1
|
Zhang X, Wang Y, Han J, Zhao W, Zhang W, Li X, Chen J, Song W, Wang L. Cardiac-Focused Multi-Organ Chips: Advanced Disease Modeling, Drug Testing, and Inter-Organ Communication. Adv Biol (Weinh) 2025; 9:e2400512. [PMID: 39913111 DOI: 10.1002/adbi.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/18/2024] [Indexed: 02/07/2025]
Abstract
Heart disease remains a leading cause of mortality worldwide, posing a significant challenge to global healthcare systems. Traditional animal models and cell culture techniques are instrumental in advancing the understanding of cardiac pathophysiology. However, these methods are limited in their ability to fully replicate the heart's intricate functions. This underscores the need for a deeper investigation into the fundamental mechanisms of heart disease. Notably, cardiac pathology is often influenced by systemic factors, with conditions in other organs contributing to disease onset and progression. Cardiac-focused multi-organ chip technology has emerged to better elucidate these complex inter-organ communications and address the limitations of current in vitro models. This technology offers a novel approach by recreating the cardiac microenvironment and integrating it with other organ systems, thereby enabling more precise disease modeling and drug toxicity assessment. This review provides a comprehensive overview of the heart's structure and function, explores the advancements in cardiac organ chip development, and highlights the applications of cardiac-focused multi-organ chips in medical research. Finally, the future potential of this technology in enhancing disease modeling and therapeutic evaluation is discussed.
Collapse
Affiliation(s)
- Xiaolong Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Yushen Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai, 201 620, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250 021, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250 021, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| |
Collapse
|
2
|
Hamze J, Broadwin M, Stone C, Muir KC, Sellke FW, Abid MR. Developments in Extracellular Matrix-Based Angiogenesis Therapy for Ischemic Heart Disease: A Review of Current Strategies, Methodologies and Future Directions. BIOTECH 2025; 14:23. [PMID: 40227326 PMCID: PMC11940646 DOI: 10.3390/biotech14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of mortality worldwide, underscoring the urgent need for innovative therapeutic strategies. The cardiac extracellular matrix (ECM) undergoes extreme transformations during IHD, adversely influencing the heart's structure, mechanics, and cellular signaling. Researchers investigating the regenerative capacity of the diseased heart have turned their attention to exploring the modulation of ECM to improve therapeutic outcomes. In this review, we thoroughly examine the current state of knowledge regarding the cardiac ECM and its therapeutic potential in the ischemic myocardium. We begin by providing an overview of the fundamentals of cardiac ECM, focusing on the structural, functional, and regulatory mechanisms that drive its modulation. Subsequently, we examine the ECM's interactions within both chronically ischemic and acutely infarcted myocardium, emphasizing key ECM components and their roles in modulating angiogenesis. Finally, we discuss recent ECM-based approaches in biomedical engineering, focusing on different types of scaffolds as delivery tools and their compositions, and conclude with future directions for therapeutic research. By harnessing the potential of these emerging ECM-based therapies, we aim to contribute to the development of novel therapeutic modalities for IHD.
Collapse
Affiliation(s)
| | | | | | | | | | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
3
|
Xu J, Harasek M, Gföhler M. From Soft Lithography to 3D Printing: Current Status and Future of Microfluidic Device Fabrication. Polymers (Basel) 2025; 17:455. [PMID: 40006117 PMCID: PMC11859042 DOI: 10.3390/polym17040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
The advent of 3D printing has revolutionized the fabrication of microfluidic devices, offering a compelling alternative to traditional soft lithography techniques. This review explores the potential of 3D printing, particularly photopolymerization techniques, fused deposition modeling, and material jetting, in advancing microfluidics. We analyze the advantages of 3D printing in terms of cost efficiency, geometric complexity, and material versatility while addressing key challenges such as material transparency and biocompatibility, which have represented the limiting factors for its widespread adoption. Recent developments in printing technologies and materials are highlighted, underscoring the progress in overcoming these barriers. Finally, we discuss future trends and opportunities, including advancements in printing resolution and speed, the development of new printable materials, process standardization, and the emergence of bioprinting for organ-on-a-chip applications. Sustainability and regulatory frameworks are also considered critical aspects shaping the future of 3D-printed microfluidics. By bridging the gap between traditional and emerging fabrication techniques, this review aims to illuminate the transformative potential of 3D printing in microfluidic device manufacturing.
