chemistry, Chuxiong Normal University, No. 546 S Rd. Lucheng, Chuxiong 675099, China
| | - Chengting Zi
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Turovsky EA, Plotnikov EY, Varlamova EG. Regulatory Role and Cytoprotective Effects of Exogenous Recombinant SELENOM under Ischemia-like Conditions and Glutamate Excitotoxicity in Cortical Cells In Vitro. Biomedicines 2024; 12:1756. [PMID: 39200220 PMCID: PMC11351740 DOI: 10.3390/biomedicines12081756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Despite the successes in the prevention and treatment of strokes, it is still necessary to search for effective cytoprotectors that can suppress the damaging factors of cerebral ischemia. Among the known neuroprotectors, there are a number of drugs with a protein nature. In the present study, we were able to obtain recombinant SELENOM, a resident of the endoplasmic reticulum that exhibits antioxidant properties in its structure and functions. The resulting SELENOM was tested in two brain injury (in vitro) models: under ischemia-like conditions (oxygen-glucose deprivation/reoxygenation, OGD/R) and glutamate excitotoxicity (GluTox). Using molecular biology methods, fluorescence microscopy, and immunocytochemistry, recombinant SELENOM was shown to dose-dependently suppress ROS production in cortical cells in toxic models, reduce the global increase in cytosolic calcium ([Ca2+]i), and suppress necrosis and late stages of apoptosis. Activation of SELENOM's cytoprotective properties occurs due to its penetration into cortical cells through actin-dependent transport and activation of the Ca2+ signaling system. The use of SELENOM resulted in increased antioxidant protection of cortical cells and suppression of the proinflammatory factors and cytokines expression.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
4
|
Ren B, Situ J, Huang X, Tan Q, Xiao S, Li N, Tian J, Du X, Ni J, Liu Q. Selenoprotein W modulates tau homeostasis in an Alzheimer's disease mouse model. Commun Biol 2024; 7:872. [PMID: 39020075 PMCID: PMC11255228 DOI: 10.1038/s42003-024-06572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Lower selenium levels are observed in Alzheimer's disease (AD) brains, while supplementation shows multiple benefits. Selenoprotein W (SELENOW) is sensitive to selenium changes and binds to tau, reducing tau accumulation. However, whether restoration of SELENOW has any protective effect in AD models and its underlying mechanism remain unknown. Here, we confirm the association between SELENOW downregulation and tau pathology, revealing SELENOW's role in promoting tau degradation through the ubiquitin‒proteasome system. SELENOW competes with Hsp70 to interact with tau, promoting its ubiquitination and inhibiting tau acetylation at K281. SELENOW deficiency leads to synaptic defects, tau dysregulation and impaired long-term potentiation, resulting in memory deficits in mice. Conversely, SELENOW overexpression in the triple transgenic AD mice ameliorates memory impairment and tau-related pathologies, featuring decreased 4-repeat tau isoform, phosphorylation at Ser396 and Ser404, neurofibrillary tangles and neuroinflammation. Thus, SELENOW contributes to the regulation of tau homeostasis and synaptic maintenance, implicating its potential role in AD.
Collapse
Affiliation(s)
- Bingyu Ren
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong, 510630, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jiaxin Situ
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xuelian Huang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Qiulong Tan
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen, Shenzhen, Guangdong, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen, Shenzhen, Guangdong, 518055, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
5
|
Jia Y, Zhang X, Wang Y, Liu Y, Dai J, Zhang L, Wu X, Zhang J, Xiang H, Yang Y, Zeng Z, Chen Y. Knocking out Selenium Binding Protein 1 Induces Depressive-Like Behavior in Mice. Biol Trace Elem Res 2024; 202:3149-3162. [PMID: 37801218 DOI: 10.1007/s12011-023-03894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
Selenium binding protein 1 (SELENBP1) is involved in neurologic disorders, such as multiple sclerosis, spinal cord injury, Parkinson's disease, epilepsy, and schizophrenia. However, the role of SELENBP1 in the neurogenesis of depression, which is a neurologic disorder, and the underlying mechanisms of oxidative stress and inflammation in depression remain unknown. In this study, we evaluated the changes in the expression levels of SELENBP1 in the hippocampus of a mouse model of depression and in the serum of human patients with depression using the Gene Expression Omnibus database. These changes were validated using blood samples from human patients with depression and mouse models with chronic unpredictable mild stress (CUMS)-induced depressive-like behavior. We also investigated the effects of SELENBP1 knockout (KO) on inflammation, oxidative stress, and hippocampal neurogenesis in mice with CUMS-induced depression. Our results revealed that SELENBP1 levels was decreased in the blood of human patients with depression and in the hippocampus of mice with CUMS-induced depression. SELENBP1 KO increased CUMS-induced depressive behavior in mice and caused dysregulation of inflammatory cytokines and oxidative stress. This led to a decrease in the numbers of doublecortin- and Ki67-positive cells, which might aggravate CUMS-induced depressive symptoms. These findings suggest that SELENBP1 might be involved in the regulation of neurogenesis in mice with depression and could be served as a potential target for diagnosing and treating depression.
