1
|
Elattar KM, Ghoniem AA, Al-Otibi FO, Fakhouri AS, Helmy YA, Saber WIA, Hassan MAE, Elsayed A. Eco-friendly synthesis of Ag/CeO 2 and CuO/CeO 2 nanocomposites using Curcuma longa extract and assessment of their antioxidant, antifungal, and cytotoxic activities. RSC Adv 2025; 15:12100-12116. [PMID: 40248230 PMCID: PMC12005080 DOI: 10.1039/d5ra00739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
This work focused on the biosynthesis of Ag/CeO2 and CuO/CeO2 nanocomposites (NCs) using Curcuma longa extract. The nanocomposites were efficiently characterized using different techniques such as FTIR, UV-visible spectroscopy, zeta potential, DLS, TEM, SEM, EDX, and XRD analyses. The C. longa extract provided high phenolic and flavonoid contents, while demonstrating strong antioxidant action at IC50 = 0.042 mg mL-1. In particular, both nanocomposites exhibited privileged antifungal activity against Macrophomina phaseolina with superiority to CuO/CeO2 (MIC = 29 µg mL-1) over Ag/CeO2 (MIC = 49 µg mL-1). TEM analyses confirmed the adverse effect of nanocomposites on the fungal cell wall. The CuO/CeO2 structure led to mitochondrial and cytoplasmic damage in MCF-7 cells (IC50 = 0.5071 µg mL-1) according to cytotoxicity tests; however, the Ag/CeO2 NC resulted in significant nuclear damage and an increased occurrence of autophagy events. The nanocomposites showed cytotoxic properties by causing oxidative stress, leading to damage of the genomic material and defects in cell structure, suggesting potential therapeutic applications.
Collapse
Affiliation(s)
- Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University El-Gomhoria St. Mansoura 35516 Egypt
| | - Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center Giza 12619 Egypt
| | - Fatimah O Al-Otibi
- Botany and Microbiology Department, Faculty of Science, King Saud University Riyadh 11451 Saudi Arabia
- Center of Excellence in Biotechnology Research, King Saud University Riyadh 11451 Saudi Arabia
| | - Abdulaziz S Fakhouri
- Center of Excellence in Biotechnology Research, King Saud University Riyadh 11451 Saudi Arabia
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University Riyadh 12372 Saudi Arabia
| | - Yosra A Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky Lexington KY 40546 USA
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center Giza 12619 Egypt
| | - Mahmoud A E Hassan
- Animal Production Research Institute (APRI), Agricultural Research Center Giza 12619 Egypt
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
2
|
Pei K, Georgi M, Hill D, Lam CFJ, Wei W, Cordeiro MF. Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals (Basel) 2024; 17:1190. [PMID: 39338350 PMCID: PMC11435059 DOI: 10.3390/ph17091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma stands as a primary cause of irreversible blindness globally, characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs). While current treatments primarily focus on controlling intraocular pressure (IOP), many patients continue to experience vision loss. Therefore, the research focus has shifted to therapeutic targets aimed at preventing or delaying RGC death and optic nerve degeneration to slow or halt disease progression. Traditional ocular drug administration, such as eye drops or oral medications, face significant challenges due to the eye's unique structural and physiological barriers, which limit effective drug delivery. Invasive methods like intravitreal injections can cause side effects such as bleeding, inflammation, and infection, making non-invasive delivery methods with high bioavailability very desirable. Nanotechnology presents a promising approach to addressing these limitations in glaucoma treatment. This review summarizes current approaches involving neuroprotective drugs combined with nanocarriers, and their impact for future use.
Collapse
Affiliation(s)
- Kun Pei
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Maria Georgi
- St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
| | - Daniel Hill
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Wei Wei
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
- Western Eye Hospital, London NW1 5QH, UK
| |
Collapse
|
3
|
Sun H, Huang Y, Chen Y, Liu X, Leng X. Effects of curcumin, phycocyanin, or modified lycopene colorants on the physicochemical and sensory properties of whey protein-cellulose nanocrystal packaging films. Food Chem 2023; 412:135541. [PMID: 36746069 DOI: 10.1016/j.foodchem.2023.135541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/29/2023]
Abstract
To utilize natural hydrophobic/hydrophilic colorants to manufacture good quality and attractive packaging films, we investigated the effects of natural colorants (curcumin, phycocyanin, modified lycopene, and their mixed colorants) on the physicochemical and sensory properties of whey protein isolate-cellulose nanocrystal packaging film. Owing to the improvement in hydrophobicity and spatial density, moisture content (MC) and water vapor permeability (WVP) of films containing curcumin were reduced by 16.91% and 8.49%, respectively, in contrast to that, MC and WVP increased by 10.75% and 4.09%, respectively, in film containing modified lycopene. Mechanical testing, infrared spectra, and X-ray diffraction revealed the retention of structural properties of protein matrix. Rate-All-That-Apply evaluation indicated that films containing colorants enriched tactile and visual sensory characteristics. The eye tracking testing of packed foods showed that preferential attraction depends on the color of the food itself. Thus, a consumer-oriented multi-colored packaging film with good performance was achieved.
Collapse
Affiliation(s)
- Hongbo Sun
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Yue Huang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Yuying Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Xinnan Liu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Xiaojing Leng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Fanaro GB, Marques MR, Calaza KDC, Brito R, Pessoni AM, Mendonça HR, Lemos DEDA, de Brito Alves JL, de Souza EL, Cavalcanti Neto MP. New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1237. [PMID: 37371967 PMCID: PMC10295526 DOI: 10.3390/antiox12061237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular alterations limited to the advanced disease stages. In response to the low resolution and limitations of the DR treatment, there is an urgent need to develop more effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various diseases by modulating multiple cell signaling pathways and gene expression, contributing to the improvement of several chronic diseases, including metabolic and neurodegenerative diseases. However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a lack of data, especially from human studies, on the therapeutic potential of these substances. This review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory nature, through evidence from experimental studies. Finally, the review highlights the potential of dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further clinical studies approaching the efficacy of these substances in DR management.