Collapse
Affiliation(s)
- Jingjing Xu
- Institute of Engineering Design and Product Development, Technische Universität Wien, 1060 Vienna, Austria;
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria;
| | - Michael Harasek
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria;
| | - Margit Gföhler
- Institute of Engineering Design and Product Development, Technische Universität Wien, 1060 Vienna, Austria;
| |
Collapse
|
4
|
Palmieri E, Montaina L, Bellisario D, Lucarini I, Maita F, Ielmini M, Cataldi ME, Cerroni L, Condò R, Maiolo L. Towards Green Dentistry: Evaluating the Potential of 4D Printing for Sustainable Orthodontic Aligners with a Reduced Carbon Footprint. Polymers (Basel) 2024; 16:3566. [PMID: 39771418 PMCID: PMC11679438 DOI: 10.3390/polym16243566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Clear aligners have transformed orthodontic care by providing an aesthetic, removable alternative to traditional braces. However, their significant environmental footprint, contributing to approximately 15,000 tons of plastic waste annually, poses a critical challenge. To address this issue, advancements in 4D printing have introduced "smart" aligners with shape memory properties, enabling reshaping and reducing the number of aligners required per treatment. This study focuses on ClearX aligners, an innovative 4D-printed solution aimed at extending usage duration and minimizing environmental impact. Using a comprehensive suite of tests, including morphological, optical, and mechanical evaluations conducted via scanning electron microscopy, UV-Vis spectroscopy, infrared spectroscopy, and bending and strain assessments, we evaluated the optical and mechanical stability of the ClearX material before and after thermal activation. Our results demonstrate that ClearX aligners retain their structural and functional properties after reshaping. Temporary changes in transparency, observed only under prolonged treatment durations exceeding manufacturer recommendations, are fully reversible within 12 h and do not compromise the aligner's usability. These findings support the potential of ClearX aligners to effectively combine patient-centered, high-quality orthodontic care with sustainable practices.
Collapse
Affiliation(s)
- Elena Palmieri
- Institute for Microelectronics and Microsystems, National Research Council, Via del Fosso del Cavaliere, 100, 00133 Rome, Italy; (E.P.); (L.M.); (I.L.); (L.M.)
| | - Luca Montaina
- Institute for Microelectronics and Microsystems, National Research Council, Via del Fosso del Cavaliere, 100, 00133 Rome, Italy; (E.P.); (L.M.); (I.L.); (L.M.)
| | - Denise Bellisario
- Department of Industrial Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy;
| | - Ivano Lucarini
- Institute for Microelectronics and Microsystems, National Research Council, Via del Fosso del Cavaliere, 100, 00133 Rome, Italy; (E.P.); (L.M.); (I.L.); (L.M.)
| | - Francesco Maita
- Institute for Microelectronics and Microsystems, National Research Council, Via del Fosso del Cavaliere, 100, 00133 Rome, Italy; (E.P.); (L.M.); (I.L.); (L.M.)
| | - Martina Ielmini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier, 1, 00133 Rome, Italy; (M.I.); (M.E.C.); (L.C.)
| | - Maria Elena Cataldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier, 1, 00133 Rome, Italy; (M.I.); (M.E.C.); (L.C.)
| | - Loredana Cerroni
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier, 1, 00133 Rome, Italy; (M.I.); (M.E.C.); (L.C.)
| | - Roberta Condò
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier, 1, 00133 Rome, Italy; (M.I.); (M.E.C.); (L.C.)
| | - Luca Maiolo
- Institute for Microelectronics and Microsystems, National Research Council, Via del Fosso del Cavaliere, 100, 00133 Rome, Italy; (E.P.); (L.M.); (I.L.); (L.M.)
| |
Collapse
|
5
|
Cui X, Jiao J, Yang L, Wang Y, Jiang W, Yu T, Li M, Zhang H, Chao B, Wang Z, Wu M. Advanced tumor organoid bioprinting strategy for oncology research. Mater Today Bio 2024; 28:101198. [PMID: 39205873 PMCID: PMC11357813 DOI: 10.1016/j.mtbio.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/14/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Bioprinting is a groundbreaking technology that enables precise distribution of cell-containing bioinks to construct organoid models that accurately reflect the characteristics of tumors in vivo. By incorporating different types of tumor cells into the bioink, the heterogeneity of tumors can be replicated, enabling studies to simulate real-life situations closely. Precise reproduction of the arrangement and interactions of tumor cells using bioprinting methods provides a more realistic representation of the tumor microenvironment. By mimicking the complexity of the tumor microenvironment, the growth patterns and diffusion of tumors can be demonstrated. This approach can also be used to evaluate the response of tumors to drugs, including drug permeability and cytotoxicity, and other characteristics. Therefore, organoid models can provide a more accurate oncology research and treatment simulation platform. This review summarizes the latest advancements in bioprinting to construct tumor organoid models. First, we describe the bioink used for tumor organoid model construction, followed by an introduction to various bioprinting methods for tumor model formation. Subsequently, we provide an overview of existing bioprinted tumor organoid models.