Collapse
Affiliation(s)
- Yi Jia
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China.
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China.
| | - Xin Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Yongmei Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Yang Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Jie Dai
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Liangliang Zhang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Xian Wu
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Jie Zhang
- Department of Laboratory, the Second People's Hospital of Guizhou Province, Guiyang, 550004, Guizhou, China
| | - Hongxi Xiang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Yanping Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Yulian Chen
- Mental Health Education and Counseling Center for College Students, Guizhou Medical University, Guiyang, 550025, China
- Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
6
|
Tomas-Sanchez C, Blanco-Alvarez VM, Gonzalez-Barrios JA, Martinez-Fong D, Soto-Rodriguez G, Brambila E, Gonzalez-Vazquez A, Aguilar-Peralta AK, Limón DI, Vargas-Castro V, Cebada J, Alatriste-Bueno V, Leon-Chavez BA. Prophylactic zinc and therapeutic selenium administration in adult rats prevents long-term cognitive and behavioral sequelae by a transient ischemic attack. Heliyon 2024; 10:e30017. [PMID: 38707461 PMCID: PMC11068621 DOI: 10.1016/j.heliyon.2024.e30017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
The transient hypoxic-ischemic attack, also known as a minor stroke, can result in long-term neurological issues such as memory loss, depression, and anxiety due to an increase in nitrosative stress. The individual or combined administration of chronic prophylactic zinc and therapeutic selenium is known to reduce nitrosative stress in the first seven days post-reperfusion and, due to an antioxidant effect, prevent cell death. Besides, zinc or selenium, individually administered, also causes antidepressant and anxiolytic effects. Therefore, this work evaluated whether combining zinc and selenium could prevent stroke-elicited cognition and behavior deficits after 30 days post-reperfusion. Accordingly, we assessed the expression of growth factors at 7 days post-reperfusion, a four-time course of memory (from 7 to 28 days post-learning test), and cell proliferation, depression, and anxiety-like behavior at 30 days post-reperfusion. Male Wistar rats with a weight between 190 and 240 g) were treated with chronic prophylactic zinc administration with a concentration of 0.2 mg/kg for 15 days before common carotid artery occlusion (10 min) and then with therapeutic selenium (6 μg/kg) for 7 days post-reperfusion. Compared with individual administrations, the administration combined of prophylactic zinc and therapeutic selenium decreased astrogliosis, increased growth factor expression, and improved cell proliferation and survival in two regions, the hippocampus, and cerebral cortex. These effects prevented memory loss, depression, and anxiety-like behaviors. In conclusion, these results demonstrate that the prophylactic zinc administration combined with therapeutic selenium can reduce the long-term sequelae caused by the transient ischemic attack. Significance statement. A minor stroke caused by a transient ischemic attack can result in psychomotor sequelae that affect not only the living conditions of patients and their families but also the economy. The incidence of these micro-events among young people has increased in the world. Nonetheless, there is no deep understanding of how this population group responds to regular treatments (Ekker and et al., 2018) [1]. On the basis that zinc and selenium have antioxidant, anti-inflammatory, and regenerative properties in stroke animal models, our work explored whether the chronic combined administration of prophylactic zinc and therapeutic selenium could prevent neurological sequelae in the long term in a stroke rat model of unilateral common carotid artery occlusion (CCAO) by 10-min. Our results showed that this combined treatment provided a long-term neuroprotective effect by decreasing astrogliosis, memory loss, anxiety, and depression-like behavior.