Collapse
Affiliation(s)
- Gustavo Bernardes Fanaro
- Institute of Health and Biotechnology, Federal University of Amazonas, Manaus 69460000, Amazonas, Brazil;
| | | | - Karin da Costa Calaza
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | - Rafael Brito
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | | | - Henrique Rocha Mendonça
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Marinaldo Pacífico Cavalcanti Neto
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| |
Collapse
|
5
|
Zeng Y, Luo Y, Wang L, Zhang K, Peng J, Fan G. Therapeutic Effect of Curcumin on Metabolic Diseases: Evidence from Clinical Studies. Int J Mol Sci 2023; 24:ijms24043323. [PMID: 36834734 PMCID: PMC9959718 DOI: 10.3390/ijms24043323] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Metabolic diseases have become a serious threat to human health worldwide. It is crucial to look for effective drugs from natural products to treat metabolic diseases. Curcumin, a natural polyphenolic compound, is mainly obtained from the rhizomes of the genus Curcuma. In recent years, clinical trials using curcumin for the treatment of metabolic diseases have been increasing. In this review, we provide a timely and comprehensive summary of the clinical progress of curcumin in the treatment of three metabolic diseases, namely type 2 diabetes mellitus (T2DM), obesity and non-alcoholic fatty liver disease (NAFLD). The therapeutic effects and underlying mechanisms of curcumin on these three diseases are presented categorically. Accumulating clinical evidence demonstrates that curcumin has good therapeutic potential and a low number of side effects for the three metabolic diseases. It can lower blood glucose and lipid levels, improve insulin resistance and reduce inflammation and oxidative stress. Overall, curcumin may be an effective drug for the treatment of T2DM, obesity and NAFLD. However, more high-quality clinical trials are still required in the future to verify its efficacy and determine its molecular mechanisms and targets.
Collapse
Affiliation(s)
- Yujiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuting Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: ; Tel.: +86-28-61656141
| |
Collapse
|
6
|
Multifaceted Pharmacological Potentials of Curcumin, Genistein, and Tanshinone IIA through Proteomic Approaches: An In-Depth Review. Cancers (Basel) 2022; 15:cancers15010249. [PMID: 36612248 PMCID: PMC9818426 DOI: 10.3390/cancers15010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023] Open
Abstract
Phytochemicals possess various intriguing pharmacological properties against diverse pathological conditions. Extensive studies are on-going to understand the structural/functional properties of phytochemicals as well as the molecular mechanisms of their therapeutic function against various disease conditions. Phytochemicals such as curcumin (Cur), genistein (Gen), and tanshinone-IIA (Tan IIA) have multifaceted therapeutic potentials and various efforts are in progress to understand the molecular dynamics of their function with different tools and technologies. Cur is an active lipophilic polyphenol with pleiotropic function, and it has been shown to possess various intriguing properties including antioxidant, anti-inflammatory, anti-microbial, anticancer, and anti-genotoxic properties besides others beneficial properties. Similarly, Gen (an isoflavone) exhibits a wide range of vital functions including antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-angiogenic activities etc. In addition, Tan IIA, a lipophilic compound, possesses antioxidant, anti-angiogenic, anti-inflammatory, anticancer activities, and so on. Over the last few decades, the field of proteomics has garnered great momentum mainly attributed to the recent advancement in mass spectrometry (MS) techniques. It is envisaged that the proteomics technology has considerably contributed to the biomedical research endeavors lately. Interestingly, they have also been explored as a reliable approach to understand the molecular intricacies related to phytochemical-based therapeutic interventions. The present review provides an overview of the proteomics studies performed to unravel the underlying molecular intricacies of various phytochemicals such as Cur, Gen, and Tan IIA. This in-depth study will help the researchers in better understanding of the pharmacological potential of the phytochemicals at the proteomics level. Certainly, this review will be highly instrumental in catalyzing the translational shift from phytochemical-based biomedical research to clinical practice in the near future.
Collapse
|
7
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
8
|
Carozza G, Tisi A, Capozzo A, Cinque B, Giovannelli A, Feligioni M, Flati V, Maccarone R. New Insights into Dose-Dependent Effects of Curcumin on ARPE-19 Cells. Int J Mol Sci 2022; 23:ijms232314771. [PMID: 36499098 PMCID: PMC9738655 DOI: 10.3390/ijms232314771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Opposing dose-dependent effects of curcumin (Cur) have been documented in Retinal Pigment Epithelium (RPE); therefore, to shed the light on the mechanisms of action is crucial for ophthalmic applications. On this basis we explored new insights about the dose-dependent mechanisms triggered by Cur in human retinal pigment epithelial cells (ARPE-19). Three concentrations (0.01 mM; 0.05 mM; 0.1 mM) of Cur were tested, followed by morphological, molecular, and functional analysis of the cells. Cur 0.01 mM promotes a significant increase in cell proliferation, not affecting cell cycle progression and apoptosis; by contrast, Cur 0.05 mM and 0.1 mM block cellular proliferation and trigger S-phase cell cycle arrest without inducing apoptosis. The observation of neuronal-like morphological changes in Cur 0.05 mM and 0.1 mM were not associated with neuronal differentiation, as observed by the quantification of Neurofilament-200 and by the analysis of voltage-dependent currents by patch clamp. Evaluation of autophagic markers LC3BII and p62 revealed significant modulations, suggesting an important activation of autophagy in ARPE-19 cells treated with Cur 0.05 mM and Cur 0.1 mM; conversely, Cur 0.01 mM did not affect autophagy. Altogether, our findings show new dose-dependent mechanisms of action of Cur that suggest a wide therapeutic application in ocular diseases with different pathogenesis (i.e., proliferative vitreoretinopathy or Age-Related Macular Degeneration).
Collapse
Affiliation(s)
- Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Annamaria Capozzo
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Aldo Giovannelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marco Feligioni
- European Brain Research Institute, 00161 Rome, Italy
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, 20144 Milano, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence:
| |
Collapse
|
9
|
Xie E, Nadeem U, Xie B, D’Souza M, Sulakhe D, Skondra D. Using Computational Drug-Gene Analysis to Identify Novel Therapeutic Candidates for Retinal Neuroprotection. Int J Mol Sci 2022; 23:ijms232012648. [PMID: 36293505 PMCID: PMC9604082 DOI: 10.3390/ijms232012648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Retinal cell death is responsible for irreversible vision loss in many retinal disorders. No commercially approved treatments are currently available to attenuate retinal cell loss and preserve vision. We seek to identify chemicals/drugs with thoroughly-studied biological functions that possess neuroprotective effects in the retina using a computational bioinformatics approach. We queried the National Center for Biotechnology Information (NCBI) to identify genes associated with retinal neuroprotection. Enrichment analysis was performed using ToppGene to identify compounds related to the identified genes. This analysis constructs a Pharmacome from multiple drug-gene interaction databases to predict compounds with statistically significant associations to genes involved in retinal neuroprotection. Compounds with known deleterious effects (e.g., asbestos, ethanol) or with no clinical indications (e.g., paraquat, ozone) were manually filtered. We identified numerous drug/chemical classes associated to multiple genes implicated in retinal neuroprotection using a systematic computational approach. Anti-diabetics, lipid-lowering medicines, and antioxidants are among the treatments anticipated by this analysis, and many of these drugs could be readily repurposed for retinal neuroprotection. Our technique serves as an unbiased tool that can be utilized in the future to lead focused preclinical and clinical investigations for complex processes such as neuroprotection, as well as a wide range of other ocular pathologies.
