1
|
Kuruppath P. Integrating optogenetic stimulation of olfactory bulb glomeruli with foot shock fear conditioning: A robust method for investigating olfactory-based fear conditioning. Eur J Neurosci 2025; 61. [PMID: 39993972 DOI: 10.1111/ejn.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 02/26/2025]
Abstract
The integration of optogenetic techniques with traditional behavioural paradigms has provided novel insights into the neural mechanisms underlying olfactory-based fear conditioning. Olfactory cues are potent triggers for fear responses, and understanding the intricate neural dynamics involved in olfactory fear learning is crucial for unravelling the complexities of aversive memory formation. In this study, a robust method is presented that combines optogenetic stimulation of olfactory bulb glomeruli with foot shock fear conditioning to investigate olfactory-based fear learning in mice. By merging optogenetic manipulation with behavioural assays, a comprehensive framework for studying the mechanisms of olfactory fear conditioning is provided. This method offers new avenues for exploring the neural dynamics of adaptive responses to olfactory threats and may have implications for understanding fear-related disorders.
Collapse
Affiliation(s)
- Praveen Kuruppath
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Kuruppath P. Bilateral Optogenetic Stimulation of the Olfactory Bulb of OMP-ChIEF Mice. Methods Mol Biol 2025; 2915:189-200. [PMID: 40249493 DOI: 10.1007/978-1-0716-4466-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Optogenetics has revolutionized the field of neuroscience by enabling the manipulation of specific neuronal populations with exceptional precision. Here, a robust method is described that integrates optogenetic stimulation of olfactory bulb glomeruli with foot shock fear conditioning. By merging the sophistication of optogenetics with the well-established principles of fear conditioning, this method opens new avenues for exploring the neural dynamics that drive adaptive behavioral responses to olfactory threats.
Collapse
Affiliation(s)
- Praveen Kuruppath
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Motaman S, Ghafouri T, Manavizadeh N. Low power nanoscale S-FED based single ended sense amplifier applied in integrate and fire neuron circuit. Sci Rep 2024; 14:10691. [PMID: 38724680 PMCID: PMC11082184 DOI: 10.1038/s41598-024-61224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Current advancements in neuromorphic computing systems are focused on decreasing power consumption and enriching computational functions. Correspondingly, state-of-the-art system-on-chip developers are encouraged to design nanoscale devices with minimum power dissipation and high-speed operation. This paper deals with designing a sense amplifier based on side-contacted field-effect diodes to reduce the power-delay product (PDP) and the noise susceptibility, as critical factors in neuron circuits. Our findings reveal that both static and dynamic power consumption of the S-FED-based sense amplifier, equal to 1.86 μW and 1.92 fW/GHz, are × 243.03 and × 332.83 lower than those of the conventional CMOS counterpart, respectively. While the sense-amplifier circuit based on CMOS technology undergoes an output voltage deviation of 170.97 mV, the proposed S-FED-based one enjoys a minor output deviation of 27.31 mV. Meanwhile, the superior HIGH-level and LOW-level noise margins of the S-FED-based sense amplifier to the CMOS counterparts (∆NMH = 70 mV and ∆NML = 120 mV), respectively, can ensure the system-level operation stability of the former one. Subsequent to the attainment of an area-efficient, low-power, and high-speed S-FED-based sense amplifier (PDP = 187.75 × 10-18 W s) as a fundamental building block, devising an innovative integrate-and-fire neuron circuit based on S-FED paves the way to realize a new generation of neuromorphic architectures. To shed light on this context, an S-FED-based integrate-and-fire neuron circuit is designed and analyzed utilizing a sense amplifier and feedback loop to enhance spiking voltage and subsequent noise immunity in addition to an about fourfold increase in firing frequency compared to CMOS-based ones.