Collapse
Affiliation(s)
- Xiangran Cui
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Mufeng Li
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| |
Collapse
|
6
|
Zhang X, Su R, Wang H, Wu R, Fan Y, Bin Z, Gao C, Wang C. The promise of Synovial Joint-on-a-Chip in rheumatoid arthritis. Front Immunol 2024; 15:1408501. [PMID: 39324139 PMCID: PMC11422143 DOI: 10.3389/fimmu.2024.1408501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Rheumatoid arthritis (RA) affects millions of people worldwide, but there are limited drugs available to treat it, so acquiring a more comprehensive comprehension of the underlying reasons and mechanisms behind inflammation is crucial, as well as developing novel therapeutic approaches to manage it and mitigate or forestall associated harm. It is evident that current in vitro models cannot faithfully replicate all aspects of joint diseases, which makes them ineffective as tools for disease research and drug testing. Organ-on-a-chip (OoC) technology is an innovative platform that can mimic the microenvironment and physiological state of living tissues more realistically than traditional methods by simulating the spatial arrangement of cells and interorgan communication. This technology allows for the precise control of fluid flow, nutrient exchange, and the transmission of physicochemical signals, such as bioelectrical, mechanical stimulation and shear force. In addition, the integration of cutting-edge technologies like sensors, 3D printing, and artificial intelligence enhances the capabilities of these models. Here, we delve into OoC models with a particular focus on Synovial Joints-on-a-Chip, where we outline their structure and function, highlighting the potential of the model to advance our understanding of RA. We integrate the actual evidence regarding various OoC models and their possible integration for multisystem disease study in RA research for the first time and introduce the prospects and opportunities of the chip in RA etiology and pathological mechanism research, drug research, disease prevention and human precision medicine. Although many challenges remain, OoC holds great promise as an in vitro model that approaches physiology and dynamics.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Yuxin Fan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Zexuan Bin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital/Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Modi PS, Singh A, Chaturvedi A, Agarwal S, Dutta R, Nayak R, Singh AK. Tissue chips as headway model and incitement technology. Synth Syst Biotechnol 2024; 10:86-101. [PMID: 39286054 PMCID: PMC11403008 DOI: 10.1016/j.synbio.2024.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Tissue on a chip or organ-on-chip (OOC) is a technology that's dignified to form a transformation in drug discovery through the use of advanced platforms. These are 3D in-vitro cell culture models that mimic micro-environment of human organs or tissues on artificial microstructures built on a portable microfluidic chip without involving sacrificial humans or animals. This review article aims to offer readers a thorough and insightful understanding of technology. It begins with an in-depth understanding of chip design and instrumentation, underlining its pivotal role and the imperative need for its development in the modern scientific landscape. The review article explores into the myriad applications of OOC technology, showcasing its transformative impact on fields such as radiobiology, drug discovery and screening, and its pioneering use in space research. In addition to highlighting these diverse applications, the article provides a critical analysis of the current challenges that OOC technology faces. It examines both the biological and technical limitations that hinder its progress and efficacy and discusses the potential advancements and innovations that could drive the OOC technology forward. Through this comprehensive review, readers will gain a deep appreciation of the significance, capabilities, and evolving landscape of OOC technology.
Collapse
Affiliation(s)
- Prerna Suchitan Modi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Abhishek Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Awyang Chaturvedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Shailly Agarwal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Raghav Dutta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Alok Kumar Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Nie J, Lou S, Pollet AMAO, van Vegchel M, Bouten CVC, den Toonder JMJ. A Cell Pre-Wrapping Seeding Technique for Hydrogel-Based Tubular Organ-On-A-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400970. [PMID: 38872259 PMCID: PMC11321624 DOI: 10.1002/advs.202400970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Indexed: 06/15/2024]
Abstract
Organ-on-a-chip (OOC) models based on microfluidic technology are increasingly used to obtain mechanistic insight into (patho)physiological processes in humans, and they hold great promise for application in drug development and regenerative medicine. Despite significant progress in OOC development, several limitations of conventional microfluidic devices pose challenges. First, most microfluidic systems have rectangular cross sections and flat walls, and therefore tubular/ curved structures, like blood vessels and nephrons, are not well represented. Second, polymers used as base materials for microfluidic devices are much stiffer than in vivo extracellular matrix (ECM). Finally, in current cell seeding methods, challenges exist regarding precise control over cell seeding location, unreachable spaces due to flow resistances, and restricted dimensions/geometries. To address these limitations, an alternative cell seeding technique and a corresponding workflow is introduced to create circular cross-sectioned tubular OOC models by pre-wrapping cells around sacrificial fiber templates. As a proof of concept, a perfusable renal proximal tubule-on-a-chip is demonstrated with a diameter as small as 50 µm, cellular tubular structures with branches and curvature, and a preliminary vascular-renal tubule interaction model. The cell pre-wrapping seeding technique promises to enable the construction of diverse physiological/pathological models, providing tubular OOC systems for mechanistic investigations and drug development.