Collapse
Affiliation(s)
- Constantino Tomas-Sanchez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Victor Manuel Blanco-Alvarez
- Facultad de Enfermería, Benemérita Universidad Autónoma de Puebla, Av 25 Pte 1304, Colonia Volcanes, Puebla, Mexico
| | - Juan Antonio Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital regional 1° de Octubre, ISSSTE, Avenida Instituto Politécnico Nacional #1669, 07760, México D. F., Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000, México D.F., Mexico
- Nanoparticle Therapy Institute, 404 Avenida Monte Blanco, Aguascalientes, 20120, Mexico
| | - Guadalupe Soto-Rodriguez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Col. Volcanes, 72410, Puebla, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Alejandro Gonzalez-Vazquez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Col. Volcanes, 72410, Puebla, Mexico
| | - Ana Karina Aguilar-Peralta
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Col. Volcanes, 72410, Puebla, Mexico
| | - Daniel I. Limón
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Viridiana Vargas-Castro
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Jorge Cebada
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Col. Volcanes, 72410, Puebla, Mexico
| | - Victorino Alatriste-Bueno
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Bertha Alicia Leon-Chavez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| |
Collapse
|
7
|
Zheng X, Toyama T, Siu S, Kaneko T, Sugiura H, Yamashita S, Shimoda Y, Kanamori M, Arisawa K, Endo H, Saito Y. Selenoprotein P expression in glioblastoma as a regulator of ferroptosis sensitivity: preservation of GPX4 via the cycling-selenium storage. Sci Rep 2024; 14:682. [PMID: 38182643 PMCID: PMC10770386 DOI: 10.1038/s41598-024-51259-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and deadly brain tumors; however, its current therapeutic strategies are limited. Selenoprotein P (SeP; SELENOP, encoded by the SELENOP gene) is a unique selenium-containing protein that exhibits high expression levels in astroglia. SeP is thought to be associated with ferroptosis sensitivity through the induction of glutathione peroxidase 4 (GPX4) via selenium supplementation. In this study, to elucidate the role of SeP in GBM, we analyzed its expression in GBM patients and found that SeP expression levels were significantly higher when compared to healthy subjects. Knock down of SeP in cultured GBM cells resulted in a decrease in GPX1 and GPX4 protein levels. Under the same conditions, cell death caused by RSL3, a ferroptosis inducer, was enhanced, however this enhancement was canceled by supplementation of selenite. These results indicate that SeP expression contributes to preserving GPX and selenium levels in an autocrine/paracrine manner, i.e., SeP regulates a dynamic cycling-selenium storage system in GBM. We also confirmed the role of SeP expression in ferroptosis sensitivity using patient-derived primary GBM cells. These findings indicate that expression of SeP in GBM can be a significant therapeutic target to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Xi Zheng
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Stephanie Siu
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takayuki Kaneko
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hikari Sugiura
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Shota Yamashita
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo Aoba-ku, Sendai, 980-0872, Japan
| | - Yoshiteru Shimoda
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo Aoba-ku, Sendai, 980-0872, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo Aoba-ku, Sendai, 980-0872, Japan
| | - Kotoko Arisawa
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hidenori Endo
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo Aoba-ku, Sendai, 980-0872, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
8
|
Nunes LGA, Cain A, Comyns C, Hoffmann PR, Krahn N. Deciphering the Role of Selenoprotein M. Antioxidants (Basel) 2023; 12:1906. [PMID: 38001759 PMCID: PMC10668967 DOI: 10.3390/antiox12111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Selenocysteine (Sec), the 21st amino acid, is structurally similar to cysteine but with a sulfur to selenium replacement. This single change retains many of the chemical properties of cysteine but often with enhanced catalytic and redox activity. Incorporation of Sec into proteins is unique, requiring additional translation factors and multiple steps to insert Sec at stop (UGA) codons. These Sec-containing proteins (selenoproteins) are found in all three domains of life where they often are involved in cellular homeostasis (e.g., reducing reactive oxygen species). The essential role of selenoproteins in humans requires us to maintain appropriate levels of selenium, the precursor for Sec, in our diet. Too much selenium is also problematic due to its toxic effects. Deciphering the role of Sec in selenoproteins is challenging for many reasons, one of which is due to their complicated biosynthesis pathway. However, clever strategies are surfacing to overcome this and facilitate production of selenoproteins. Here, we focus on one of the 25 human selenoproteins, selenoprotein M (SELENOM), which has wide-spread expression throughout our tissues. Its thioredoxin motif suggests oxidoreductase function; however, its mechanism and functional role(s) are still being uncovered. Furthermore, the connection of both high and low expression levels of SELENOM to separate diseases emphasizes the medical application for studying the role of Sec in this protein. In this review, we aim to decipher the role of SELENOM through detailing and connecting current evidence. With multiple proposed functions in diverse tissues, continued research is still necessary to fully unveil the role of SELENOM.
