1
|
Xiang F, Zhang Z, Xie J, Xiong S, Yang C, Liao D, Xia B, Lin L. Comprehensive review of the expanding roles of the carnitine pool in metabolic physiology: beyond fatty acid oxidation. J Transl Med 2025; 23:324. [PMID: 40087749 PMCID: PMC11907856 DOI: 10.1186/s12967-025-06341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/01/2025] [Indexed: 03/17/2025] Open
Abstract
Traditionally, the carnitine pool is closely related to fatty acid metabolism. However, with increasing research, the pleiotropic effects of the carnitine pool have gradually emerged. The purpose of this review is to comprehensively investigate of the emerging understanding of the pleiotropic role of the carnitine pool, carnitine/acylcarnitines are not only auxiliaries or metabolites of fatty acid oxidation, but also play more complex and diverse roles, including energy metabolism, mitochondrial homeostasis, epigenetic regulation, regulation of inflammation and the immune system, tumor biology, signal transduction, and neuroprotection. This review provides an overview of the complex network of carnitine synthesis, transport, shuttle, and regulation, carnitine/acylcarnitines have the potential to be used as communication molecules, biomarkers and therapeutic targets for multiple diseases, with profound effects on intercellular communication, metabolic interactions between organs and overall metabolic health. The purpose of this review is to comprehensively summarize the multidimensional biological effects of the carnitine pool beyond its traditional role in fatty acid oxidation and to summarize the systemic effects mediated by carnitine/acylcarnitine to provide new perspectives for pharmacological research and treatment innovation and new strategies for the prevention and treatment of a variety of diseases.
Collapse
Affiliation(s)
- Feng Xiang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Suhui Xiong
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chen Yang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
2
|
Salek F, Guest A, Johnson C, Kastelic JP, Thundathil J. Factors Affecting the Success of Ovum Pick-Up, In Vitro Production and Cryopreservation of Embryos in Cattle. Animals (Basel) 2025; 15:344. [PMID: 39943114 PMCID: PMC11815730 DOI: 10.3390/ani15030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Increasing global demand for animal proteins warrants improved productivity by genetic selection of superior cattle and faster dissemination of genetics. Availability of more progeny for genomic selection should maximize chances of identifying animals with desirable traits and increase selection pressure. OPU and IVP of embryos using these oocytes will substantially increase calves produced compared to conventional embryo transfer (ET). The OPU-IVP technology not only supports genetic improvement but also contributes to reducing environmental impacts of livestock production systems by improving efficiency and optimizing resources, aligning with the Sustainable Development Goals of the United Nations. However, there are several factors influencing the success of OPU-IVP. This review is focused on these factors and the impacts of in vitro culture conditions on the lipid content of embryos and potential role of L-carnitine, a lipolytic agent, on developmental competence of IVP embryos. The documented effects of L-carnitine and current knowledge regarding regulation of the Hippo signaling pathway suggest that supplementation of embryo culture media with L-carnitine will increase post-thaw survival of IVP embryos and their subsequent developmental competence by regulating lipid metabolism, production of reactive oxygen species, and Hippo signaling. Therefore, this review highlights current advancements in the field of OPU-IVP and potential areas for refining culture conditions to yield developmentally competent embryos that survive cryopreservation procedures.
Collapse
Affiliation(s)
| | | | | | | | - Jacob Thundathil
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada (C.J.); (J.P.K.)
| |
Collapse
|
3
|
Bevilacqua A, Giuliani C, Emidio GD, Myers SH, Unfer V, Tatone C. Murine Models and Human Cell Line Models to Study Altered Dynamics of Ovarian Follicles in Polycystic Ovary Syndrome. Adv Biol (Weinh) 2025:e2400713. [PMID: 39840999 DOI: 10.1002/adbi.202400713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/29/2024] [Indexed: 01/23/2025]
Abstract
Polycystic ovary syndrome is one of the most common endocrine disorders in women of reproductive age, characterized by functional and structural alterations of the female reproductive organs. Due to the unknown underlying molecular mechanisms, in vivo murine models and in vitro human cellular models are developed to study the syndrome. These models are used to analyze various aspects of the pathology by replicating the conditions of the syndrome. Even though the complexity of polycystic ovary syndrome and the challenge of reproducing all its features leave several questions unanswered, studies conducted to date have elucidated some of the alterations in ovarian follicle molecular and cellular mechanisms involved in the syndrome, and do not require the employment of complex and invasive techniques on human patients. This review examines ovarian functions and their alterations in polycystic ovary syndrome, explores preclinical in vivo and in vitro models, and highlights emerging research and medical perspectives. It targets researchers, healthcare professionals, and academics, including endocrinologists, cell biologists, and reproductive medicine specialists, studying the molecular and cellular mechanisms of the syndrome.
Collapse
Affiliation(s)
- Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via Dei Marsi 78, Rome, 00185, Italy
- The Experts Group on Inositols in Basic and Clinical Research and on PCOS (EGOI-PCOS), Rome, Italy
- Systems Biology Group Lab and Research Center in Neurobiology Daniel Bovet (CRiN), Rome, 00185, Italy
| | - Cristiano Giuliani
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via Dei Marsi 78, Rome, 00185, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | | | - Vittorio Unfer
- The Experts Group on Inositols in Basic and Clinical Research and on PCOS (EGOI-PCOS), Rome, Italy
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, 00156, Italy
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| |
Collapse
|
4
|
Yan H, Wang L, Zhang G, Li N, Zhao Y, Liu J, Jiang M, Du X, Zeng Q, Xiong D, He L, Zhou Z, Luo M, Liu W. Oxidative stress and energy metabolism abnormalities in polycystic ovary syndrome: from mechanisms to therapeutic strategies. Reprod Biol Endocrinol 2024; 22:159. [PMID: 39722030 DOI: 10.1186/s12958-024-01337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), as a common endocrine and metabolic disorder, is often regarded as a primary cause of anovulatory infertility in women. The pathogenesis of PCOS is complex and influenced by multiple factors. Emerging evidence highlights that energy metabolism dysfunction and oxidative stress in granulosa cells (GCs) are pivotal contributors to aberrant follicular development and impaired fertility in PCOS patients. Mitochondrial dysfunction, increased oxidative stress, and disrupted glucose metabolism are frequently observed in individuals with PCOS, collectively leading to compromised oocyte quality. This review delves into the mechanisms linking oxidative stress and energy metabolism abnormalities in PCOS, analyzing their adverse effects on reproductive function. Furthermore, potential therapeutic strategies to mitigate oxidative stress and metabolic disturbances are proposed, providing a theoretical basis for advancing clinical management of PCOS.
Collapse
Affiliation(s)
- Heqiu Yan
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Ningjing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Yuhong Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Xinrong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Dongsheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Libing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Zhuoting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Mengjun Luo
- Department of Clinical Laboratory, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, No. 1617 Ri Yue Street, Chengdu, Sichuan, 611731, China.
| | - Weixin Liu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China.
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China.
| |
Collapse
|
5
|
De Rubeis M, Mascitti IA, Cocciolone D, Placidi M, Vergara T, Di Emidio G, Macchiarelli G, Tatone C, Nottola SA, Palmerini MG. Morphological and Redox/Glycative Alterations in the PCOS Oviducts: Modulating Effects of Carnitines in PCOS Mice. BIOLOGY 2024; 13:964. [PMID: 39765631 PMCID: PMC11673334 DOI: 10.3390/biology13120964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Polycystic ovarian syndrome (PCOS) is a heterogeneous condition characterized by hyperandrogenism (HA), polycystic ovaries, and dysfunctional ovulation, and it is associated with metabolic problems such as insulin resistance (IR) and obesity. After having investigated the morphological and antioxidant/antiglycative alterations on mouse ovaries and uteri, we here focus on PCOS oviducts, a tract of the reproductive system essential for the nourishment and transport of gametes and embryos. The modulating effects of L-carnitine (LC) and acetyl-L-carnitine (ALC) were also assessed. CD1 mice were administered or not with dehydroepiandrosterone (DHEA, 6 mg/100 g body weight) for 20 days, alone or with 0.40 mg of L-carnitine (LC) and 0.20 mg of acetyl-L-carnitine (ALC). Oviducts were then subjected to histology and immunohistochemistry to evaluate their morphology and collagen deposition, and steroidogenesis. Oxidative, mitochondrial, and methylglyoxal (MG)-dependent damage was also investigated. Transmission electron microscopy was used to detect ultrastructural alterations. The PCOS oviducts were affected by hyperfibrosis, hyperplasia, hypertrophy, and altered steroidogenesis, with oxidative alterations associated with MethylGlyoxal-Advanced Glycation End product (MG-AGE) accumulation. A reduced ciliary coverage and numerous dilated intercellular spaces were found in the epithelium. LC-ALC administration mitigated PCOS oviductal alterations. These results provide evidence for the detrimental action of oxidative and glycative stress in PCOS oviducts, confirming a protective role of carnitines on the PCOS phenotype.