Collapse
Affiliation(s)
- SeyedMohamadJavad Motaman
- Nanostructured-Electronic Devices Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, 1631714191, Iran
| | - Tara Ghafouri
- Nanostructured-Electronic Devices Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, 1631714191, Iran
| | - Negin Manavizadeh
- Nanostructured-Electronic Devices Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, 1631714191, Iran.
| |
Collapse
|
4
|
Singh NK, Ramamourthy B, Hage N, Kappagantu KM. Optogenetics: Illuminating the Future of Hearing Restoration and Understanding Auditory Perception. Curr Gene Ther 2024; 24:208-216. [PMID: 38676313 DOI: 10.2174/0115665232269742231213110937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 04/28/2024]
Abstract
Hearing loss is a prevalent sensory impairment significantly affecting communication and quality of life. Traditional approaches for hearing restoration, such as cochlear implants, have limitations in frequency resolution and spatial selectivity. Optogenetics, an emerging field utilizing light-sensitive proteins, offers a promising avenue for addressing these limitations and revolutionizing hearing rehabilitation. This review explores the methods of introducing Channelrhodopsin- 2 (ChR2), a key light-sensitive protein, into cochlear cells to enable optogenetic stimulation. Viral- mediated gene delivery is a widely employed technique in optogenetics. Selecting a suitable viral vector, such as adeno-associated viruses (AAV), is crucial in efficient gene delivery to cochlear cells. The ChR2 gene is inserted into the viral vector through molecular cloning techniques, and the resulting viral vector is introduced into cochlear cells via direct injection or round window membrane delivery. This allows for the expression of ChR2 and subsequent light sensitivity in targeted cells. Alternatively, direct cell transfection offers a non-viral approach for ChR2 delivery. The ChR2 gene is cloned into a plasmid vector, which is then combined with transfection agents like liposomes or nanoparticles. This mixture is applied to cochlear cells, facilitating the entry of the plasmid DNA into the target cells and enabling ChR2 expression. Optogenetic stimulation using ChR2 allows for precise and selective activation of specific neurons in response to light, potentially overcoming the limitations of current auditory prostheses. Moreover, optogenetics has broader implications in understanding the neural circuits involved in auditory processing and behavior. The combination of optogenetics and gene delivery techniques provides a promising avenue for improving hearing restoration strategies, offering the potential for enhanced frequency resolution, spatial selectivity, and improved auditory perception.
Collapse
Affiliation(s)
- Namit Kant Singh
- Department of Otorhinolaryngology and Head and Neck Surgery, All India institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Balaji Ramamourthy
- Department of Otorhinolaryngology and Head and Neck Surgery, All India institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Neemu Hage
- Department of Otorhinolaryngology and Head and Neck Surgery, All India institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Krishna Medha Kappagantu
- Department of Otorhinolaryngology and Head and Neck Surgery, All India institute of Medical Sciences, Bibinagar, Hyderabad, India
| |
Collapse
|
5
|
Wang J, Azimi H, Zhao Y, Kaeser M, Vaca Sánchez P, Vazquez-Guardado A, Rogers JA, Harvey M, Rainer G. Optogenetic activation of visual thalamus generates artificial visual percepts. eLife 2023; 12:e90431. [PMID: 37791662 PMCID: PMC10593406 DOI: 10.7554/elife.90431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023] Open
Abstract
The lateral geniculate nucleus (LGN), a retinotopic relay center where visual inputs from the retina are processed and relayed to the visual cortex, has been proposed as a potential target for artificial vision. At present, it is unknown whether optogenetic LGN stimulation is sufficient to elicit behaviorally relevant percepts, and the properties of LGN neural responses relevant for artificial vision have not been thoroughly characterized. Here, we demonstrate that tree shrews pretrained on a visual detection task can detect optogenetic LGN activation using an AAV2-CamKIIα-ChR2 construct and readily generalize from visual to optogenetic detection. Simultaneous recordings of LGN spiking activity and primary visual cortex (V1) local field potentials (LFPs) during optogenetic LGN stimulation show that LGN neurons reliably follow optogenetic stimulation at frequencies up to 60 Hz and uncovered a striking phase locking between the V1 LFP and the evoked spiking activity in LGN. These phase relationships were maintained over a broad range of LGN stimulation frequencies, up to 80 Hz, with spike field coherence values favoring higher frequencies, indicating the ability to relay temporally precise information to V1 using light activation of the LGN. Finally, V1 LFP responses showed sensitivity values to LGN optogenetic activation that were similar to the animal's behavioral performance. Taken together, our findings confirm the LGN as a potential target for visual prosthetics in a highly visual mammal closely related to primates.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medicine, University of FribourgFribourgSwitzerland