Collapse
Affiliation(s)
- Lance G. A. Nunes
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813-5525, USA
| | - Antavius Cain
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Cody Comyns
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511-4902, USA
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813-5525, USA
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511-4902, USA
| |
Collapse
|
9
|
Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023; 13:biom13050799. [PMID: 37238669 DOI: 10.3390/biom13050799] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium is a trace mineral that is essential for health. After being obtained from food and taken up by the liver, selenium performs various physiological functions in the body in the form of selenoproteins, which are best known for their redox activity and anti-inflammatory properties. Selenium stimulates the activation of immune cells and is important for the activation of the immune system. Selenium is also essential for the maintenance of brain function. Selenium supplements can regulate lipid metabolism, cell apoptosis, and autophagy, and have displayed significant alleviating effects in most cardiovascular diseases. However, the effect of increased selenium intake on the risk of cancer remains unclear. Elevated serum selenium levels are associated with an increased risk of type 2 diabetes, and this relationship is complex and nonlinear. Selenium supplementation seems beneficial to some extent; however, existing studies have not fully explained the influence of selenium on various diseases. Further, more intervention trials are needed to verify the beneficial or harmful effects of selenium supplementation in various diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Liang X, Xue Z, Zheng Y, Li S, Zhou L, Cao L, Zou Y. Selenium supplementation enhanced the expression of selenoproteins in hippocampus and played a neuroprotective role in LPS-induced neuroinflammation. Int J Biol Macromol 2023; 234:123740. [PMID: 36806773 DOI: 10.1016/j.ijbiomac.2023.123740] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Selenium (Se) is obtained from organic and inorganic selenium food content, which mainly depends on the regional soil selenium content. Selenium deficiency and decreased selenoprotein functions have been shown to associate with the progression of cognitive decline and neurodegenerations including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Selenoproteins are well recognized for their anti-oxidative activities. Given the high oxygen consumption, mammalian brains preferent@ially supplied with Se. Here, we propose a beneficiary role for dietary supplementation of sodium selenite (300 ng per gram of body weight) in ameliorating neuroinflammation induced by bilateral intracerebroventricular injection of 1 μL LPS (1 μg/μL), evidenced by the significantly reduced oxidative stress, downregulated pro-inflammatory cytokines expression, improved integrity of blood-brain barrier, as well as suppressed glial activation and shifted microglial MI/M2 polarization in Se-sup mouse brain. Se intake also reduced neural cell death and significantly improved the cognition in Se-sup mice following LPS challenge. The neuroprotective role for supplementary Se is likely to be ascribed to the overall elevated expression of selenoproteins, especially Selenoprotein P (SELENOP) and Glutathione peroxidase 4 (GPX4), ranking on top of the change in selenoprotein expression hierarchy. The regional hierarchy of Se induced elevation of SELENOP expression was further characterized. The SELENOP expression in the mediodorsal thalamic nucleus, dendric gyrus (DG) and cornu ammonis 3 (CA3) of hippocampus and lateral habenular nucleus was highly sensitive to dietary Se intake.
Collapse
Affiliation(s)
- Xiaosheng Liang
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Zhuming Xue
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangwu Zheng
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Shufang Li
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Lijun Zhou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Lin Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yi Zou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.
| |
Collapse
|
11
|
Toh P, Seale LA, Berry MJ, Torres DJ. Prolonged maternal exposure to glucocorticoids alters selenoprotein expression in the developing brain. Front Mol Neurosci 2023; 16:1115993. [PMID: 37033382 PMCID: PMC10080067 DOI: 10.3389/fnmol.2023.1115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Aberrant activation of the stress-response system in early life can alter neurodevelopment and cause long-term neurological changes. Activation of the hypothalamic-pituitary-adrenal axis releases glucocorticoids into the bloodstream, to help the organism adapt to the stressful stimulus. Elevated glucocorticoid levels can promote the accumulation of reactive oxygen species, and the brain is highly susceptible to oxidative stress. The essential trace element selenium is obtained through diet, is used to synthesize antioxidant selenoproteins, and can mitigate glucocorticoid-mediated oxidative damage. Glucocorticoids can impair antioxidant enzymes in the brain, and could potentially influence selenoprotein expression. We hypothesized that exposure to high levels of glucocorticoids would disrupt selenoprotein expression in the developing brain. C57 wild-type dams of recently birthed litters were fed either a moderate (0.25 ppm) or high (1 ppm) selenium diet and administered corticosterone (75 μg/ml) via drinking water during postnatal days 1 to 15, after which the brains of the offspring were collected for western blot analysis. Glutathione peroxidase 1 and 4 levels were increased by maternal corticosterone exposure within the prefrontal cortex, hippocampus, and hypothalamus of offspring. Additionally, levels of the glucocorticoid receptor were decreased in the hippocampus and selenoprotein W was elevated in the hypothalamus by corticosterone. Maternal consumption of a high selenium diet independently decreased glucocorticoid receptor levels in the hippocampus of offspring of both sexes, as well as in the prefrontal cortex of female offspring. This study demonstrates that early life exposure to excess glucocorticoid levels can alter selenoprotein levels in the developing brain.