Collapse
Affiliation(s)
- Mariacarla De Rubeis
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.D.R.); (S.A.N.)
| | - Ilaria Antenisca Mascitti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Domenica Cocciolone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Teresa Vergara
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.D.R.); (S.A.N.)
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| |
Collapse
|
6
|
Qiu H, Zhong Z, Wu T, Hu H, Zhou M, Feng Z. Evaluating the causal relationship of Levo-carnitine and risk of schizophrenia: a bidirectional two-sample mendelian randomization study. BMC Psychiatry 2024; 24:720. [PMID: 39438849 PMCID: PMC11515733 DOI: 10.1186/s12888-024-06177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Schizophrenia is a debilitating mental disorder affecting about 1% of the global population, characterized by significant cognitive impairments and a strong hereditary component. Carnitine, particularly Levo-carnitine and its derivatives, plays a crucial role in cellular metabolism and mitochondrial function, with evidence suggesting a link between levo-carnitine deficiency and schizophrenia pathology. This study aims to investigate the causal relationship between different subtypes of levo-carnitine and the susceptibility to schizophrenia using Mendelian randomization analysis. METHODS Forward Mendelian randomization analysis was conducted using levo-carnitine and its derivatives as exposure and schizophrenia as the outcome. Candidate data were obtained from the Open-GWAS database. Instrumental variables were identified as single nucleotide polymorphisms closely associated with exposure and harmonized with the outcome data after removing confounders and outliers. Mendelian randomization analysis was performed using inverse variance weighting as the primary approach, and sensitivity analysis was conducted to assess the reliability and robustness of the results. Finally, a reverse Mendelian randomization analysis was carried out using the same analytical procedures. RESULTS The Mendelian randomization results indicate a significant negative causal relationship between isovaleryl-levo-carnitine and schizophrenia (P < 0.05), but no significant associations in other groups (P > 0.05). Additionally, the reverse Mendelian randomization analysis did not identify any causal relationship between schizophrenia and levo-carnitine related exposures (P > 0.05). Sensitivity analyses, including pleiotropy and heterogeneity analysis, did not reveal any potential bias in the Mendelian randomization results (P > 0.05). CONCLUSION The results suggest that elevated levels of isovaleryl-levo-carnitine may potentially mitigate the risk of developing schizophrenia, highlighting the prospective therapeutic and preventive implications of isovaleryl-levo-carnitine in the clinical management of schizophrenia.
Collapse
Affiliation(s)
- Haoyuan Qiu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Zicheng Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Tianxing Wu
- Second Clinical Medical College, Southern Medical University, Guangzhou, 510515, China
| | - Haoran Hu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Zhijun Feng
- Postdoctoral Innovation Practice Base, Jiangmen Central Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
7
|
Al-Ghanayem AA. In-vitro anti-acne activity of Teucrium oliverianum methanolic extract against Cutibacterium acnes. Front Pharmacol 2024; 15:1388625. [PMID: 39421673 PMCID: PMC11484032 DOI: 10.3389/fphar.2024.1388625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Background Acne vulgaris is a skin infection widely seen in adolescents between 10-19 years with males affected more than females. It mainly affects the face but may also affect the back and chest. The symptoms vary with mild acne manifesting as comedones and moderate acne as inflammatory lesions (papulopustular), nodules, and mild scarring while severe acne has the same symptoms that have not subsided within 6 months of treatment. Various treatments including topical medications containing different antibiotics are used to treat acne. Recently, herbal treatments have been shown as better alternatives to conventional treatment. Teucrium oliverianum Ging. ex Benth (Lamiaceae) is traditionally used for skin infections such as wound healing and biofilm formation. Methodology Methanolic extract of T. oliverianum was subjected to liquid chromatography-mass spectrometry (LC-MS) analysis, and its antibacterial effect against Cutibacterium acnes. The anti-acne, anti-inflammatory, and antioxidant effects were also assessed using HaCaT cells infected with C. acnes. The cytotoxicity of the extract was evaluated using a neutral red uptake assay, and anti-inflammatory effects were determined by measuring TNF-α, IL-1β, INF-γ, and COX2 inhibition. The antioxidant action was assessed by ROS generation in HaCaT cells infected with C. acnes. Results LC-MS analysis of the extract showed the presence of 16 different metabolites with L-carnitine, esculin sesquihydrate, and gamma-linoleic acid as major metabolites. The methanolic extract of T. oliverianum showed an antibacterial effect against C. acnes with an IC50 value of 263.2 μg/mL. The extract attenuated the cytotoxicity of C. acnes on the HaCaT cell and the IC50 was found to be 676.2 μg/mL. It also decreased dose-dependently the expression of TNF-α, IL-1β, INF-γ, and inhibited COX2 in the HaCaT cells infected with C. acnes. It also decreased the generation of reactive oxygen species. Conclusion The results support the use of T. oliverianum as an anti-acne agent but it possesses mild antibacterial action. It showed anti-inflammatory effects in HaCaT cells infected with C. acnes. It is also an effective antioxidant and decreased the generation of reactive oxygen species. Comparison of the anti-acne effects and adverse reactions of extract with other treatments will provide more insight into its clinical efficacy and toxicity.
Collapse
Affiliation(s)
- Abdullah A. Al-Ghanayem
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
8
|
Leitão AMF, Silva BR, Barbalho EC, Paulino LRM, Costa FDC, Martins FS, Silva JRV. The role of L-carnitine in the control of oxidative stress and lipid β-oxidation during in vitro follicle growth, oocyte maturation, embryonic development and cryopreservation: a review. ZYGOTE 2024; 32:335-340. [PMID: 39506889 DOI: 10.1017/s096719942400039x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
L-carnitine has an important role in the control of oxidative stress and lipid β-oxidation during in vitro culture and cryopreservation of ovarian follicles, oocytes and embryos. This substance balances the acetyl-CoA/CoA ratio, maintains glucose metabolism and increases energy production in mitochondria. It also plays a key role in reducing endoplasmic reticulum stress, by transferring palmitate to mitochondria or eliminating it to avoid toxicity. By eliminating reactive oxygen species, L-carnitine increases the percentages of mature oocytes with uniform mitochondrial distribution and improves embryo post-thaw cryotolerance. Therefore, L-carnitine controls lipid β-oxidation and oxidative stress during in vitro culture of ovarian follicles, oocyte maturation, embryonic development and cryopreservation.
Collapse
Affiliation(s)
- Allana Maria Freire Leitão
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Bianca Regia Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Efigênia C Barbalho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Lais R M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Francisco das Chagas Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Fabricio Sousa Martins
- State University of Acaraú Valley, Center of Agricultural and Biological Sciences, postal code 62040370, Sobral, CE, Brazil
| | - Jose Roberto V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| |
Collapse
|
9
|
Zhang T, Fang J, Hu J, Kong Y, Jiang R, Wang H, Yang G, Yao G. Downregulation of CASC15 attenuates the symptoms of polycystic ovary syndrome by affecting granulosa cell proliferation and regulating ovarian follicular development. Mol Cell Endocrinol 2024; 592:112322. [PMID: 38942281 DOI: 10.1016/j.mce.2024.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a type of follicular dysplasia with an unclear pathogenesis, posing certain challenges in its diagnosis and treatment. Cancer susceptibility candidate 15 (CASC15), a long non-coding RNA closely associated with tumour development, has been implicated in PCOS onset and development. Therefore, this study aimed to investigate the molecular mechanisms underlying PCOS by downregulating CASC15 expression in both in vitro and in vivo models. We explored the potential regulatory relationship between CASC15 expression and PCOS by examining cell proliferation, cell cycle dynamics, cell autophagy, steroid hormone secretion capacity, and overall ovarian function in mice. We found that CASC15 expression in granulosa cells derived from patients with PCOS was significantly higher than those of the normal group (P < 0.001). In vitro experiments revealed that downregulating CASC15 significantly inhibited cell proliferation, promoted apoptosis, induced G1-phase cell cycle arrest, and influenced cellular autophagy levels. Moreover, downregulating CASC15 affected the follicular development process in newborn mouse ovaries. In vivo studies in mice demonstrated that disrupting CASC15 expression improved PCOS-related symptoms such as polycystic changes and hyperandrogenism, and significantly affected ovulation induction and embryo implantation in pregnant mice. Overall, CASC15 was highly expressed in granulosa cells of patients with PCOS and its downregulation improved PCOS-related symptoms by influencing granulosa cell function and follicular development in mice.