Collapse
Affiliation(s)
- Edward Xie
- Chicago Medical School at Rosalind, Franklin University of Medicine and Science, Chicago, IL 60064, USA
| | - Urooba Nadeem
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Bingqing Xie
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Mark D’Souza
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Dinanath Sulakhe
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| |
Collapse
|
10
|
Nadeem U, Xie B, Xie EF, D'Souza M, Dao D, Sulakhe D, Skondra D. Using Advanced Bioinformatics Tools to Identify Novel Therapeutic Candidates for Age-Related Macular Degeneration. Transl Vis Sci Technol 2022; 11:10. [PMID: 35972434 PMCID: PMC9396676 DOI: 10.1167/tvst.11.8.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Age-related macular degeneration (AMD) is the most common cause of aging-related blindness in the developing world. Although medications can slow progressive wet AMD, currently, no drugs to treat dry-AMD are available. We use a systems or in silico biology analysis to identify chemicals and drugs approved by the Food and Drug Administration for other indications that can be used to treat and prevent AMD. Methods We queried National Center for Biotechnology Information to identify genes associated with AMD, wet AMD, dry AMD, intermediate AMD, and geographic atrophy to date. We combined genes from various AMD subtypes to reflect distinct stages of disease. Enrichment analysis using the ToppGene platform predicted molecules that can influence AMD genes. Compounds without clinical indications or with deleterious effects were manually filtered. Results We identified several drug/chemical classes that can affect multiple genes involved in AMD. The drugs predicted from this analysis include antidiabetics, lipid-lowering agents, and antioxidants, which could theoretically be repurposed for AMD. Metformin was identified as the drug with the strongest association with wet AMD genes and is among the top candidates in all dry AMD subtypes. Curcumin, statins, and antioxidants are also among the top drugs correlating with AMD-risk genes. Conclusions We use a systematic computational process to discover potential therapeutic targets for AMD. Our systematic and unbiased approach can be used to guide targeted preclinical/clinical studies for AMD and other ocular diseases. Translational Relevance Advanced bioinformatics models identify novel chemicals and approved drug candidates that can be efficacious for different subtypes of AMD.
Collapse
Affiliation(s)
- Urooba Nadeem
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Bingqing Xie
- Department of Medicine, University of Chicago, IL, USA
| | - Edward F Xie
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Mark D'Souza
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - David Dao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL, USA
| | | | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Guarino O, Iovino C, Di Iorio V, Rosolia A, Schiavetti I, Lanza M, Simonelli F. Anatomical and Functional Effects of Oral Administration of Curcuma Longa and Boswellia Serrata Combination in Patients with Treatment-Naïve Diabetic Macular Edema. J Clin Med 2022; 11:jcm11154451. [PMID: 35956066 PMCID: PMC9369822 DOI: 10.3390/jcm11154451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/07/2022] Open
Abstract
Anti-vascular endothelial growth factor nowdays represents the standard of care for diabetic macular edema (DME). Nevertheless, the burden of injections worldwide has created tremendous stress on the healthcare system during the COVID-19 pandemic. The aim of this study was to investigate the effects of the oral administration of Curcuma longa and Boswellia serrata (Retimix®) in patients with non-proliferative diabetic retinopathy (DR) and treatment-naïve DME < 400 μm, managed during the COVID-19 pandemic. In this retrospective study, patients were enrolled and divided into two groups, one undergoing observation (Group A, n 12) and one receiving one sachet a day of Retimix® (Group B, n 49). Best-corrected visual acuity (BCVA) and central macular thickness (CMT) measured by spectral-domain optical coherence tomography were performed at baseline, then at one and six months. A mixed-design ANOVA was calculated to determine whether the change in CMT and BCVA over time differed according to the consumption of Retimix®. The interaction between time and treatment was significant, with F (1.032, 102.168) = 14.416; η2 = 0.127; p < 0.001, indicating that the change in terms of CMT and BCVA over time among groups was significantly different. In conclusion, our results show the efficacy of Curcuma longa and Boswellia serrata in patients with non-proliferative DR and treatment-naïve DME in maintaining baseline CMT and BCVA values over time.
Collapse
Affiliation(s)
- Olimpia Guarino
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (O.G.); (V.D.I.); (A.R.); (M.L.); (F.S.)
| | - Claudio Iovino
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (O.G.); (V.D.I.); (A.R.); (M.L.); (F.S.)
- Correspondence:
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (O.G.); (V.D.I.); (A.R.); (M.L.); (F.S.)
| | - Andrea Rosolia
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (O.G.); (V.D.I.); (A.R.); (M.L.); (F.S.)
| | - Irene Schiavetti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Michele Lanza
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (O.G.); (V.D.I.); (A.R.); (M.L.); (F.S.)
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (O.G.); (V.D.I.); (A.R.); (M.L.); (F.S.)
| |
Collapse
|
12
|
Hassanzadeh K, Vahabzadeh Z, Buccarello L, Dragotto J, Corbo M, Maccarone R, Feligioni M. Protective Effect of Curcuma Extract in an Ex Vivo Model of Retinal Degeneration via Antioxidant Activity and Targeting the SUMOylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8923615. [PMID: 35941902 PMCID: PMC9356244 DOI: 10.1155/2022/8923615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Retinal degeneration is the major and principal cause behind many incurable blindness diseases. Several studies indicated the neuroprotective effect of Curcuma longa in eye pathologies, specifically retinopathy. However, the molecular mechanism behind its effect has not been completely elucidated. Using an ex vivo model of retinal degeneration obtained from an ex vivo optic nerve cut (ONC), we demonstrated that Curcuma extract (Cur) exerted a neuroprotective effect. Importantly, Cur was able to modulate apoptosis and MAPK signaling pathway activation and prevent retinal ganglion cell (RGC) loss. Other well-known neuroprotective pharmacological tools, including memantine (Mem), citicoline (Cit), and ginkgolic acid (GA), were used to compare the potential mechanisms of Cur. The antioxidant activity of retinas treated with Cur following optic nerve cut was significantly higher than control, but Cur failed to change the retina glutamate content. Considering the antioxidant effect of Cur and taking advantage of our recent findings on the crosstalk between oxidative stress and post-translational protein modifiers, in particular, small ubiquitin-related modifier (SUMO), we were interested in exploring the effect of Cur on SUMOylation. We found that Cur significantly prevented the increase of protein SUMOylation, confirming our previous in vitro data indicating the cytoprotective effect of curcumin through modulating the oxidative stress and SUMO-JNK axis. Altogether, these results suggest that Curcuma protects the retina from degeneration via antioxidant activity and targets SUMOylation. Therefore, it might be considered for the combination therapy with other neuroprotective agents with different mechanisms in preclinical studies on retinal degeneration.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy
| | - Zakaria Vahabzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Lucia Buccarello
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy
- Need Institute, Milan, Italy
| | - Jessica Dragotto
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan 20144, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan 20144, Italy
| |
Collapse
|
13
|
Retinal Toxicity Induced by Chemical Agents. Int J Mol Sci 2022; 23:ijms23158182. [PMID: 35897758 PMCID: PMC9331776 DOI: 10.3390/ijms23158182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Vision is an important sense for humans, and visual impairment/blindness has a huge impact in daily life. The retina is a nervous tissue that is essential for visual processing since it possesses light sensors (photoreceptors) and performs a pre-processing of visual information. Thus, retinal cell dysfunction or degeneration affects visual ability and several general aspects of the day-to-day of a person's lives. The retina has a blood-retinal barrier, which protects the tissue from a wide range of molecules or microorganisms. However, several agents, coming from systemic pathways, reach the retina and influence its function and survival. Pesticides are still used worldwide for agriculture, contaminating food with substances that could reach the retina. Natural products have also been used for therapeutic purposes and are another group of substances that can get to the retina. Finally, a wide number of medicines administered for different diseases can also affect the retina. The present review aimed to gather recent information about the hazard of these products to the retina, which could be used to encourage the search for more healthy, suitable, or less risky agents.