Collapse
Affiliation(s)
| | | | | | - Daniel J. Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
12
|
SELENBP1 overexpression in the prefrontal cortex underlies negative symptoms of schizophrenia. Proc Natl Acad Sci U S A 2022; 119:e2203711119. [PMID: 36512497 PMCID: PMC9907074 DOI: 10.1073/pnas.2203711119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The selenium-binding protein 1 (SELENBP1) has been reported to be up-regulated in the prefrontal cortex (PFC) of schizophrenia patients in postmortem reports. However, no causative link between SELENBP1 and schizophrenia has yet been established. Here, we provide evidence linking the upregulation of SELENBP1 in the PFC of mice with the negative symptoms of schizophrenia. We verified the levels of SELENBP1 transcripts in postmortem PFC brain tissues from patients with schizophrenia and matched healthy controls. We also generated transgenic mice expressing human SELENBP1 (hSELENBP1 Tg) and examined their neuropathological features, intrinsic firing properties of PFC 2/3-layer pyramidal neurons, and frontal cortex (FC) electroencephalographic (EEG) responses to auditory stimuli. Schizophrenia-like behaviors in hSELENBP1 Tg mice and mice expressing Selenbp1 in the FC were assessed. SELENBP1 transcript levels were higher in the brains of patients with schizophrenia than in those of matched healthy controls. The hSELENBP1 Tg mice displayed negative endophenotype behaviors, including heterotopias- and ectopias-like anatomical deformities in upper-layer cortical neurons and social withdrawal, deficits in nesting, and anhedonia-like behavior. Additionally, hSELENBP1 Tg mice exhibited reduced excitabilities of PFC 2/3-layer pyramidal neurons and abnormalities in EEG biomarkers observed in schizophrenia. Furthermore, mice overexpressing Selenbp1 in FC showed deficits in sociability. These results suggest that upregulation of SELENBP1 in the PFC causes asociality, a negative symptom of schizophrenia.
Collapse
|
13
|
Jäntti H, Oksanen M, Kettunen P, Manta S, Mouledous L, Koivisto H, Ruuth J, Trontti K, Dhungana H, Keuters M, Weert I, Koskuvi M, Hovatta I, Linden AM, Rampon C, Malm T, Tanila H, Koistinaho J, Rolova T. Human PSEN1 Mutant Glia Improve Spatial Learning and Memory in Aged Mice. Cells 2022; 11:cells11244116. [PMID: 36552881 PMCID: PMC9776487 DOI: 10.3390/cells11244116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The PSEN1 ΔE9 mutation causes a familial form of Alzheimer's disease (AD) by shifting the processing of amyloid precursor protein (APP) towards the generation of highly amyloidogenic Aβ42 peptide. We have previously shown that the PSEN1 ΔE9 mutation in human-induced pluripotent stem cell (iPSC)-derived astrocytes increases Aβ42 production and impairs cellular responses. Here, we injected PSEN1 ΔE9 mutant astrosphere-derived glial progenitors into newborn mice and investigated mouse behavior at the ages of 8, 12, and 16 months. While we did not find significant behavioral changes in younger mice, spatial learning and memory were paradoxically improved in 16-month-old PSEN1 ΔE9 glia-transplanted male mice as compared to age-matched isogenic control-transplanted animals. Memory improvement was associated with lower levels of soluble, but not insoluble, human Aβ42 in the mouse brain. We also found a decreased engraftment of PSEN1 ΔE9 mutant cells in the cingulate cortex and significant transcriptional changes in both human and mouse genes in the hippocampus, including the extracellular matrix-related genes. Overall, the presence of PSEN1 ΔE9 mutant glia exerted a more beneficial effect on aged mouse brain than the isogenic control human cells likely as a combination of several factors.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Broad Institute, Cambridge, MA 02142, USA
| | - Minna Oksanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pinja Kettunen
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Stella Manta
- Centre de Recherches sur la Cognition Animale (CRCA), Université de Toulouse, CNRS, UPS, CEDEX 09, 31062 Toulouse, France
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale (CRCA), Université de Toulouse, CNRS, UPS, CEDEX 09, 31062 Toulouse, France
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Hennariikka Koivisto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Johanna Ruuth
- Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kalevi Trontti
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, 00014 Helsinki, Finland
| | - Hiramani Dhungana
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Meike Keuters
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Isabelle Weert
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Marja Koskuvi
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Solna, Sweden
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, 00014 Helsinki, Finland
| | - Anni-Maija Linden
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Université de Toulouse, CNRS, UPS, CEDEX 09, 31062 Toulouse, France
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (J.K.); (T.R.)