Collapse
Affiliation(s)
- Tongwei Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junnan Fang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyi Hu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Kong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Jiang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Zhang R, Xu W, Wei H, Li B, Wang Y, He X, Cao J, He X, Xu M, Lu W, Xu Y. Mechanism of YJKL Decoction in Treating of PCOS Infertility by Integrative Approach of Network Pharmacology and Experimental Verification. Drug Des Devel Ther 2024; 18:3853-3870. [PMID: 39219692 PMCID: PMC11366254 DOI: 10.2147/dddt.s456656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Currently, there is still no clear treatment for polycystic ovary syndrome (PCOS). YJKL has better therapeutic effects and lower toxic side effects for PCOS type infertility. This study aims to clarify the potential mechanism of YJKL Decoction in the treatment of PCOS based on network pharmacology and experiments verification. Patients and Methods Network pharmacology and experimental validation approach were used to investigate the bioactive ingredients, critical targets and potential mechanisms of YJKL Decoction against PCOS. Firstly, we use network pharmacology methods to collect core targets, and then validate their effects on diseases through experiments. Results Five core targets were screened, Threonine kinase 1 (AKT1), Cellular tumor antigen p53 (TP53), Tumor necrosis factor (TNF), Albumin (ALB) and Vascular endothelial growthfactor A (VEGFA). KEGG analysis showed that YJKL treatment for PCOS mainly include AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway and HIF-1 signaling pathway. The molecular docking results showed that compounds have higher affinity with targets. Finally, experimental results had shown that YJKL Decoction had an better therapeutic effects in the treatment of PCOS. Conclusion Based on a systematic network pharmacology approach and experimental verification, our results comprehensively illustrated the active ingredients, potential targets, and molecular mechanism of YJKL for application to PCOS and helps to illustrate mechanism of action on a comprehensive level.
Collapse
Affiliation(s)
- Rongrong Zhang
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Wenjun Xu
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Hongquan Wei
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Boshi Li
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Yaoxing Wang
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Xueqing He
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Jun Cao
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Xinyu He
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Mingxiang Xu
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Center for Scientific Research, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Wenjie Lu
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Youzhi Xu
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
11
|
Yu J, Wei Y, Zhang Z, Chen J, Fu R, Ye P, Chen S, Yang J. Metabolomic Analysis of Follicular Fluid in Normal-Weight Patients with Polycystic Ovary Syndrome. Biomedicines 2024; 12:1810. [PMID: 39200274 PMCID: PMC11352029 DOI: 10.3390/biomedicines12081810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND This study aimed to examine the differential variations in the metabolic composition of follicular fluid (FF) among normal-weight patients with polycystic ovary syndrome (PCOS) and controls and to identify potential biomarkers that may offer insights into the early identification and management of these patients. METHODS We collected FF samples from 45 normal-weight women with PCOS and 36 normal-weight controls without PCOS who were undergoing in vitro fertilization-embryo transfer. An untargeted metabolomic study of collected FF from infertile women was performed using high-performance liquid chromatography-tandem spectrometry (LC-MS). The tendency of the two groups to separate was demonstrated through multivariate analysis. Univariate analysis and variable importance in projection were used to screen out differential metabolites. Metabolic pathway analysis was conducted using the Kyoto Encyclopedia of Genes and Genomes (KEGG), and a diagnostic model was established using the random forest algorithm. RESULTS The metabolomics analysis revealed an increase in the expression of 23 metabolites and a decrease in that of 10 metabolites in the FF of normal-weight women with PCOS. According to the KEGG pathway analysis, these differential metabolites primarily participated in the metabolism of glycerophospholipids and the biosynthesis of steroid hormones. Based on the biomarker combination of the top 10 metabolites, the area under the curve value was 0.805. The concentrations of prostaglandin E2 in the FF of individuals with PCOS exhibited an inverse association with the proportion of high-quality embryos (p < 0.05). CONCLUSIONS Our research identified a distinct metabolic profile of the FF from normal-weight women with PCOS. The results offer a broader comprehension of the pathogenesis and advancement of PCOS, and the detected differential metabolites could be potential biomarkers and targets for the treatment of PCOS.
Collapse
Affiliation(s)
- Jiayue Yu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.Y.); (Y.W.); (J.C.)
| | - Yiqiu Wei
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.Y.); (Y.W.); (J.C.)
| | - Zhourui Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; (Z.Z.); (R.F.)
| | - Jiao Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.Y.); (Y.W.); (J.C.)
| | - Rongrong Fu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; (Z.Z.); (R.F.)
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; (Z.Z.); (R.F.)
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.Y.); (Y.W.); (J.C.)
| |
Collapse
|
12
|
Zhou N, Lv W, Chen L, Chen K, He Q, Xie G, Ma J, Cao Y, Zhang B, Zhou X. Jujuboside A Attenuates Polycystic Ovary Syndrome Based on Estrogen Metabolism Through Activating AhR-mediated CYP1A2 Expression. Reprod Sci 2024; 31:2234-2245. [PMID: 38499949 DOI: 10.1007/s43032-024-01511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women. This study aimed to investigate the therapeutic effects and mechanism of Jujuboside A on PCOS using a dehydroepiandrosterone (DHEA)-induced PCOS mouse model. Estrogen and androgen homeostasis was evaluated in serum from both clinical samples and PCOS mice. The stages of the estrous cycle were determined based on vaginal cytology. The ovarian morphology was observed by stained with hematoxylin and eosin. Moreover, we analyzed protein expression of cytochrome P450 1A1 (CYP1A1), cytochrome P450 1A2 (CYP1A2) and aryl hydrocarbon receptor (AhR) in ovary and KGN cells. Molecular docking, immunofluorescence, and luciferase assay were performed to confirm the activation of AhR by Jujuboside A. Jujuboside A effectively alleviated the disturbance of estrogen homeostasis and restored ovarian function, leading to an improvement in the occurrence and progression of PCOS. Furthermore, the protective effect of JuA against PCOS was dependent on increased CYP1A2 levels regulated by AhR. Our findings suggest that Jujuboside A improves estrogen disorders and may be a potential therapeutic agent for the treatment of PCOS.
Collapse
Affiliation(s)
- Nan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Wenqiang Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Linna Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Kexin Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Qing He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Guangyan Xie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Jiachen Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yijuan Cao
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, 199 South Jiefang Road, Xuzhou, 221004, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, 199 South Jiefang Road, Xuzhou, 221004, China.
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
13
|
Li A, Li F, Song W, Lei ZL, Zhou CY, Zhang X, Sun QY, Zhang Q, Zhang T. Maternal exposure to 4-vinylcyclohexene diepoxide during pregnancy leads to disorder of gut microbiota and bile acid metabolism in offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115811. [PMID: 38086265 DOI: 10.1016/j.ecoenv.2023.115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Our previous study reveals that maternal exposure to 4-vinylcyclohexene diepoxide (VCD) during pregnancy causes insufficient ovarian follicle reserve and decreased fertility in offspring. The present study aims to further explore the reasons for the significant decline of fecundity in mice caused by VCD, and to clarify the changes of gut microbiota and microbial metabolites in F1 mice. The ovarian metabolomics, gut microbiota and microbial metabolites were analyzed. The results of ovarian metabolomics analysis showed that maternal VCD exposure during pregnancy significantly reduced the concentration of carnitine in the ovaries of F1 mice, while supplementation with carnitine (isovalerylcarnitine and valerylcarnitine) significantly increased the number of ovulation. The results of 16 S rDNA-seq and microbial metabolites analysis showed that maternal VCD exposure during pregnancy caused disordered gut microbiota, increased abundance of Parabacteroides and Flexispira bacteria that are involved in secondary bile acid synthesis. The concentrations of NorDCA, LCA-3S, DCA and other secondary bile acids increased significantly. Our results indicate that maternal exposure to VCD during pregnancy leads to disorder in gut microbiota and bile acid metabolism in F1 mice, accompanying with decreased ovarian function, providing further evidence that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on offspring.
Collapse
Affiliation(s)
- Ang Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China; Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Fei Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Wei Song
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zi-Li Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chang-Yin Zhou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xue Zhang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Qin Zhang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
14
|
Samir H, Swelum AA, Abdelnaby EA, El-Sherbiny HR. Incorporation of L-Carnitine in the OvSynch protocol enhances the morphometrical and hemodynamic parameters of the ovarian structures and uterus in ewes under summer climatic conditions. BMC Vet Res 2023; 19:246. [PMID: 37996926 PMCID: PMC10668402 DOI: 10.1186/s12917-023-03814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Heat stress negatively impacts the reproductive performance of sheep including the efficiency of estrous synchronization regimens. This study aimed to investigate the potential effects of L-Carnitine (LC) administration on the efficacy of the OvSynch protocol in ewes under summer climatic conditions. Ewes were synchronized for estrus using the OvSynch protocol and a dose of LC (20 mg/kg body weight) was intravenously (IV) administered on the same day of PGF2α injection to one group (n = 8; LC group), while other ewes (n = 8; control group) received the same protocol without LC. Ultrasonographic evaluation (including B-mode, color, and pulsed Doppler) was used to assess the morphometrical and hemodynamic parameters of ovarian structures [number, size, and blood flow of follicles (GFs) and corpora lutea (CLs)] and uterus during the estrous phase (Day 0), and on Day 8 post ovulation (luteal phase). Uterine artery blood flow (MUA) was assessed by measuring the resistive index (RI) and pulsatility index (PI) at both stages. The serum samples were collected to measure the concentrations of estradiol (E2), progesterone (P4), and total antioxidant capacity (TAC) using commercial kits. Results revealed a significant (P<0.05) increase in the colored pixel area of GFs and uterus in the LC group (392.84 ± 31.86 and 712.50 ± 46.88, respectively) compared to the control one (226.25 ± 17.74 and 322 ± 18.78, respectively) during Day 0. Circulating E2 and TAC levels were significantly (P<0.05) higher in the LC-treated ewes (31.45 ± 1.53 pg/ml and 1.80 ± 0.13 mM/L, respectively) compared to those in the control ewes (21.20 ± 1.30 pg/ml and 0.98 ± 0.09 mM/L, respectively) during Day 0. Moreover, LC improved the colored pixel area of CLs (2038.14 ± 102.94 versus 1098 ± 82.39) and uterus (256.38 ± 39.28 versus 121.75 ± 11.36) and circulating P4 (2.99 ± 0.26 ng/ml versus1.67 ± 0.15 ng/ml) on Day 8. Values of RI of MUA were significantly lower in the LC group compared to the control one on Day 0 and Day 8 (0.48 ± 0.03 versus 0.72 ± 0.03 and 0.58 ± 0.03 versus 0.78 ± 0.02, respectively). In conclusion, LC incorporation in the OvSynch protocol enhanced the morphometrical and hemodynamic parameters of the ovarian structures and the uterus concomitantly with improvements in the TAC, E2, and P4 concentrations in ewes under hot summer conditions.