Collapse
|
14
|
Allegri P, Cimino L, Davis JL, Tugal-Tutkun I. Assessment of the Anti-inflammatory Effects of NORFLO® ORO in Acute Relapses of HLA-B27-associated Autoimmune Uveitis: A Multicenter, Randomized, Placebo-controlled, Double-blind Clinical Study. Ocul Immunol Inflamm 2022; 31:526-535. [PMID: 35353651 DOI: 10.1080/09273948.2022.2039210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND An effective therapy to reduce the number and severity of HLA-B27-related acute anterior uveitis (AAU) recurrences represents a clinical need. Curcumin is a promising therapeutic option in various inflammatory eye diseases. To enhance its absorption and eye tissue selectivity, a phospholipidic-curcumin complex (PHBC) has been formulated (Iphytoone®, Eye Pharma S.p.A.). AIMS This study investigates if PHBC is effective and safe to decrease the number and intensity of HLA-B27-related AAU relapses. METHODS HLA-B27-related AAU patients were randomly divided to receive PHBC or placebo for 12 months (NCT03584724). RESULTS Compared with the previous year, the number of relapses decreased in both groups. The proportion of responders was significantly higher in the PBHC group. The severity of attacks was comparable. The study drug was well tolerated. CONCLUSIONS A beneficial effect of PHBC treatment is suggested because the proportion of responders was significantly higher in this group of patients.
Collapse
Affiliation(s)
- Pia Allegri
- Uveitis and Inflammatory Eye Diseases Referral Center, Rapallo Hospital, Genova, Italy
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Janet L Davis
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ilknur Tugal-Tutkun
- Department of Ophthalmology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
15
|
Parravano M, Allegrini D, Carnevali A, Costanzo E, Giannaccare G, Giorno P, Scorcia V, Spedicato GA, Varano M, Romano MR. Effectiveness of a Hydrophilic Curcumin-Based Formulation in Coadjuvating the Therapeutic Effect of Intravitreal Dexamethasone in Subjects With Diabetic Macular Edema. Front Pharmacol 2022; 12:726104. [PMID: 35058773 PMCID: PMC8763693 DOI: 10.3389/fphar.2021.726104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose: This study evaluates if the addition of a curcumin formulation with a polyvinylpyrrolidone-hydrophilic carrier (CHC; Diabec®, Alfa Intes, Italy) to intravitreal injections of dexamethasone (DEX-IVT) can affect the morphological retinal characteristics, extending the steroid re-treatment period in patients with diabetic macular edema (DME). Methods: A randomized controlled clinical trial was carried out in DME patients, randomly assigned to receive DEX-IVT or DEX-IVT and a CHC. The evaluation of the mean difference of central retinal thickness (CRT) was the primary aim. Secondary aims were the evaluations of best-corrected visual acuity, differences in the predetermined retinal layer thickness, the number/time of re-treatment, and the assessment of safety. Results: A total of 73 DME patients were included (35 in the control group and 38 in the combined therapy group). In both the control and combined therapy groups, the mean CRT change from T0 to the 6 months’ evaluation was significant (p = 0.00). The mean CRT result was significantly different at month 4 (p = 0.01) between the control and combined therapy groups, with a greater reduction in the combined therapy group, in particular, in patients with ≤10 years of diabetes. A trend of CRT reduction in the combined therapy group has been observed also considering patients with subfoveal neuroretinal detachment. In addition, we observed that the reduction of inner retinal layer thickness was greater in the combination group, in comparison with controls. Conclusion: The combination of a CHC to DEX-IVT is a promising therapeutic option in case of DME, in particular, for patients with early-stage diabetes and with an inflammatory phenotype. Further studies will be necessary to confirm these findings.
Collapse
Affiliation(s)
| | | | - Adriano Carnevali
- Ophthalmology Unit, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Giuseppe Giannaccare
- Ophthalmology Unit, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Vincenzo Scorcia
- Ophthalmology Unit, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | | | - Mario R Romano
- Department of Ophthalmology, Bergamo, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
16
|
Role of Curcumin in Retinal Diseases-A review. Graefes Arch Clin Exp Ophthalmol 2022; 260:1457-1473. [PMID: 35015114 PMCID: PMC8748528 DOI: 10.1007/s00417-021-05542-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To review the role of curcumin in retinal diseases, COVID era, modification of the molecule to improve bioavailability and its future scope. METHODS PubMed and MEDLINE searches were pertaining to curcumin, properties of curcumin, curcumin in retinal diseases, curcumin in diabetic retinopathy, curcumin in age-related macular degeneration, curcumin in retinal and choroidal diseases, curcumin in retinitis pigmentosa, curcumin in retinal ischemia reperfusion injury, curcumin in proliferative vitreoretinopathy and curcumin in current COVID era. RESULTS In experimental models, curcumin showed its pleiotropic effects in retinal diseases like diabetic retinopathy by increasing anti-oxidant enzymes, upregulating HO-1, nrf2 and reducing or inhibiting inflammatory mediators, growth factors and by inhibiting proliferation and migration of retinal endothelial cells in a dose-dependent manner in HRPC, HREC and ARPE-19 cells. In age-related macular degeneration, curcumin acts by reducing ROS and inhibiting apoptosis inducing proteins and cellular inflammatory genes and upregulating HO-1, thioredoxin and NQO1. In retinitis pigmentosa, curcumin has been shown to delay structural defects of P23H gene in P23H-rhodopsin transgenic rats. In proliferative vitreoretinopathy, curcumin inhibited the action of EGF in a dose- and time-dependent manner. In retinal ischemia reperfusion injury, curcumin downregulates IL-17, IL-23, NFKB, STAT-3, MCP-1 and JNK. In retinoblastoma, curcumin inhibits proliferation, migration and apoptosis of RBY79 and SO-RB50. Curcumin has already proven its efficacy in inhibiting viral replication, coagulation and cytokine storm in COVID era. CONCLUSION Curcumin is an easily available spice used traditionally in Indian cooking. The benefits of curcumin are manifold, and large randomized controlled trials are required to study its effects not only in treating retinal diseases in humans but in their prevention too.