| | - Taisia Rolova
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (J.K.); (T.R.)
| |
Collapse
|
14
|
Nicholson JL, Toh P, Alfulaij N, Berry MJ, Torres DJ. New insights on selenoproteins and neuronal function. Free Radic Biol Med 2022; 190:55-61. [PMID: 35948259 DOI: 10.1016/j.freeradbiomed.2022.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/17/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Fifty years have passed since the discovery of the first selenoprotein by Rotruck and colleagues. In that time, the essential nature of selenium has come to light including the dependence of the brain on selenium to function properly. Animal models have shown that a lack of certain selenoproteins in the brain is detrimental for neuronal health, sometimes leading to neurodegeneration. There is also potential for selenoprotein-mediated redox balance to impact neuronal activity, including neurotransmission. Important insights on these topics have been gained over the past several years. This review briefly summarizes the known roles of specific selenoproteins in the brain while highlighting recent advancements regarding selenoproteins in neuronal function. Hypothetical models of selenoprotein function and emerging topics in the field are also provided.
Collapse
Affiliation(s)
- Jessica L Nicholson
- Department of Cell & Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA; Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Pamela Toh
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Naghum Alfulaij
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Marla J Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Daniel J Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
15
|
Jehan C, Cartier D, Bucharles C, Anouar Y, Lihrmann I. Emerging roles of ER-resident selenoproteins in brain physiology and physiopathology. Redox Biol 2022; 55:102412. [PMID: 35917681 PMCID: PMC9344019 DOI: 10.1016/j.redox.2022.102412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 12/23/2022] Open
Abstract
The brain has a very high oxygen consumption rate and is particularly sensitive to oxidative stress. It is also the last organ to suffer from a loss of selenium (Se) in case of deficiency. Se is a crucial trace element present in the form of selenocysteine, the 21st proteinogenic amino acid present in selenoproteins, an essential protein family in the brain that participates in redox signaling. Among the most abundant selenoproteins in the brain are glutathione peroxidase 4 (GPX4), which reduces lipid peroxides and prevents ferroptosis, and selenoproteins W, I, F, K, M, O and T. Remarkably, more than half of them are proteins present in the ER and recent studies have shown their involvement in the maintenance of ER homeostasis, glycoprotein folding and quality control, redox balance, ER stress response signaling pathways and Ca2+ homeostasis. However, their molecular functions remain mostly undetermined. The ER is a highly specialized organelle in neurons that maintains the physical continuity of axons over long distances through its continuous distribution from the cell body to the nerve terminals. Alteration of this continuity can lead to degeneration of distal axons and subsequent neuronal death. Elucidation of the function of ER-resident selenoproteins in neuronal pathophysiology may therefore become a new perspective for understanding the pathophysiology of neurological diseases. Here we summarize what is currently known about each of their molecular functions and their impact on the nervous system during development and stress.