Collapse
Affiliation(s)
- Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Elshymaa A Abdelnaby
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hossam R El-Sherbiny
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
15
|
Hu X, Wang W, Su X, Peng H, Tan Z, Li Y, Huang Y. Comparison of nutritional supplements in improving glycolipid metabolism and endocrine function in polycystic ovary syndrome: a systematic review and network meta-analysis. PeerJ 2023; 11:e16410. [PMID: 38025704 PMCID: PMC10652859 DOI: 10.7717/peerj.16410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To explore the comparative effectiveness of nutritional supplements in improving glycolipid metabolism and endocrine function in patients with polycystic ovary syndrome (PCOS). Method Randomized controlled clinical trials on the effects of nutritional supplements in PCOS patients were searched in PubMed, Embase, Cochrane Library, and Web of Science from their establishments to March 15, 2023. Then, literature screening, data extraction, and network meta-analysis were performed. This study was registered at PROSPERO (registration number CRD 42023441257). Result Forty-one articles involving 2,362 patients were included in this study. The network meta-analysis showed that carnitine, inositol, and probiotics reduced body weight and body mass index (BMI) compared to placebo, and carnitine outperformed the other supplements (SUCRAs: 96.04%, 97.73%, respectively). Omega-3 lowered fasting blood glucose (FBG) (SUCRAs: 93.53%), and chromium reduced fasting insulin (FINS) (SUCRAs: 72.90%); both were superior to placebo in improving insulin resistance index (HOMA-IR), and chromium was more effective than Omega-3 (SUCRAs: 79.99%). Selenium was potent in raising the quantitative insulin sensitivity index (QUICKI) (SUCRAs: 87.92%). Coenzyme Q10 was the most effective in reducing triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels (SUCRAs: 87.71%, 98.78%, and 98.70%, respectively). Chromium and probiotics decreased TG levels, while chromium and vitamin D decreased TC levels. No significant differences were observed in high-density lipoprotein cholesterol (HDL-C), total testosterone (TT), sex-hormone binding globulin (SHBG), and C-reactive protein (CRP) between nutritional supplements and placebo. Conclusion Carnitine was relatively effective in reducing body mass, while chromium, Omega-3, and selenium were beneficial for improving glucose metabolism. Meanwhile, coenzyme Q10 was more efficacious for improving lipid metabolism. However, publication bias may exist, and more high-quality clinical randomized controlled trials are needed.
Collapse
Affiliation(s)
- Xinyin Hu
- Beijing University of Chinese Medicine, Beijing, China
| | - Wanyi Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xuhan Su
- Beijing University of Chinese Medicine, Beijing, China
| | - Haoye Peng
- Beijing University of Chinese Medicine, Beijing, China
| | - Zuolin Tan
- Beijing University of Chinese Medicine, Beijing, China
| | - Yunqing Li
- Capital Medical University, Beijing, China
| | - Yuhua Huang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Placidi M, Vergara T, Casoli G, Flati I, Capece D, Artini PG, Virmani A, Zanatta S, D’Alessandro AM, Tatone C, Di Emidio G. Acyl-Carnitines Exert Positive Effects on Mitochondrial Activity under Oxidative Stress in Mouse Oocytes: A Potential Mechanism Underlying Carnitine Efficacy on PCOS. Biomedicines 2023; 11:2474. [PMID: 37760915 PMCID: PMC10525604 DOI: 10.3390/biomedicines11092474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Carnitines play a key physiological role in oocyte metabolism and redox homeostasis. In clinical and animal studies, carnitine administration alleviated metabolic and reproductive dysfunction associated with polycystic ovarian syndrome (PCOS). Oxidative stress (OS) at systemic, intraovarian, and intrafollicular levels is one of the main factors involved in the pathogenesis of PCOS. We investigated the ability of different acyl-carnitines to act at the oocyte level by counteracting the effects of OS on carnitine shuttle system and mitochondrial activity in mouse oocytes. Germinal vesicle (GV) oocytes were exposed to hydrogen peroxide and propionyl-l-carnitine (PLC) alone or in association with l-carnitine (LC) and acetyl-l-carnitine (ALC) under different conditions. Expression of carnitine palmitoyltransferase-1 (Cpt1) was monitored by RT-PCR. In in vitro matured oocytes, metaphase II (MII) apparatus was assessed by immunofluorescence. Oocyte mitochondrial respiration was evaluated by Seahorse Cell Mito Stress Test. We found that Cpt1a and Cpt1c isoforms increased under prooxidant conditions. PLC alone significantly improved meiosis completion and oocyte quality with a synergistic effect when combined with LC + ALC. Acyl-carnitines prevented Cpt1c increased expression, modifications of oocyte respiration, and ATP production observed upon OS. Specific effects of PLC on spare respiratory capacity were observed. Therefore, carnitine supplementation modulated the intramitochondrial transfer of fatty acids with positive effects on mitochondrial activity under OS. This knowledge contributes to defining molecular mechanism underlying carnitine efficacy on PCOS.
Collapse
Affiliation(s)
- Martina Placidi
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Teresa Vergara
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Giovanni Casoli
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (D.C.)
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (D.C.)
| | - Paolo Giovanni Artini
- Department of Obstetrics and Gynecology “P. Fioretti”, University of Pisa, 56126 Pisa, Italy;
| | - Ashraf Virmani
- Research, Innovation and Development, Alfasigma B.V., 3528 BG Utrecht, The Netherlands;
| | - Samuele Zanatta
- Research and Development, Labomar Spa, 31036 Istrana, Italy;
| | - Anna Maria D’Alessandro
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Carla Tatone
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Giovanna Di Emidio
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| |
Collapse
|
17
|
Siemers KM, Klein AK, Baack ML. Mitochondrial Dysfunction in PCOS: Insights into Reproductive Organ Pathophysiology. Int J Mol Sci 2023; 24:13123. [PMID: 37685928 PMCID: PMC10488260 DOI: 10.3390/ijms241713123] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex, but relatively common endocrine disorder associated with chronic anovulation, hyperandrogenism, and micro-polycystic ovaries. In addition to reduced fertility, people with PCOS have a higher risk of obesity, insulin resistance, and metabolic disease, all comorbidities that are associated with mitochondrial dysfunction. This review summarizes human and animal data that report mitochondrial dysfunction and metabolic dysregulation in PCOS to better understand how mitochondria impact reproductive organ pathophysiology. This in-depth review considers all the elements regulating mitochondrial quantity and quality, from mitochondrial biogenesis under the transcriptional regulation of both the nuclear and mitochondrial genome to the ultrastructural and functional complexes that regulate cellular metabolism and reactive oxygen species production, as well as the dynamics that regulate subcellular interactions that are key to mitochondrial quality control. When any of these mitochondrial functions are disrupted, the energetic equilibrium within the cell changes, cell processes can fail, and cell death can occur. If this process is ongoing, it affects tissue and organ function, causing disease. The objective of this review is to consolidate and classify a broad number of PCOS studies to understand how various mitochondrial processes impact reproductive organs, including the ovary (oocytes and granulosa cells), uterus, placenta, and circulation, causing reproductive pathophysiology. A secondary objective is to uncover the potential role of mitochondria in the transgenerational transmission of PCOS and metabolic disorders.