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical UniversityNanjingChina
| | - Hamid Azimi
- Department of Medicine, University of FribourgFribourgSwitzerland
| | - Yilei Zhao
- Department of Medicine, University of FribourgFribourgSwitzerland
| | - Melanie Kaeser
- Department of Medicine, University of FribourgFribourgSwitzerland
| | | | | | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern UniversityEvanstonUnited States
| | - Michael Harvey
- Department of Medicine, University of FribourgFribourgSwitzerland
| | - Gregor Rainer
- Department of Medicine, University of FribourgFribourgSwitzerland
| |
Collapse
|
6
|
Gerasimov E, Bezprozvanny I, Vlasova OL. Activation of Gq-Coupled Receptors in Astrocytes Restores Cognitive Function in Alzheimer's Disease Mice Model. Int J Mol Sci 2023; 24:9969. [PMID: 37373117 PMCID: PMC10298315 DOI: 10.3390/ijms24129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most widespread neurodegenerative diseases. Most of the current AD therapeutic developments are directed towards improving neuronal cell function or facilitating Aβ amyloid clearance from the brain. However, some recent evidence suggests that astrocytes may play a significant role in the pathogenesis of AD. In this paper, we evaluated the effects of the optogenetic activation of Gq-coupled exogenous receptors expressed in astrocytes as a possible way of restoring brain function in the AD mouse model. We evaluated the effects of the optogenetic activation of astrocytes on long-term potentiation, spinal morphology and behavioral readouts in 5xFAD mouse model of AD. We determined that in vivo chronic activation of astrocytes resulted in the preservation of spine density, increased mushroom spine survival, and improved performance in cognitive behavioral tests. Furthermore, chronic optogenetic stimulation of astrocytes resulted in the elevation of EAAT-2 glutamate uptake transporter expression, which could be a possible explanation for the observed in vivo neuroprotective effects. The obtained results suggest that the persistent activation of astrocytes may be considered a potential therapeutic approach for the treatment of AD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.G.); (I.B.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.G.); (I.B.)
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga L. Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.G.); (I.B.)
| |
Collapse
|
7
|
Bayat FK, Alp Mİ, Bostan S, Gülçür HÖ, Öztürk G, Güveniş A. An improved platform for cultured neuronal network electrophysiology: multichannel optogenetics integrated with MEAs. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:503-514. [PMID: 35930029 DOI: 10.1007/s00249-022-01613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Cultured neuronal networks (CNNs) are powerful tools for studying how neuronal representation and adaptation emerge in networks of controlled populations of neurons. To ensure the interaction of a CNN and an artificial setting, reliable operation in both open and closed loops should be provided. In this study, we integrated optogenetic stimulation with microelectrode array (MEA) recordings using a digital micromirror device and developed an improved research tool with a 64-channel interface for neuronal network control and data acquisition. We determined the ideal stimulation parameters including light intensity, frequency, and duty cycle for our configuration. This resulted in robust and reproducible neuronal responses. We also demonstrated both open and closed loop configurations in the new platform involving multiple bidirectional channels. Unlike previous approaches that combined optogenetic stimulation and MEA recordings, we did not use binary grid patterns, but assigned an adjustable-size, non-binary optical spot to each electrode. This approach allowed simultaneous use of multiple input-output channels and facilitated adaptation of the stimulation parameters. Hence, we advanced a 64-channel interface in that each channel can be controlled individually in both directions simultaneously without any interference or interrupts. The presented setup meets the requirements of research in neuronal plasticity, network encoding and representation, closed-loop control of firing rate and synchronization. Researchers who develop closed-loop control techniques and adaptive stimulation strategies for network activity will benefit much from this novel setup.