Collapse
Affiliation(s)
- Cédric Jehan
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Dorthe Cartier
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bucharles
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Youssef Anouar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France.
| |
Collapse
|
16
|
Schweizer U, Fabiano M. Selenoproteins in brain development and function. Free Radic Biol Med 2022; 190:105-115. [PMID: 35961466 DOI: 10.1016/j.freeradbiomed.2022.07.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 01/18/2023]
Abstract
Expression of selenoproteins is widespread in neurons of the central nervous system. There is continuous evidence presented over decades that low levels of selenium or selenoproteins are linked to seizures and epilepsy indicating a failure of the inhibitory system. Many developmental processes in the brain depend on the thyroid hormone T3. T3 levels can be locally increased by the action of iodothyronine deiodinases on the prohormone T4. Since deiodinases are selenoproteins, it is expected that selenoprotein deficiency may affect development of the central nervous system. Studies in genetically modified mice or clinical observations of patients with rare diseases point to a role of selenoproteins in brain development and degeneration. In particular selenoprotein P is central to brain function by virtue of its selenium transport function into and within the brain. We summarize which selenoproteins are essential for the brain, which processes depend on selenoproteins, and what is known about genetic deficiencies of selenoproteins in humans. This review is not intended to cover the potential influence of selenium or selenoproteins on major neurodegenerative disorders in human.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115, Bonn, Germany.
| | - Marietta Fabiano
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115, Bonn, Germany
| |
Collapse
|
17
|
Wu H, Zhao G, Liu S, Zhang Q, Wang P, Cao Y, Wu L. Supplementation with Selenium Attenuates Autism-Like Behaviors and Improves Oxidative Stress, Inflammation and Related Gene Expression in an Autism Disease Model. J Nutr Biochem 2022; 107:109034. [DOI: 10.1016/j.jnutbio.2022.109034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2022] [Accepted: 03/20/2022] [Indexed: 12/23/2022]
|
18
|
Deolankar SC, Patil AH, Rex DAB, Subba P, Mahadevan A, Prasad TSK. Mapping Post-Translational Modifications in Brain Regions in Alzheimer's Disease Using Proteomics Data Mining. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:525-536. [PMID: 34255573 DOI: 10.1089/omi.2021.0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia and a neurodegenerative disease. Proteomics and post-translational modification (PTM) analyses offer new opportunities for a comprehensive understanding of pathophysiology of brain in AD. We report here multiple PTMs in patients with AD, harnessing publicly available proteomics data from nine brain regions and at three different Braak stages of disease progression. Specifically, we identified 7190 peptides with PTMs, corresponding to 2545 proteins from brain regions with intermediate tangles, and 6864 peptides with PTMs corresponding to 2465 proteins from brain regions with severe tangles. A total of 103 proteins with PTMs were expressed uniquely to intermediate tangles and severe tangles compared to no tangles. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis suggested the association of these proteins in AD progression through platelet activation. These modified proteins were also found to be enriched for the tricarboxylic acid (TCA) cycle, respiratory electron cycle, and detoxification of reactive oxygen species. The multi-PTM data reported here contribute to our understanding of the neurobiology of AD and highlight the prospects of omics systems science research in neurodegenerative diseases. The present study provides a region-wise classification for the proteins with PTMs along with their differential expression patterns, providing insights into the localization of these proteins upon modification. The catalog of multi-PTMs identified in the context of AD from different brain regions provides a unique platform for generating newer hypotheses in understanding the putative role of specific PTMs in AD pathogenesis.
Collapse
Affiliation(s)
- Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Arun H Patil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | |
Collapse
|
19
|
Kilonzo VW, Sasuclark AR, Torres DJ, Coyle C, Pilat JM, Williams CS, Pitts MW. Juvenile Selenium Deficiency Impairs Cognition, Sensorimotor Gating, and Energy Homeostasis in Mice. Front Nutr 2021; 8:667587. [PMID: 34026810 PMCID: PMC8138326 DOI: 10.3389/fnut.2021.667587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023] Open
Abstract
Selenium (Se) is an essential micronutrient of critical importance to mammalian life. Its biological effects are primarily mediated via co-translational incorporation into selenoproteins, as the unique amino acid, selenocysteine. These proteins play fundamental roles in redox signaling and includes the glutathione peroxidases and thioredoxin reductases. Environmental distribution of Se varies considerably worldwide, with concomitant effects on Se status in humans and animals. Dietary Se intake within a narrow range optimizes the activity of Se-dependent antioxidant enzymes, whereas both Se-deficiency and Se-excess can adversely impact health. Se-deficiency affects a significant proportion of the world's population, with hypothyroidism, cardiomyopathy, reduced immunity, and impaired cognition being common symptoms. Although relatively less prevalent, Se-excess can also have detrimental consequences and has been implicated in promoting both metabolic and neurodegenerative disease in humans. Herein, we sought to comprehensively assess the developmental effects of both Se-deficiency and Se-excess on a battery of neurobehavioral and metabolic tests in mice. Se-deficiency elicited deficits in cognition, altered sensorimotor gating, and increased adiposity, while Se-excess was surprisingly beneficial.