Collapse
Affiliation(s)
- Kyle M. Siemers
- Physician Scientist (MD/Ph.D.) Program, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA;
| | - Abigail K. Klein
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Lee Medical Building, 414 E. Clark St., Sioux Falls, SD 57069, USA;
| | - Michelle L. Baack
- Department of Pediatrics, Division of Neonatology, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, USA
- Environmental Influences on Health and Disease Group, Sanford Research, 2301 E. 60th St., Sioux Falls, SD 57104, USA
| |
Collapse
|
18
|
Chen J, Zhu Z, Xu S, Li J, Huang L, Tan W, Zhang Y, Zhao Y. HDAC1 participates in polycystic ovary syndrome through histone modification to regulate H19/miR-29a-3p/NLRP3-mediated granulosa cell pyroptosis. Mol Cell Endocrinol 2023; 573:111950. [PMID: 37207962 DOI: 10.1016/j.mce.2023.111950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Histone deacetylase 1 (HDAC1) is known to participate in the molecular etiology of polycystic ovary syndrome (PCOS). However, its role in granulosa cell (GC) pyroptosis remains unclear. This study sought to investigate the mechanism of HDAC1 in PCOS-induced GC pyroptosis through histone modification. Clinical serum samples and the general data of study subjects were collected. PCOS mouse models were established using dehydroepiandrosterone and cell models were established in HGL5 cells using dihydrotestosterone. Expressions of HDAC1, H19, miR-29a-3p, and NLR family pyrin domain containing 3 (NLRP3) and pyroptosis-related proteins and levels of hormones and inflammatory cytokines were determined. Ovarian damage was observed by hematoxylin-eosin staining. Functional rescue experiments were conducted to verify the role of H19/miR-29a-3p/NLRP3 in GC pyroptosis in PCOS. HDAC1 and miR-29a-3p were downregulated whereas H19 and NLRP3 were upregulated in PCOS. HDAC1 upregulation attenuated ovarian damage and hormone disorders in PCOS mice and suppressed pyroptosis in ovarian tissues and HGL5 cells. HDAC1 inhibited H3K9ac on the H19 promoter and H19 competitively bound to miR-29a-3p to improve NLRP3 expression. Overexpressed H19 or NLRP3 or inhibited miR-29a-3p reversed the inhibition of GC pyroptosis by HDAC1 upregulation. Overall, HDAC1 suppressed GC pyroptosis in PCOS through deacetylation to regulate the H19/miR-29a-3p/NLRP3 axis.
Collapse
Affiliation(s)
- Jiying Chen
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China.
| | - Zhiying Zhu
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Shi Xu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Lilan Huang
- Department of General Practice, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Wenqing Tan
- Department of General Practice, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yonggang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yanli Zhao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
19
|
Gong Y, Jiang T, He H, Wang Y, Wu GL, Shi Y, Cai Q, Xiong CL, Shen R, Li J. Effects of carnitine on glucose and lipid metabolic profiles and fertility outcomes in women with polycystic ovary syndrome: A systematic review and meta-analysis. Clin Endocrinol (Oxf) 2023; 98:682-691. [PMID: 36746677 DOI: 10.1111/cen.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To quantify the effect of carnitine on glucose and lipid metabolic profiles and fertility outcomes in women with Polycystic ovary syndrome (PCOS). DESIGN A systematic review and meta-analysis were conducted. PATIENTS Women with PCOS diagnosed by Rotterdam or Androgen Excess Society (AES) criteria and taking carnitine supplement were assessment. MEASUREMENTS Fertility outcomes (ovulation, clinical pregnancy, live birth, and miscarriage), lipid parameters (BMI, triglyceride, total cholesterol, high-density lipoprotein, low-density lipoprotein), fasting glucose and insulin, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). RESULTS In total, 839 participants were included in this analysis. The dosage of carnitine and treatment duration reported by studies varied from 250 mg to 3000 mg daily and 84 to 90 days, respectively. The publication bias was absent. Compared with placebo, carnitine significantly improved ovulation rates (RR 3.42, 95% CI 2.39 to 4.89, I2 = 0%) and pregnancy rates (RR 11.05, 95% CI 1.21 to 100.58, I2 = 79%). None of included studies reported live birth. After treatment, carnitine resulted in significant reductions relative to baseline in body mass index (BMI, MD -0.93 kg/m2, 95% CI -1.15 to -0.70, I2 = 55.0%), insulin levels (MD -2.47 mIU/L, 95% CI -4.49 to -0.45, I2 = 0%) and the Homeostasis Model Assessment index (MD -0.67, 95% CI -1.20 to -0.14, I2 = 0%) than placebo, but not for lipid profiles including triglyceride, total cholesterol, and low-density lipoprotein. CONCLUSION With the available literature, carnitine seems to improve ovulation and clinical pregnancy and insulin resistance, BMI in women with PCOS. These effects are warranted to be further validated, due to insufficient statistical power.
Collapse
Affiliation(s)
- Yi Gong
- Beilun District People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Tong Jiang
- Beilun District People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Hui He
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guo-Lin Wu
- Beilun District People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Ying Shi
- Beilun District People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Qinjun Cai
- Beilun District People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Can-Li Xiong
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rong Shen
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Li
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
20
|
Modulating Morphological and Redox/Glycative Alterations in the PCOS Uterus: Effects of Carnitines in PCOS Mice. Biomedicines 2023; 11:biomedicines11020374. [PMID: 36830911 PMCID: PMC9953026 DOI: 10.3390/biomedicines11020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Background: Polycystic ovarian syndrome (PCOS) is a common and multifactorial disease affecting reproductive-age women. Although PCOS ovarian and metabolic features have received extensive research, uterine dysfunction has been poorly investigated. This research aims to investigate morphological and molecular alterations in the PCOS uterus and search for modulating effects of different carnitine formulations. (2) Methods: CD1 mice were administered or not with dehydroepiandrosterone (DHEA, 6 mg/100 g body weight) for 20 days, alone or with 0.40 mg L-carnitine (LC) and 0.20 mg acetyl-L-carnitine (ALC) in the presence or absence of 0.08 mg propionyl-L-carnitine (PLC). Uterine horns from the four groups were subjected to histology, immunohistochemistry and immunoblotting analyses to evaluate their morphology, collagen deposition, autophagy and steroidogenesis. Oxidative-/methylglyoxal (MG)-dependent damage was investigated along with the effects on the mitochondria, SIRT1, SOD2, RAGE and GLO1 proteins. (3) Results: The PCOS uterus suffers from tissue and oxidative alterations associated with MG-AGE accumulation. LC-ALC administration alleviated PCOS uterine tissue alterations and molecular damage. The presence of PLC prevented fibrosis and maintained mitochondria content. (4) Conclusions: The present results provide evidence for oxidative and glycative damage as the main factors contributing to PCOS uterine alterations and include the uterus in the spectrum of action of carnitines on the PCOS phenotype.
Collapse
|
21
|
Elmosalamy SH, Elleithy EMM, Ahmed ZSO, Rashad MM, Ali GE, Hassan NH. Dysregulation of intraovarian redox status and steroidogenesis pathway in letrozole-induced PCOS rat model: a possible modulatory role of l-Carnitine. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Polycystic ovarian syndrome (PCOS) is a reproductive disorder associated with several endocrine and metabolic alterations. The mechanism underlying this syndrome is controversial. On the other hand, drugs used for the treatment are associated with several side effects and poor in controlling PCOS phenotype. l-Carnitine (LC) has been reported to have a significant regulatory function on the redox and metabolic status of female reproductive system. Nevertheless, its regulatory pathways to regulate PCOS are still under investigation. Therefore, this study aimed to evaluate the effects of LC on the steroidogenic pathways, oxidative stress markers and metabolic profile in letrozole (LTZ)-induced PCOS rat model.
Methods
For this aim, animals were divided into four groups (n = 6). Control group, untreated letrozole-induced PCOS group (1 mg/kg bwt) for 21 days, PCOS group treated with l-Carnitine (100 mg/kg bwt) for 14 days and PCOS group treated with clomiphene citrate (2 mg/kg bwt) for 14 days. Finally, body and ovarian weight, metabolic state(glucose and lipid profile), hormonal assays (testosterone, 17 β estradiol, LH and FSH levels), intraovarian relative gene expression (CYP17A1, StAR, CYP11A1 and CYP19A1 genes), ovarian redox state (malondialdehyde (MDA), reduced glutathione content (GSH) and catalase enzyme activity (CAT)) as well as serum total antioxidant capacity (TAC) were detected. Also, histomorphometric ovarian evaluation (number and diameter of cystic follicles, granulosa cell thickness and theca cell thickness) as well as immune expression of caspase-3 of granulosa cells of cystic follicles were determined.
Results
LC significantly improved ovarian redox state (GSH, MDA and CAT), steroidogenic pathways gene expression (CYP17A1, StAR, CYP11A1 and CYP19A1 genes), hormonal profile (Follicle stimulating hormone (FSH) and luteinizing hormone (LH), testosterone and estradiol), metabolic state (Glucose and lipid profile) histomorphometric alterations and decreased caspase 3 immune reaction of granulosa cells.
Conclusion
l-Carnitine supplementation can ameliorate the PCOS phenotype through its energetic, antioxidant and antiapoptotic functions as well as steroidogenesis regulatory role. This protocol could be modified to produce the best therapeutic benefits, and it could be regarded as a prospective therapeutic intervention for PCOS.