Collapse
Affiliation(s)
- F Kemal Bayat
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.
| | - M İkbal Alp
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Sevginur Bostan
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - H Özcan Gülçür
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Albert Güveniş
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
8
|
Jeong J, Jung J, Jung D, Kim J, Ju H, Kim T, Lee J. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light. Biosens Bioelectron 2021; 180:113139. [PMID: 33714161 DOI: 10.1016/j.bios.2021.113139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
Abstract
Optogenetics is a cutting-edge tool in neuroscience that employs light-sensitive proteins and controlled illumination for neuromodulation. Its main advantage is the ability to demonstrate causal relationships by manipulating the activity of specific neuronal populations and observing behavioral phenotypes. However, the tethering system used to deliver light to optogenetic tools can constrain both natural animal behaviors and experimental design. Here, we present an optically powered and controlled wireless optogenetic system using near-infrared (NIR) light for high transmittance through live tissues. In vivo optogenetic stimulations using this system induced whisker movement in channelrhodopsin-expressing mice, confirming the photovoltaics-generated electrical power was sufficient, and the remote controlling system operated successfully. The proposed optogenetic system provides improved optogenetic applications in freely moving animals.
Collapse
Affiliation(s)
- Jinmo Jeong
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jieun Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Dongwuk Jung
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Juho Kim
- Department of Applied Nano-Mechanics, Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon, 34103, Republic of Korea
| | - Hunpyo Ju
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Jongho Lee
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
9
|
Solomon EA, Rooney AM, Rodriguez AM, Micheva-Viteva S, Bashir R, Iyer R, Harris JF. Neuromuscular Junction Model Optimized for Electrical Platforms. Tissue Eng Part C Methods 2021; 27:242-252. [PMID: 33599165 DOI: 10.1089/ten.tec.2020.0292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neuromuscular junctions (NMJs), specialized synapses between motor neurons and muscle fibers, are essential for muscle activity. A simple and reproducible cell-based in vitro NMJ platform is needed to test the impact of chemicals on the neuron-muscle communication. Our platform utilizes genetically modified neurons and muscle cells, optimized culture conditions, and commercially available multielectrode array system for recording action potentials. Neuronal cells (NSC34) were optogenetically modified with channelrhodopsin chimera to allow for simultaneous, light-mediated, millisecond-precise activation of neuronal population. This signal is propagated through functional synapses to the muscle fibers. Muscle cells (C2C12) were modified by incorporating gap junction protein (Connexin-43) to improve intracellular communication without affecting muscle differentiation. This communication between muscle fibers resulted in better signal propagation and signal strength. Optimized culture medium facilitated the growth and differentiation of both cell types together. Our system was validated using vecuronium, a muscle relaxant, which abolished the muscle response. This in vitro model provides a unique tool for establishing a NMJ platform that is easy to record and analyze. Potential applications include nondestructive long-term screening of drugs affecting the NMJ.
Collapse
Affiliation(s)
- Emilia A Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Allison M Rooney
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Arasely M Rodriguez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Rashid Bashir
- Department of Bioengineering, Nick J. Holonyak Micro and Nanotechnology Laboratory, and Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Rashi Iyer
- Information System and Modeling, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | |
Collapse
|
10
|
Sridharan A, Shah A, Kumar SS, Kyeh J, Smith J, Blain-Christen J, Muthuswamy J. Optogenetic modulation of cortical neurons using organic light emitting diodes (OLEDs). Biomed Phys Eng Express 2020; 6:025003. [DOI: 10.1088/2057-1976/ab6fb7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|