Collapse
|
17
|
Alabdali A, Kzar M, Chinnappan S, R M, Khalivulla SI, H R, Abd Razik BM. Antioxidant activity of Curcumin. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2021:6741-6746. [DOI: 10.52711/0974-360x.2021.01164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In the past few years, multiple drugs have been produced from traditional raw materials and recent pandemic disease COVID-19 once again research on this matter is being conducted to determine potential therapeutic purposes of different Ayurvedic Indian medicines and herbs. One such medicinal herb is Curcuma longa. Curcumin is strong antioxidant, anti-inflammatory, antispasmodic, antiangiogenic, anti-carcinogenic, as shown by multiple in vitro and in vivo studies. The action of the growth factor receptors is inhibited by curcumin. The anti-inflammatory effect of curcumin is obtained on the cytokines, proteolytic enzymes, eicosanoids, and lipid mediators. The superoxide radicals, nitric oxide and hydrogen peroxide, are sifted by curcumin, while lipid peroxidation is inhibited. Such properties of the compound thus form the foundation for its various therapeutic and pharmacological effects could also hold antiviral properties including COVID-19. The aim of this research is to summarize the updated pharmacological activities of curcumin.
Collapse
Affiliation(s)
- Aya Alabdali
- The University of Mashreq, College of Pharmacy, Baghdad, Iraq
| | - Marwah Kzar
- The University of Mashreq, College of Pharmacy, Baghdad, Iraq
| | - Sasikala Chinnappan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur (South Wing), No.1, Jalan Menara Gading, UCSI Heights 56000 Cheras, Kuala Lumpur, Malaysia
| | - Mogana R
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur (South Wing), No.1, Jalan Menara Gading, UCSI Heights 56000 Cheras, Kuala Lumpur, Malaysia
| | - Shaik Ibrahim Khalivulla
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur (South Wing), No.1, Jalan Menara Gading, UCSI Heights 56000 Cheras, Kuala Lumpur, Malaysia
| | - Rahman H
- PSG College of Pharmacy, Coimbatore, India
| | | |
Collapse
|
18
|
Retinal ganglion cell loss in an ex vivo mouse model of optic nerve cut is prevented by curcumin treatment. Cell Death Discov 2021; 7:394. [PMID: 34911931 PMCID: PMC8674341 DOI: 10.1038/s41420-021-00760-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
Retinal ganglion cell (RGC) loss is a pathologic feature common to several retinopathies associated to optic nerve damage, leading to visual loss and blindness. Although several scientific efforts have been spent to understand the molecular and cellular changes occurring in retinal degeneration, an effective therapy to counteract the retinal damage is still not available. Here we show that eyeballs, enucleated with the concomitant optic nerve cut (ONC), when kept in PBS for 24 h showed retinal and optic nerve degeneration. Examining retinas and optic nerves at different time points in a temporal window of 24 h, we found a thinning of some retinal layers especially RGC's layer, observing a powerful RGC loss after 24 h correlated with an apoptotic, MAPKs and degradative pathways dysfunctions. Specifically, we detected a time-dependent increase of Caspase-3, -9 and pro-apoptotic marker levels, associated with a strong reduction of BRN3A and NeuN levels. Importantly, a powerful activation of JNK, c-Jun, and ERK signaling (MAPKs) were observed, correlated with a significant augmented SUMO-1 and UBC9 protein levels. The degradation signaling pathways was also altered, causing a significant decrease of ubiquitination level and an increased LC3B activation. Notably, it was also detected an augmented Tau protein level. Curcumin, a powerful antioxidant natural compound, prevented the alterations of apoptotic cascade, MAPKs, and SUMO-1 pathways and the degradation system, preserving the RGC survival and the retinal layer thickness. This ex vivo retinal degeneration model could be a useful method to study, in a short time window, the effect of neuroprotective tools like curcumin that could represent a potential treatment to contrast retinal cell death.
Collapse
|
19
|
Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, Mubin S, Maishu SP, Akter R, Rahman MH, Karthika C, Murad W, Qusty N, Qusti S, Alshammari EM, Batiha GES, Altalbawy FMA, Albooq MIM, Alamri BM. Curcumin Nanoparticles as Promising Therapeutic Agents for Drug Targets. Molecules 2021; 26:4998. [PMID: 34443593 PMCID: PMC8402133 DOI: 10.3390/molecules26164998] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Curcuma longa is very well-known medicinal plant not only in the Asian hemisphere but also known across the globe for its therapeutic and medicinal benefits. The active moiety of Curcuma longa is curcumin and has gained importance in various treatments of various disorders such as antibacterial, antiprotozoal, cancer, obesity, diabetics and wound healing applications. Several techniques had been exploited as reported by researchers for increasing the therapeutic potential and its pharmacological activity. Here, the dictum is the new room for the development of physicochemical, as well as biological, studies for the efficacy in target specificity. Here, we discussed nanoformulation techniques, which lend support to upgrade the characters to the curcumin such as enhancing bioavailability, increasing solubility, modifying metabolisms, and target specificity, prolonged circulation, enhanced permeation. Our manuscript tried to seek the attention of the researcher by framing some solutions of some existing troubleshoots of this bioactive component for enhanced applications and making the formulations feasible at an industrial production scale. This manuscript focuses on recent inventions as well, which can further be implemented at the community level.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Protity Shuvra Dey
- Department of Food Science & Nutrition Management, J.D. Birla Institute, Kolkata 700020, India;
| | - Debashrita Das
- School of Community Science & Technology, IIEST Shibpur, Howrah 711103, India;
| | - Tanima Bhattacharya
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | | | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Naeem Qusty
- Biochemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah 80200, Saudi Arabia;
| | - Safaa Qusti
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia;
| | - Eida M. Alshammari
- Department of Medical Laboratories, Faculty of Applied Medical Sciences, Umma Al-Qura University, Mecca P.O. Box 715, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Farag M. A. Altalbawy
- National institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt;
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Mona I. M. Albooq
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Badrieah M. Alamri
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
20
|
Nedzvetsky VS, Gasso VY, Agca CA, Sukharenko EV. Soluble curcumin ameliorates motility, adhesiveness and abrogate parthanatos in cadmium-exposed retinal pigment epithelial cells. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cadmium (Cd) is a nonessential transition metal and one of the most toxic environmental pollutants. Industrial, agricultural and urban activities are the main sources of Cd environmental contamination. Multiple deleterious effects of Cd exposure were reported for different cell types and living organisms in a great number of research papers. Cd bioaccumulation hazard is mediated by the relatively long half-life of this metal in an organism. For example, in mammals its half-life lasts for about 10–30 years. Cd exposure affects many tissues. However, some of them, including the central nervous system and sensory organs, are most susceptible to its toxicity. The harmful effects of Cd could be linked to oxidative stress generation and consequently intracellular signalling disruption. Since Cd induces redox imbalance the antioxidants could be a prospective tool to ameliorate Cd cytotoxicity. In present work, we have studied the protective efficacy of soluble curcumin on Cd-caused retinal pigment epithelium (RPE) cells viability, reactive oxygen species production, adhesive and extracellular matrix proteins expression, cell migration and parthanatos level. Low dose (5 µM) of soluble curcumin ameliorated all aforementioned indices of Cd-induced cytotoxicity. Curcumin has restored the RPE cells motility as well as fibronectin and E-cadherin expression. Therefore, the modulation of RPE adhesiveness could be regarded as a cytoprotective effect of curcumin. Furthermore, Cd-caused poly(ADP-ribose) polymerase-1 (PARP-1) suppression and cleaved PARP-1 upregulation were ameliorated by curcumin exposure. Therefore, the protective effect of soluble curcumin could be related, at least partially, to the modulation of PARP activity and inhibition of parthanatos flux. The observed results have demonstrated that low doses of soluble curcumin are a promising tool to protect RPE cells against Cd-caused retinal injury.