Collapse
|
22
|
Dynamic Changes in Plasma Metabolic Profiles Reveal a Potential Metabolite Panel for Interpretation of Fatal Intoxication by Chlorpromazine or Olanzapine in Mice. Metabolites 2022; 12:metabo12121184. [PMID: 36557223 PMCID: PMC9782175 DOI: 10.3390/metabo12121184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Diagnosing the cause of fatal intoxication by antipsychotic agents is an important task in forensic practice. In the 2020 Annual Report of the American Association of Poison Control Centers, among 40 deaths caused by antipsychotics, 21 cases were diagnosed as "probably responsible", thereby indicating that more objective diagnostic tools are needed. We used liquid chromatography-mass spectrometry-based integrated metabolomics analysis to measure changes in metabolic profiles in the plasma of mice that died from fatal intoxication due to chlorpromazine (CPZ) or olanzapine (OLA). These results were used to construct a stable discriminative classification model (DCM) comprising L-acetylcarnitine, succinic acid, and propionylcarnitine between fatal intoxication caused by CPZ/OLA and cervical dislocation (control). Performance evaluation of the classification model in mice that suffered fatal intoxication showed relative specificity for different pharmacodynamic drugs and relative sensitivity in different life states (normal, intoxication, fatal intoxication). A stable level of L-acetylcarnitine and variable levels of succinic acid and propionylcarnitine between fatal-intoxication and intoxication groups revealed procedural perturbations in metabolic pathways related to fatal intoxication by CPZ/OLA. Additional stability studies revealed that decomposition of succinic acid in fatal-intoxication samples (especially in the OLA group) could weaken the prediction performance of the binary-classification model; however, levels of these three potential metabolites measured within 6 days in fresh samples kept at 4 °C revealed a good performance of our model. Our findings suggest that metabolomics analysis can be used to explore metabolic alterations during fatal intoxication due to use of antipsychotic agents and provide evidence for the cause of death.
Collapse
|
23
|
Wang Z, Zhang D, Yi XZ, Zhao Y, Yu A. Effects of regenerative peripheral nerve interface on dorsal root ganglia neurons following peripheral axotomy. Front Neurosci 2022; 16:914344. [PMID: 36161173 PMCID: PMC9489947 DOI: 10.3389/fnins.2022.914344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/15/2022] [Indexed: 12/05/2022] Open
Abstract
Background Long-term delayed reconstruction of injured peripheral nerves always results in poor recovery. One important reason is retrograde cell death among injured sensory neurons of dorsal root ganglia (DRG). A regenerative peripheral nerve interface (RPNI) was capable of generating new synaptogenesis between the proximal nerve stump and free muscle graft. Meanwhile, sensory receptors within the skeletal muscle can also be readily reinnervated by donor sensory axons, which allows the target muscles to become sources of sensory information for function reconstruction. To date, the effect of RPNI on injured sensory neurons is still unclear. Here, we aim to investigate the potential neuroprotective role of RPNI on sensory DRG neurons after sciatic axotomy in adult rats. Materials and methods The sciatic nerves of sixty rats were transected. The rats were randomly divided into three groups following this nerve injury: no treatment (control group, n = 20), nerve stump implantation inside a fully innervated muscle (NSM group, n = 20), or nerve stump implantation inside a free muscle graft (RPNI group, n = 20). At 8 weeks post-axotomy, ipsilateral L4 and L5 DRGs were harvested in each group. Toluidine blue staining was employed to quantify the neuronal densities in DRGs. The neuronal apoptosis index was quantified with TUNEL assay. Western blotting was applied to measure the expressions of Bax, Bcl-2, and neurotrophins (NTs) in ipsilateral DRGs. Results There were significantly higher densities of neurons in ipsilateral DRGs of RPNI group than NSM and control groups at 8 weeks post-axotomy (p < 0.01). Meanwhile, neuronal apoptosis index and the expressions of pro-apoptotic Bax within the ipsilateral DRGs were significantly lower in the RPNI group than those in the control and NSM groups (p < 0.05), while the opposite result was observed in the expression of pro-survival Bcl-2. Furthermore, the expressions of NGF, NT-3, BDNF, and GDNF were also upregulated in the ipsilateral DRGs in the RPNI group (p < 0.01). Conclusion The present results demonstrate that RPNI could prevent neuronal loss after peripheral axotomy. And the neuroprotection effect has a relationship with the upregulation of NTs in DRGs, such as NGF, NT-3, BDNF, and GDNF. These findings provide an effective therapy for neuroprotection in the delayed repair of the peripheral nerve injury.
Collapse
|
24
|
Scarfò G, Daniele S, Fusi J, Gesi M, Martini C, Franzoni F, Cela V, Artini PG. Metabolic and Molecular Mechanisms of Diet and Physical Exercise in the Management of Polycystic Ovarian Syndrome. Biomedicines 2022; 10:biomedicines10061305. [PMID: 35740328 PMCID: PMC9219791 DOI: 10.3390/biomedicines10061305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine systemic disorder mainly characterized by a hormonal and metabolic disbalance that leads to oligo/anovulation, hyperandrogenism and the formation of ovarian cysts. Despite the progress that has been reached in its diagnosis and management, little is known about the molecular mechanisms and signaling pathways underlying the pathogenic mechanisms. In this sense, recent research has suggested that the influence of multiple factors, including age, environment, lifestyle and the disease state environment can change the clinical presentation of PCOS via epigenetic modifications. Variants in the genes encoding for proteins involved in steroidogenesis and glucose homeostasis play a crucial role in the development of the disease. Other genes involved in inflammation and cell proliferation seem to undergo an epigenetic control. Moreover, lifestyle factors influence the PCOS course and prognosis, including diet and physical activity, which are fundamental in reducing oxidative stress, inflammation and in improving metabolic and hormonal parameters. In the present review, literature evidence on molecular and epigenetic mechanisms related to PCOS etiology will be discussed, with a particular attention on the positive influence of diet and physical activity as nonpharmacological ways of intervention in the management of the disease.
Collapse
Affiliation(s)
- Giorgia Scarfò
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (J.F.); (F.F.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Correspondence: (S.D.); (P.G.A.); Tel.: +39-050-2219608 (S.D.); +39-050-554104 (P.G.A.)
| | - Jonathan Fusi
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (J.F.); (F.F.)
| | - Marco Gesi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
| | - Ferdinando Franzoni
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (J.F.); (F.F.)
| | - Vito Cela
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Paolo Giovanni Artini
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
- Correspondence: (S.D.); (P.G.A.); Tel.: +39-050-2219608 (S.D.); +39-050-554104 (P.G.A.)
| |
Collapse
|
25
|
Carnitines as Mitochondrial Modulators of Oocyte and Embryo Bioenergetics. Antioxidants (Basel) 2022; 11:antiox11040745. [PMID: 35453430 PMCID: PMC9024607 DOI: 10.3390/antiox11040745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Recently, the importance of bioenergetics in the reproductive process has emerged. For its energetic demand, the oocyte relies on numerous mitochondria, whose activity increases during embryo development under a fine regulation to limit ROS production. Healthy oocyte mitochondria require a balance of pyruvate and fatty acid oxidation. Transport of activated fatty acids into mitochondria requires carnitine. In this regard, the interest in the role of carnitines as mitochondrial modulators in oocyte and embryos is increasing. Carnitine pool includes the un-esterified l-carnitine (LC) and carnitine esters, such as acetyl-l-carnitine (ALC) and propionyl-l-carnitine (PLC). In this review, carnitine medium supplementation for counteracting energetic and redox unbalance during in vitro culture and cryopreservation is reported. Although most studies have focused on LC, there is new evidence that the addition of ALC and/or PLC may boost LC effects. Pathways activated by carnitines include antiapoptotic, antiglycative, antioxidant, and antiinflammatory signaling. Nevertheless, the potential of carnitine to improve energetic metabolism and oocyte and embryo competence remains poorly investigated. The importance of carnitine as a mitochondrial modulator may suggest that this molecule may exert a beneficial role in ovarian disfunctions associated with metabolic and mitochondrial alterations, including PCOS and reproductive aging.
Collapse
|
26
|
Zhang YY, Ma JX, Zhu YT, Wang YX, Chen WQ, Sun X, Zhang W, Wang CY, Ding CF. Investigation of the mechanisms and experimental verification of Cuscuta-Salvia in the treatment of polycystic ovary syndrome (PCOS) via network pharmacology. J Ovarian Res 2022; 15:40. [PMID: 35379295 PMCID: PMC8978390 DOI: 10.1186/s13048-022-00964-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disease associated with reproduction. The Cuscuta-Salvia formula has been widely used to treat for PCOS in clinic. However, its chemical and pharmacological properties remain unclear. We identified the active components and related targets of Cuscuta-Salvia using UHPLC-ESI-Q-TOF-MS and TCMSP database. Disease targets were obtained from the DisGeNET and GeneCards databases. Subsequently, common targets between Cuscuta-Salvia and PCOS were identified using a Venn diagram. PPI network was established. Core genes were selected using a Cytoscape software plugin. GO and KEGG enrichment analyses were performed for common targets using the "pathview" package in R. Several core targets were verified using molecular and Immunological methods. By combining UHPLC-ESI-Q-TOF-MS with a network pharmacology study, 14 active components and a total of 80 common targets were obtained. Ten core genes were regulated by Cuscuta-Salvia in PCOS, including IL6, AKT1, VEGFA, TP53, TNF, MAPK1, JUN, EGF, CASP3, and EGFR. GO results showed that cellular response to drugs, response to oxygen levels, response lipopolysaccharides, and response to molecule of bacterial origin in BP category; membrane, transcription regulator complex, nuclear chromatin, postsynaptic membrane, and vesicle lumen in CC category; DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, DNA-binding transcription activator activity, RNA polymerase II-specific, DNA-binding transcription activator activity, and cytokine receptor binding in MF terms. The KEGG enrichment pathway was mainly involved in the PI3K - Akt, MAPK, TNF, IL-17 signalling pathways, and in cellular senescence. Furthermore, the results of the experimental study showed that Cuscuta-Salvia ameliorated the pathological changes in the ovaries, liver and adipose tissue. And it improved the expressions of the genes or proteins. Our results demonstrate that Cuscuta-Salvia may provide a novel pharmacological basis in an experimental model of PCOS by regulating gene expression. This study provides a basis for future research and clinical applications.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Xiong Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Tian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yi-Xuan Wang
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Wang-Qiang Chen
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Xin Sun
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Wei Zhang
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Chen-Ye Wang
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Cai-Fei Ding
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China.