Collapse
Affiliation(s)
- Victor W. Kilonzo
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Alexandru R. Sasuclark
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Daniel J. Torres
- Pacific Biosciences Research Center, University of Hawaii at Manoa, School of Ocean and Earth Science and Technology (SOEST), Honolulu, HI, United States
| | - Celine Coyle
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Jennifer M. Pilat
- Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Christopher S. Williams
- Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Matthew W. Pitts
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
20
|
Elkjaer ML, Nawrocki A, Kacprowski T, Lassen P, Simonsen AH, Marignier R, Sejbaek T, Nielsen HH, Wermuth L, Rashid AY, Høgh P, Sellebjerg F, Reynolds R, Baumbach J, Larsen MR, Illes Z. CSF proteome in multiple sclerosis subtypes related to brain lesion transcriptomes. Sci Rep 2021; 11:4132. [PMID: 33603109 PMCID: PMC7892884 DOI: 10.1038/s41598-021-83591-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
To identify markers in the CSF of multiple sclerosis (MS) subtypes, we used a two-step proteomic approach: (i) Discovery proteomics compared 169 pooled CSF from MS subtypes and inflammatory/degenerative CNS diseases (NMO spectrum and Alzheimer disease) and healthy controls. (ii) Next, 299 proteins selected by comprehensive statistics were quantified in 170 individual CSF samples. (iii) Genes of the identified proteins were also screened among transcripts in 73 MS brain lesions compared to 25 control brains. F-test based feature selection resulted in 8 proteins differentiating the MS subtypes, and secondary progressive (SP)MS was the most different also from controls. Genes of 7 out these 8 proteins were present in MS brain lesions: GOLM was significantly differentially expressed in active, chronic active, inactive and remyelinating lesions, FRZB in active and chronic active lesions, and SELENBP1 in inactive lesions. Volcano maps of normalized proteins in the different disease groups also indicated the highest amount of altered proteins in SPMS. Apolipoprotein C-I, apolipoprotein A-II, augurin, receptor-type tyrosine-protein phosphatase gamma, and trypsin-1 were upregulated in the CSF of MS subtypes compared to controls. This CSF profile and associated brain lesion spectrum highlight non-inflammatory mechanisms in differentiating CNS diseases and MS subtypes and the uniqueness of SPMS.
Collapse
Affiliation(s)
- Maria L Elkjaer
- Department of Neurology, Odense University Hospital, J.B. Winslowsvej 4, 5000, Odense C, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tim Kacprowski
- Research Group Computational Systems Medicine, Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.,Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Medical School Hannover, Brunswick, Germany
| | - Pernille Lassen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Romain Marignier
- Service de Neurologie, Sclérose en Plaques, Lyon Neuroscience Research Center, Lyon, France
| | - Tobias Sejbaek
- Department of Neurology, Odense University Hospital, J.B. Winslowsvej 4, 5000, Odense C, Denmark.,Department of Neurology, Hospital South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Helle H Nielsen
- Department of Neurology, Odense University Hospital, J.B. Winslowsvej 4, 5000, Odense C, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lene Wermuth
- Department of Neurology, Odense University Hospital, J.B. Winslowsvej 4, 5000, Odense C, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Alyaa Yakut Rashid
- Department of Neurology, Hospital South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Peter Høgh
- Regional Dementia Research Centre, Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark., Copenhagen, Denmark
| | | | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, J.B. Winslowsvej 4, 5000, Odense C, Denmark. .,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark. .,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
21
|
Solovyev N, Drobyshev E, Blume B, Michalke B. Selenium at the Neural Barriers: A Review. Front Neurosci 2021; 15:630016. [PMID: 33613188 PMCID: PMC7892976 DOI: 10.3389/fnins.2021.630016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions. To do so, Se-species have to cross the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface between the general circulation of the body and the CNS is the BBB. Endothelial cells of brain capillaries forming the so-called tight junctions are the primary anatomic units of the BBB, mainly responsible for barrier function. The current review focuses on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent pathway, and supplementary transport routes of Se into the brain via low molecular weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB, BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding investigating the role of Se and selenoproteins in the gut-brain axis are outlined.
Collapse
Affiliation(s)
| | - Evgenii Drobyshev
- Institut für Ernährungswissenschaft, Universität Potsdam, Potsdam, Germany
| | - Bastian Blume
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|