Collapse
|
21
|
Nebbioso M, Franzone F, Greco A, Gharbiya M, Bonfiglio V, Polimeni A. Recent Advances and Disputes About Curcumin in Retinal Diseases. Clin Ophthalmol 2021; 15:2553-2571. [PMID: 34177257 PMCID: PMC8219301 DOI: 10.2147/opth.s306706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Curcumin belongs to the group of so-called phytocompounds, biologically active molecules produced by plants exerting a beneficial effect on health. Curcumin shows a wide spectrum of different properties, being an anti-inflammatory, antioxidant, antimicrobial and antimutagenic molecule. The purpose of the review is to examine what literature reported on the characteristics of curcumin, particularly, on the beneficial and controversial aspects of this molecule, aiming for a better therapeutic management of retinal diseases. The retina is a constant target of oxidative stress, this tissue being characterized by cells rich in mitochondria and by vessels and being, obviously, continuously reached from photons affecting its layers. Particularly, the retinal ganglion cells and the photoreceptors are extremely sensitive to oxidative stress damage and it is well known that an imbalance in reactive oxygen species is often involved in several retinal diseases, such as uveitis, age-related macular degeneration, diabetic retinopathy, central serous chorioretinopathy, macular edema, retinal ischemia-reperfusion injury, proliferative vitreoretinopathy, hereditary tapeto-retinal degenerations, and retinal and choroidal tumors. To date, several studies suggest that oral treatment with curcumin is generally well tolerated in humans and, in addition, it seems to have no negative effects: therefore, curcumin is a promising candidate as a retinal disease therapy. Unfortunately, the primary limitation of curcumin is represented by its poor bioavailability, in fact only a minimal fraction of this substance can reach the blood stream in the form of a biologically active compound. However, many steps have been made in several fields. In the future, it is expected that the strategies developed until now to allow curcumin to reach the target tissues in adequate concentrations could be ameliorated and, above all, large in vivo studies on humans are needed to demonstrate the total safety of these compounds and their effectiveness in different eye diseases.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Sapienza University of Rome, Rome, 00185, Italy
| | - Federica Franzone
- Department of Sense Organs, Sapienza University of Rome, Rome, 00185, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Rome, 00185, Italy
| | - Magda Gharbiya
- Department of Sense Organs, Sapienza University of Rome, Rome, 00185, Italy
| | - Vincenza Bonfiglio
- Department of Experimental Biomedicine and Clinical Neuroscience, Ophthalmology Section, University of Palermo, Palermo, 90133, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, 00185, Italy
| |
Collapse
|
22
|
Franzone F, Nebbioso M, Pergolizzi T, Attanasio G, Musacchio A, Greco A, Limoli PG, Artico M, Spandidos DA, Taurone S, Agostinelli E. Anti-inflammatory role of curcumin in retinal disorders (Review). Exp Ther Med 2021; 22:790. [PMID: 34055089 PMCID: PMC8145690 DOI: 10.3892/etm.2021.10222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Curcumin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione], the main component of turmeric (Curcuma longa, a flowering plant of the ginger family, Zingiberaceae), is known to possess different pharmacological activities, particularly anti-inflammatory and antioxidant properties. Since an underlying inflammatory process exists in several ocular conditions, such as anterior uveitis, glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR), the aim of the present review was to summarize the pleiotropic effects exerted by this molecule, focusing in particular on its beneficial role in retinal diseases. The anti-inflammatory activity of curcumin has also been described in numerous systemic inflammatory pathologies and tumors. Specifically, the biological, pharmaceutical and nutraceutical properties of curcumin are associated with its ability to downregulate the expression of the following genes: IκBα, cyclooxygenase 2, prostaglandin E2, interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor-α. According to this finding, curcumin may be useful in the treatment of some retinal disorders. In DR, proliferative vitreoretinopathy and AMD, beneficial effects have been observed following treatment with curcumin, including slowing down of the inflammatory process. Despite the aforementioned evidence, the main disadvantage of this substance is that it possesses a low solubility, as well as poor oral bioavailability due to its reduced absorption, rapid metabolism and rapid elimination. Therefore, several curcumin analogues have been synthesized and tested over the years, in order to improve the possible obtainable therapeutic effects. The purpose of the present review was to identify new aspects that could guide future research on this important traditional medicine, which is a well-tolerated natural product, and is widely considered safe and economical.