| |
Collapse
|
27
|
Virmani MA, Cirulli M. The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. Int J Mol Sci 2022; 23:ijms23052717. [PMID: 35269860 PMCID: PMC8910660 DOI: 10.3390/ijms23052717] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondria control cellular fate by various mechanisms and are key drivers of cellular metabolism. Although the main function of mitochondria is energy production, they are also involved in cellular detoxification, cellular stabilization, as well as control of ketogenesis and glucogenesis. Conditions like neurodegenerative disease, insulin resistance, endocrine imbalances, liver and kidney disease are intimately linked to metabolic disorders or inflexibility and to mitochondrial dysfunction. Mitochondrial dysfunction due to a relative lack of micronutrients and substrates is implicated in the development of many chronic diseases. l-carnitine is one of the key nutrients for proper mitochondrial function and is notable for its role in fatty acid oxidation. l-carnitine also plays a major part in protecting cellular membranes, preventing fatty acid accumulation, modulating ketogenesis and glucogenesis and in the elimination of toxic metabolites. l-carnitine deficiency has been observed in many diseases including organic acidurias, inborn errors of metabolism, endocrine imbalances, liver and kidney disease. The protective effects of micronutrients targeting mitochondria hold considerable promise for the management of age and metabolic related diseases. Preventing nutrient deficiencies like l-carnitine can be beneficial in maintaining metabolic flexibility via the optimization of mitochondrial function. This paper reviews the critical role of l-carnitine in mitochondrial function, metabolic flexibility and in other pathophysiological cellular mechanisms.
Collapse
|
28
|
Li J, Liu L, Weng J, Yin TL, Yang J, Feng HL. Biological roles of l-carnitine in oocyte and early embryo development. Mol Reprod Dev 2021; 88:673-685. [PMID: 34618389 DOI: 10.1002/mrd.23542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/23/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Poor oocyte quality is responsible for female infertility. Multiple studies have been carried out to find supplements to enhance oocyte quality and mitigate infertility problems. l-carnitine and its derivatives have diverse roles in developing oocytes and early embryos. This review focuses on the in vitro and in vivo studies that using l-carnitine alone or in combination with other supplements for oocyte quality enhancement. The key roles of l-carnitine in oocyte quality and embryo growth were summarized, and the underlying mechanism was also elucidated. l-carnitine helps in the lipid metabolism process by controlling the transfer of fatty acids to mitochondria for β-oxidation. l-carnitine modulates glucose metabolism and enhances respiratory chain enzyme activity. Furthermore, it acts as an antioxidant to prevent oxidative damage and inhibit apoptosis, a signal in response to oxidative stress. Results show the potential of l-carnitine as a potential agent in assisted reproductive technology to improve oocyte quality and the subsequent embryonic development.
Collapse
Affiliation(s)
- Jiajian Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lingyan Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Jing Weng
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huai L Feng
- The New York Fertility Center, New York-Presbyterian Queens Affiliate with Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
29
|
Petrillo T, Battipaglia C, Virmani MA, Genazzani AR, Genazzani AD. Neuroendocrine Effects of Carnitines on Reproductive Impairments. Int J Mol Sci 2021; 22:ijms221910781. [PMID: 34639120 PMCID: PMC8509461 DOI: 10.3390/ijms221910781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Carnitines are quaternary amines involved in various cellular processes such as fatty acid uptake, β-oxidation and glucose metabolism regulation. Due to their neurotrophic activities, their integrative use has been studied in several different physio-pathological conditions such as anorexia nervosa, chronic fatigue, vascular diseases, Alzheimer’s disease and male infertility. Being metabolically active, carnitines have also been proposed to treat reproductive impairment such as functional hypothalamic amenorrhea (FHA) and polycystic ovary syndrome (PCOS) since they improve both hormonal and metabolic parameters modulating the neuroendocrine impairments of FHA. Moreover, they are capable of improving the lipid profile and the insulin sensitivity in patients with PCOS.
Collapse
Affiliation(s)
- Tabatha Petrillo
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy; (T.P.); (C.B.)
| | - Christian Battipaglia
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy; (T.P.); (C.B.)
| | | | - Andrea R. Genazzani
- Department of Obstetrics and Gynecology, University of Pisa, 56126 Pisa, Italy;
| | - Alessandro D. Genazzani
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy; (T.P.); (C.B.)
- Correspondence:
| |
Collapse
|
30
|
Mota SI, Pita I, Águas R, Tagorti S, Virmani A, Pereira FC, Rego AC. Mechanistic perspectives on differential mitochondrial-based neuroprotective effects of several carnitine forms in Alzheimer's disease in vitro model. Arch Toxicol 2021; 95:2769-2784. [PMID: 34164711 DOI: 10.1007/s00204-021-03104-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Mitochondrial deregulation has emerged as one of the earliest pathological events in Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. Improvement of mitochondrial function in AD has been considered a relevant therapeutic approach. L-carnitine (LC), an amino acid derivative involved in the transport of long-chain fatty acids into mitochondria, was previously demonstrated to improve mitochondrial function, having beneficial effects in neurological disorders; moreover, acetyl-L-carnitine (ALC) is currently under phase 4 clinical trial for AD (ClinicalTrials.gov NCT01320527). Thus, in the present study, we investigated the impact of different forms of carnitines, namely LC, ALC and propionyl-L-carnitine (PLC) on mitochondrial toxicity induced by amyloid-beta peptide 1-42 oligomers (AβO; 1 μM) in mature rat hippocampal neurons. Our results indicate that 5 mM LC, ALC and PLC totally rescued the mitochondrial membrane potential and alleviated both the decrease in oxygen consumption rates and the increase in mitochondrial fragmentation induced by AβO. These could contribute to the prevention of neuronal death by apoptosis. Moreover, only ALC ameliorated AβO-evoked changes in mitochondrial movement by reducing the number of stationary mitochondria and promoting reversal mitochondrial movement. Data suggest that carnitines (LC, ALC and PLC) may act differentially to counteract changes in mitochondrial function and movement in neurons subjected to AβO, thus counteracting AD-related pathological phenotypes.
Collapse
Affiliation(s)
- Sandra I Mota
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Inês Pita
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rodolfo Águas
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Slah Tagorti
- Alfasigma B.V, 3528 BG, Utrecht, The Netherlands
| | | | - Frederico C Pereira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
31
|
Acetyl-L-Carnitine Ameliorates Metabolic and Endocrine Alterations in Women with PCOS: A Double-Blind Randomized Clinical Trial. Adv Ther 2021; 38:3842-3856. [PMID: 34047916 DOI: 10.1007/s12325-021-01789-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/13/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disorder and the main cause of infertility in women of reproductive age. Affected women suffer from insulin resistance and present with an intense stress response. Treatment with insulin sensitizers alone and in combination is used to ameliorate the signs and symptoms associated with the disease. This study was designed to compare the endocrine and metabolic parameters as well as subjective and objective measures of stress in women with PCOS before and after treatment with acetyl-L-carnitine (ALC) and metformin plus pioglitazone. METHODS A total of 147 women with PCOS were randomly assigned into two groups: the combo group (n = 72) received a combination of metformin, pioglitazone, and ALC (500 mg, 15 mg, and 1500 mg, respectively), twice daily; the Met + Pio group (n = 75) received metformin plus pioglitazone (500 mg, 15 mg, respectively) and placebo (citric acid plus calcium carbonate), twice daily for 12 weeks. Medications were discontinued when pregnancy was confirmed. The Perceived Stress Scale (PSS14) and Profile of Mood States (POMS) were employed as subjective measures of stress. The endocrine and metabolic functions of women with PCOS were assessed by measuring insulin, leutinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone, and adiponectin levels in fasting blood samples. Insulin resistance was calculated by Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). RESULTS Women at baseline had significantly elevated circulating concentration of insulin and low level of adiponectin. Treatment decreased insulin in both groups; however, the combo group showed a significant decrease (p = 0.001). Serum adiponectin level was raised significantly after treatment in both groups (p < 0.001). HOMA-IR also decreased in both groups (both p < 0.001). Testosterone, FSH, and LH significantly improved in both groups. LH also decreased in both groups; however, the change was significant only in the combo (metformin plus pioglitazone plus ALC) group (p = 0.013). Interestingly, there was a significant improvement in body circumference (p < 0.001) in the combo group. The PSS scores of the patients improved significantly (p < 0.001) in the combo group. Interestingly, regular menstrual cycles were found (97.2%) in the carnitine group, but in only 12.9% of the other group. CONCLUSION We conclude that addition of ALC therapy is superior to metformin plus pioglitazone in ameliorating insulin resistance, polycystic ovaries, menstrual irregularities, and hypoadiponectinemia in women with PCOS. TRIAL REGISTRATION Trial registration: clinicalTrial.gov NCT04113889. Registered 3 October, 2019. https://clinicaltrials.gov/ct2/show/NCT04113889 .
Collapse
|
32
|
Di Emidio G, Falone S, Artini PG, Amicarelli F, D’Alessandro AM, Tatone C. Mitochondrial Sirtuins in Reproduction. Antioxidants (Basel) 2021; 10:antiox10071047. [PMID: 34209765 PMCID: PMC8300669 DOI: 10.3390/antiox10071047] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria act as hubs of numerous metabolic pathways. Mitochondrial dysfunctions contribute to altering the redox balance and predispose to aging and metabolic alterations. The sirtuin family is composed of seven members and three of them, SIRT3-5, are housed in mitochondria. They catalyze NAD+-dependent deacylation and the ADP-ribosylation of mitochondrial proteins, thereby modulating gene expression and activities of enzymes involved in oxidative metabolism and stress responses. In this context, mitochondrial sirtuins (mtSIRTs) act in synergistic or antagonistic manners to protect from aging and aging-related metabolic abnormalities. In this review, we focus on the role of mtSIRTs in the biological competence of reproductive cells, organs, and embryos. Most studies are focused on SIRT3 in female reproduction, providing evidence that SIRT3 improves the competence of oocytes in humans and animal models. Moreover, SIRT3 protects oocytes, early embryos, and ovaries against stress conditions. The relationship between derangement of SIRT3 signaling and the imbalance of ROS and antioxidant defenses in testes has also been demonstrated. Very little is known about SIRT4 and SIRT5 functions in the reproductive system. The final goal of this work is to understand whether sirtuin-based signaling may be taken into account as potential targets for therapeutic applications in female and male infertility.
Collapse
Affiliation(s)
- Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
- Correspondence: ; Tel.: +39-(0)-862-433-441
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| | - Paolo Giovanni Artini
- Department of Obstetrics and Gynecology “P. Fioretti”, University of Pisa, 56126 Pisa, Italy;
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| |
Collapse
|
33
|
High Doses of D-Chiro-Inositol Alone Induce a PCO-Like Syndrome and Other Alterations in Mouse Ovaries. Int J Mol Sci 2021; 22:ijms22115691. [PMID: 34073634 PMCID: PMC8198710 DOI: 10.3390/ijms22115691] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022] Open
Abstract
Administration of 1000-1500 mg/day D-Chiro-Inositol (DCIns) or a combination of Myo-Inositol (MyoIns) and DCIns in their plasma molar ratio (40:1) for three or more months are among recommended treatments for metabolic syndrome and/or Polycystic Ovary Syndrome (PCOS). We previously confirmed the efficacy of this formulation (8.2 mg/day MyoIns and 0.2 mg/day DCIns for 10 days) in a mouse PCOS model, but also observed negative effects on ovarian histology and function of formulations containing 0.4-1.6 mg/day DCIns. We therefore analyzed effects of higher doses of DCIns, 5, 10 and 20 mg/day, administered to young adult female mice for 21 days, on ovarian histology, serum testosterone levels and expression of the ovarian enzyme aromatase. Five mg/day DCIns (human correspondence: 1200 mg/day) altered ovarian histology, increased serum testosterone levels and reduced the amount of aromatase of negative controls, suggesting the induction of an androgenic PCOS model. In contrast, 10-20 mg/day DCIns (human correspondence: 2400-4800 mg/day) produced ovarian lesions resembling those typical of aged mice, and reduced serum testosterone levels without affecting aromatase amounts, suggesting a failure in steroidogenic gonadal activity. Notwithstanding physiological/biochemical differences between mice and humans, the observed pictures of toxicity for ovarian histology and function recommend caution when administering DCIns to PCOS patients at high doses and/or for periods spanning several ovulatory cycles.
Collapse
|
34
|
Guo Z, Chen X, Feng P, Yu Q. Short-term rapamycin administration elevated testosterone levels and exacerbated reproductive disorder in dehydroepiandrosterone-induced polycystic ovary syndrome mice. J Ovarian Res 2021; 14:64. [PMID: 33947426 PMCID: PMC8097915 DOI: 10.1186/s13048-021-00813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/16/2021] [Indexed: 11/15/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a multifactorial endocrinopathy that affects reproduction and metabolism. Mammalian target of rapamycin (mTOR) has been shown to participate in female reproduction under physiological and pathological conditions. This study aimed to investigate the role of mTOR complex 1 (mTORC1) signaling in dehydroepiandrosterone (DHEA)-induced PCOS mice. Results Female C57BL/6J mice were randomly assigned into three groups: control group, DHEA group, and DHEA + rapamycin group. All DHEA-treated mice were administered 6 mg/100 g DHEA for 21 consecutive days, and the DHEA + rapamycin group was intraperitoneally injected with 4 mg/kg rapamycin every other day for the last 14 days of the DHEA treatment. There was no obvious change in the expression of mTORC1 signaling in the ovaries of the control and DHEA groups. Rapamycin did not protect against DHEA-induced acyclicity and PCO morphology, but impeded follicle development and elevated serum testosterone levels in DHEA-induced mice, which was related with suppressed Hsd3b1, Cyp17a1, and Cyp19a1 expression. Moreover, rapamycin also exacerbated insulin resistance but relieved lipid metabolic disturbance in the short term. Conclusions Rapamycin exacerbated reproductive imbalance in DHEA-induced PCOS mice, which characterized by elevated testosterone levels and suppressed steroid synthesis. This underscores the need for new mTORC1-specific and tissue-specific mTOR-related drugs for reproductive disorders.
Collapse
Affiliation(s)
- Zaixin Guo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohan Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Penghui Feng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
35
|
Rossi G, Placidi M, Castellini C, Rea F, D'Andrea S, Alonso GL, Gravina GL, Tatone C, Di Emidio G, D’Alessandro AM. Crocetin Mitigates Irradiation Injury in an In Vitro Model of the Pubertal Testis: Focus on Biological Effects and Molecular Mechanisms. Molecules 2021; 26:molecules26061676. [PMID: 33802807 PMCID: PMC8002482 DOI: 10.3390/molecules26061676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Infertility is a potential side effect of radiotherapy and significantly affects the quality of life for adolescent cancer survivors. Very few studies have addressed in pubertal models the mechanistic events that could be targeted to provide protection from gonadotoxicity and data on potential radioprotective treatments in this peculiar period of life are elusive. In this study, we utilized an in vitro model of the mouse pubertal testis to investigate the efficacy of crocetin to counteract ionizing radiation (IR)-induced injury and potential underlying mechanisms. Present experiments provide evidence that exposure of testis fragments from pubertal mice to 2 Gy X-rays induced extensive structural and cellular damage associated with overexpression of PARP1, PCNA, SOD2 and HuR and decreased levels of SIRT1 and catalase. A twenty-four hr exposure to 50 μM crocetin pre- and post-IR significantly reduced testis injury and modulated the response to DNA damage and oxidative stress. Nevertheless, crocetin treatment did not counteract the radiation-induced changes in the expression of SIRT1, p62 and LC3II. These results increase the knowledge of mechanisms underlying radiation damage in pubertal testis and establish the use of crocetin as a fertoprotective agent against IR deleterious effects in pubertal period.
Collapse
Affiliation(s)
- Giulia Rossi
- Lab of Reproductive Technologies, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.R.); (M.P.); (F.R.); (C.T.)
| | - Martina Placidi
- Lab of Reproductive Technologies, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.R.); (M.P.); (F.R.); (C.T.)
| | - Chiara Castellini
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.C.); (S.D.)
| | - Francesco Rea
- Lab of Reproductive Technologies, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.R.); (M.P.); (F.R.); (C.T.)
| | - Settimio D'Andrea
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.C.); (S.D.)
| | - Gonzalo Luis Alonso
- Química Agrícola, E.T.S.I. Agrónomos y Montes, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain;
| | - Giovanni Luca Gravina
- Laboratory of Radiobiology, Division of Radiotherapy, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Carla Tatone
- Lab of Reproductive Technologies, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.R.); (M.P.); (F.R.); (C.T.)
| | - Giovanna Di Emidio
- Lab of Reproductive Technologies, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.R.); (M.P.); (F.R.); (C.T.)
- Correspondence:
| | - Anna Maria D’Alessandro
- Lab of Nutritional Biochemistry, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|