Collapse
Affiliation(s)
- Federica Franzone
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Marcella Nebbioso
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Tiziano Pergolizzi
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Giuseppe Attanasio
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Angela Musacchio
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | | | - Marco Artico
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | | | - Enzo Agostinelli
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy.,International Polyamines Foundation ETS-ONLUS, I-00159 Rome, Italy
| |
Collapse
|
23
|
Curcumin Can Bind and Interact with CRP: An in silico Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:91-100. [PMID: 33861438 DOI: 10.1007/978-3-030-64872-5_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Curcuminis a polyphenol with anti-inflammatory and antioxidative properties, found primarily in turmeric, a flowering plant of the ginger family. Among its numerous medical uses, curcumin has been used in the management of metabolic syndrome, and inflammatory conditions such as artrhritis, anxiety and hyperlipidemia. In this paper, we used molecular docking tools to assess the affinity of four curcumin derivatives (Curcumin, Cyclocurcumin, Demethoxycurcumin, Bisdemethoxycurcumin) as well as the endogenous ligand phosphorylcholine to C-reactive protein (CRP), a sensitive marker of systemic inflammation. Our results showed that curcumin interacts through H bond with CRP at GLN 150 and ASP 140. Similar H bond interactions were found for each of the four curcumin derivatives with CRP. Moreover, a molecular dynamic simulation were performed to further establish the interaction between CRP and the ligands in atomic details using the Nanoscale Molecular Dynamics (NAMD) and CHARMM27 force field. Importantly, our results suggest the possible interaction between curcumin and curcurmin related molecules with CRP, thus showing an important regulatory function with plausible applications in inflammatory and oxidative processes in diseases.
Collapse
|
24
|
Yang JS, Chiang JH, Tsai S, Hsu YM, Bau DT, Lee KH, Tsai FJ. In Silico De Novo Curcuminoid Derivatives From the Compound Library of Natural Products Research Laboratories Inhibit COVID-19 3CLpro Activity. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20953262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The coronavirus disease 2019 (COVID‐19) outbreak caused by the 2019 novel coronavirus (2019-nCOV) is becoming increasingly serious. In March 2019, the Food and Drug Administration (FDA) designated remdesivir for compassionate use to treat COVID-19. Thus, the development of novel antiviral agents, antibodies, and vaccines against COVID-19 is an urgent research subject. Many laboratories and research organizations are actively investing in the development of new compounds for COVID-19. Through in silico high-throughput virtual screening, we have recently identified compounds from the compound library of Natural Products Research Laboratories (NPRL) that can bind to COVID-19 3Lpro polyprotein and block COVID-19 3Lpro activity through in silico high-throughput virtual screening. Curcuminoid derivatives (including NPRL334, NPRL339, NPRL342, NPRL346, NPRL407, NPRL415, NPRL420, NPRL472, and NPRL473) display strong binding affinity to COVID-19 3Lpro polyprotein. The binding site of curcuminoid derivatives to COVID-19 3Lpro polyprotein is the same as that of the FDA-approved human immunodeficiency virus protease inhibitor (lopinavir) to COVID-19 3Lpro polyprotein. The binding affinity of curcuminoid derivatives to COVID-19 3Lpro is stronger than that of lopinavir and curcumin. Among curcuminoid derivatives, NPRL-334 revealed the strongest binding affinity to COVID-19 3Lpro polyprotein and is speculated to have an anti-COVID-19 effect. In vitro and in vivo ongoing experiments are currently underway to confirm the present findings. This study sheds light on the drug design for COVID-19 3Lpro polyprotein. Basing on lead compound development, we provide new insights on inhibiting COVID-19 attachment to cells, reducing COVID-19 infection rate and drug side effects, and increasing therapeutic success rate.
Collapse
Affiliation(s)
- Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jo-Hua Chiang
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi County, Taiwan
| | - Shih‑Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Kuo-Hsiung Lee
- UNC Eshelman School of Pharmacy, Natural Products Research Laboratories, University of North Carolina, Chapel Hill, NC, USA
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, Human Genetics Center, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
25
|
Ethanol-Induced Oxidative Stress Modifies Inflammation and Angiogenesis Biomarkers in Retinal Pigment Epithelial Cells (ARPE-19): Role of CYP2E1 and its Inhibition by Antioxidants. Antioxidants (Basel) 2020; 9:antiox9090776. [PMID: 32825644 PMCID: PMC7555214 DOI: 10.3390/antiox9090776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
The retinal pigment epithelium (RPE) plays a key role in retinal health, being essential for the protection against reactive oxygen species (ROS). Nevertheless, excessive oxidative stress can induce RPE dysfunction, promoting visual loss. Our aim is to clarify the possible implication of CYP2E1 in ethanol (EtOH)-induced oxidative stress in RPE alterations. Despite the increase in the levels of ROS, measured by fluorescence probes, the RPE cells exposed to the lowest EtOH concentrations were able to maintain cell survival, measured by the Cell Proliferation Kit II (XTT). However, EtOH-induced oxidative stress modified inflammation and angiogenesis biomarkers, analyzed by proteome array, ELISA, qPCR and Western blot. The highest EtOH concentration used stimulated a large increase in ROS levels, upregulating the cytochrome P450-2E1 (CYP2E1) and promoting cell death. The use of antioxidants such as N-acetylcysteine (NAC) and diallyl sulfide (DAS), which is also a CYP2E1 inhibitor, reverted cell death and oxidative stress, modulating also the upstream angiogenesis and inflammation regulators. Because oxidative stress plays a central role in most frequent ocular diseases, the results herein support the proposal that CYP2E1 upregulation could aggravate retinal degeneration, especially in those patients with high baseline oxidative stress levels due to their ocular pathology and should be considered as a risk factor.
Collapse
|
26
|
Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies. Antioxidants (Basel) 2020; 9:antiox9080761. [PMID: 32824523 PMCID: PMC7465265 DOI: 10.3390/antiox9080761] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Many retinal diseases, such as diabetic retinopathy, glaucoma, and age-related macular (AMD) degeneration, are associated with elevated reactive oxygen species (ROS) levels. ROS are important intracellular signaling molecules that regulate numerous physiological actions, including vascular reactivity and neuron function. However, excessive ROS formation has been linked to vascular endothelial dysfunction, neuron degeneration, and inflammation in the retina. ROS can directly modify cellular molecules and impair their function. Moreover, ROS can stimulate the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) causing inflammation and cell death. However, there are various compounds with direct or indirect antioxidant activity that have been used to reduce ROS accumulation in animal models and humans. In this review, we report on the physiological and pathophysiological role of ROS in the retina with a special focus on the vascular system. Moreover, we present therapeutic approaches for individual retinal diseases targeting retinal signaling pathways involving ROS.
Collapse
|
27
|
Zielińska A, Alves H, Marques V, Durazzo A, Lucarini M, Alves TF, Morsink M, Willemen N, Eder P, Chaud MV, Severino P, Santini A, Souto EB. Properties, Extraction Methods, and Delivery Systems for Curcumin as a Natural Source of Beneficial Health Effects. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E336. [PMID: 32635279 PMCID: PMC7404808 DOI: 10.3390/medicina56070336] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
This review discusses the impact of curcumin-an aromatic phytoextract from the turmeric (Curcuma longa) rhizome-as an effective therapeutic agent. Despite all of the beneficial health properties ensured by curcumin application, its pharmacological efficacy is compromised in vivo due to poor aqueous solubility, high metabolism, and rapid excretion that may result in poor systemic bioavailability. To overcome these problems, novel nanosystems have been proposed to enhance its bioavailability and bioactivity by reducing the particle size, the modification of surfaces, and the encapsulation efficiency of curcumin with different nanocarriers. The solutions based on nanotechnology can improve the perspective for medical patients with serious illnesses. In this review, we discuss commonly used curcumin-loaded bio-based nanoparticles that should be implemented for overcoming the innate constraints of this natural ingredient. Furthermore, the associated challenges regarding the potential applications in combination therapies are discussed as well.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (H.A.); (V.M.)
- Polish Academy of Sciences, Institute of Human Genetics, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Henrique Alves
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (H.A.); (V.M.)
| | - Vânia Marques
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (H.A.); (V.M.)
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Thais F. Alves
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba-UNISO, Sorocaba, São Paulo 18023-000, Brazil; (T.F.A.); (M.V.C.)
| | - Margreet Morsink
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women& Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; (M.M.); (N.W.); (P.S.)
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Niels Willemen
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women& Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; (M.M.); (N.W.); (P.S.)
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Marco V. Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba-UNISO, Sorocaba, São Paulo 18023-000, Brazil; (T.F.A.); (M.V.C.)
| | - Patricia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women& Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; (M.M.); (N.W.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Biotechnological Postgraduate Program, and Institute of Technology and Research (ITP), University of Tiradentes (Unit), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (H.A.); (V.M.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
28
|
Ikonne EU, Ikpeazu VO, Ugbogu EA. The potential health benefits of dietary natural plant products in age related eye diseases. Heliyon 2020; 6:e04408. [PMID: 32685729 PMCID: PMC7355812 DOI: 10.1016/j.heliyon.2020.e04408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
In the past decade, there has been a tremendous increase in the number of cases of age-related eye diseases such as age-related macular degeneration (AMD), cataract, diabetic retinopathy and glaucoma. These diseases are the leading causes of visual impairment and blindness all over the world and are associated with many pathological risk factors such as aging, pollution, high levels of glucose (hyperglycaemia), high metabolic rates, and light exposure. These risk factors lead to the generation of uncontrollable reactive oxygen species (ROS), which causes oxidative stress. Oxidative stress plays a crucial role in the pathogenesis of age-related eye diseases through the activation of nuclear factor kappa B (NF-κB), vascular endothelial growth factor (VEGF), and lipid peroxidation, which leads to the production of inflammatory cytokines, angiogenesis, protein and DNA damages, apoptosis that causes macular degeneration (AMD), cataract, diabetic retinopathy and glaucoma. This review provides updated information on the beneficial effects of dietary natural plant products (DPNPs) against age-related eye diseases. In this review, supplementation of DPNPs demonstrated preventive and therapeutic effects on people at risk of or with age-related eye diseases due to their capacity to scavenge free radicals, ameliorate inflammatory molecules, neutralize the oxidation reaction that occurs in photoreceptor cells, decrease vascular endothelial growth factor and the blood-retinal barrier and increase the antioxidant defence system. However, further experiments and clinical trials are required to establish the daily doses of DPNPs that will safely and effectively prevent age-related eye diseases.
Collapse
Affiliation(s)
| | - Victor Okezie Ikpeazu
- Department of Biochemistry, Abia State University, P.M.B 2000, Uturu, Abia State, Nigeria
| | - Eziuche Amadike Ugbogu
- Department of Biochemistry, Abia State University, P.M.B 2000, Uturu, Abia State, Nigeria
| |
Collapse
|
29
|
Huang CP, Lin YW, Huang YC, Tsai FJ. Mitochondrial Dysfunction as a Novel Target for Neuroprotective Nutraceuticals in Ocular Diseases. Nutrients 2020; 12:nu12071950. [PMID: 32629966 PMCID: PMC7400242 DOI: 10.3390/nu12071950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The eyes require a rich oxygen and nutrient supply; hence, the high-energy demand of the visual system makes it sensitive to oxidative stress. Excessive free radicals result in mitochondrial dysfunction and lead to retinal neurodegeneration, as an early stage of retinal metabolic disorders. Retinal cells are vulnerable because of their coordinated interaction and intricate neural networks. Nutraceuticals are believed to target multiple pathways and have shown neuroprotective benefits by scavenging free radicals and promoting mitochondrial gene expression. Furthermore, encouraging results demonstrate that nutraceuticals improve the organization of retinal cells and visual functions. This review discusses the mitochondrial impairments of retinal cells and the mechanisms underlying the neuroprotective effects of nutraceuticals. However, some unsolved problems still exist between laboratory study and clinical therapy. Poor bioavailability and bioaccessibility strongly limit their development. A new delivery system and improved formulation may offer promise for health care applications.
Collapse
Affiliation(s)
- Chun-Ping Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Yu-Chuen Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: (Y.-C.H.); (F.-J.T.)
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Children’s Hospital of China Medical University, Taichung 404, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: (Y.-C.H.); (F.-J.T.)
| |
Collapse
|
30
|
Dai C, Wang Y, Sharma G, Shen J, Velkov T, Xiao X. Polymyxins-Curcumin Combination Antimicrobial Therapy: Safety Implications and Efficacy for Infection Treatment. Antioxidants (Basel) 2020; 9:antiox9060506. [PMID: 32526966 PMCID: PMC7346118 DOI: 10.3390/antiox9060506] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of antimicrobial resistance in Gram-negative bacteria poses a huge health challenge. The therapeutic use of polymyxins (i.e., colistin and polymyxin B) is commonplace due to high efficacy and limiting treatment options for multidrug-resistant Gram-negative bacterial infections. Nephrotoxicity and neurotoxicity are the major dose-limiting factors that limit the therapeutic window of polymyxins; nephrotoxicity is a complication in up to ~60% of patients. The emergence of polymyxin-resistant strains or polymyxin heteroresistance is also a limiting factor. These caveats have catalyzed the search for polymyxin combinations that synergistically kill polymyxin-susceptible and resistant organisms and/or minimize the unwanted side effects. Curcumin—an FDA-approved natural product—exerts many pharmacological activities. Recent studies showed that polymyxins–curcumin combinations showed a synergistically inhibitory effect on the growth of bacteria (e.g., Gram-positive and Gram-negative bacteria) in vitro. Moreover, curcumin co-administration ameliorated colistin-induced nephrotoxicity and neurotoxicity by inhibiting oxidative stress, mitochondrial dysfunction, inflammation and apoptosis. In this review, we summarize the current knowledge-base of polymyxins–curcumin combination therapy and discuss the underlying mechanisms. For the clinical translation of this combination to become a reality, further research is required to develop novel polymyxins–curcumin formulations with optimized pharmacokinetics and dosage regimens.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, School of Biomedical Sciences, Dentistry and Health Sciences, the University of Melbourne, Parkville 3052, Australia;
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| |
Collapse
|