Collapse
Affiliation(s)
- Jing Nie
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Sha Lou
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Andreas M. A. O. Pollet
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Manon van Vegchel
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Carlijn V. C. Bouten
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Jaap M. J. den Toonder
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
9
|
Kumar D, Nadda R, Repaka R. Advances and challenges in organ-on-chip technology: toward mimicking human physiology and disease in vitro. Med Biol Eng Comput 2024; 62:1925-1957. [PMID: 38436835 DOI: 10.1007/s11517-024-03062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Organs-on-chips have been tissues or three-dimensional (3D) mini-organs that comprise numerous cell types and have been produced on microfluidic chips to imitate the complicated structures and interactions of diverse cell types and organs under controlled circumstances. Several morphological and physiological distinctions exist between traditional 2D cultures, animal models, and the growing popular 3D cultures. On the other hand, animal models might not accurately simulate human toxicity because of physiological variations and interspecies metabolic capability. The on-chip technique allows for observing and understanding the process and alterations occurring in metastases. The present study aimed to briefly overview single and multi-organ-on-chip techniques. The current study addresses each platform's essential benefits and characteristics and highlights recent developments in developing and utilizing technologies for single and multi-organs-on-chips. The study also discusses the drawbacks and constraints associated with these models, which include the requirement for standardized procedures and the difficulties of adding immune cells and other intricate biological elements. Finally, a comprehensive review demonstrated that the organs-on-chips approach has a potential way of investigating organ function and disease. The advancements in single and multi-organ-on-chip structures can potentially increase drug discovery and minimize dependency on animal models, resulting in improved therapies for human diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| | - Rahul Nadda
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India.
| | - Ramjee Repaka
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| |
Collapse
|
10
|
Biswas A, Apsite I, Rosenfeldt S, Bite I, Vitola V, Ionov L. Modular photoorigami-based 4D manufacturing of vascular junction elements. J Mater Chem B 2024; 12:5405-5417. [PMID: 38716838 DOI: 10.1039/d4tb00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Four-dimensional (4D) printing, combining three-dimensional (3D) printing with time-dependent stimuli-responsive shape transformation, eliminates the limitations of the conventional 3D printing technique for the fabrication of complex hollow constructs. However, existing 4D printing techniques have limitations in terms of the shapes that can be created using a single shape-changing object. In this paper, we report an advanced 4D fabrication approach for vascular junctions, particularly T-junctions, using the 4D printing technique based on coordinated sequential folding of two or more specially designed shape-changing elements. In our approach, the T-junction is split into two components, and each component is 4D printed using different synthesized shape memory polyurethanes and their nanohybrids, which have been synthesized with varying hard segment contents and by incorporating different weight percentages of photo-responsive copper sulfide-polyvinyl pyrrolidone nanoparticles. The formation of a T-junction is demonstrated by assigning different shape memory behaviors to each component of the T-junction. A cell culture study with human umbilical vein endothelial cells reveals that the cells proliferate over time, and almost 90% of cells remain viable on day 7. Finally, the formation of the T-junction in the presence of near-infrared light has been demonstrated after seeding the endothelial cells on the programmed flat surface of the two components and fluorescence microscopy at day 3 and 7 reveals that the cells adhered well and continue to proliferate over time. Hence, the proposed alternative approach has huge potential and can be used to fabricate vascular junctions in the future.
Collapse
Affiliation(s)
- Arpan Biswas
- Faculty of Engineering, University of Bayreuth, Bayreuth 95447, Germany
| | - Indra Apsite
- Faculty of Engineering, University of Bayreuth, Bayreuth 95447, Germany
| | - Sabine Rosenfeldt
- Faculty of Biology, Chemistry and Earth Sciences and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95447, Germany
| | - Ivita Bite
- Institute of Solid State Physics, University of Latvia, Kengaraga St. 8, Riga, LV-1063, Latvia
| | - Virginija Vitola
- Institute of Solid State Physics, University of Latvia, Kengaraga St. 8, Riga, LV-1063, Latvia
| | - Leonid Ionov
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95447, Germany.
| |
Collapse
|
11
|
Morais AS, Mendes M, Cordeiro MA, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-Chip: Ubi sumus? Fundamentals and Design Aspects. Pharmaceutics 2024; 16:615. [PMID: 38794277 PMCID: PMC11124787 DOI: 10.3390/pharmaceutics16050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
This review outlines the evolutionary journey from traditional two-dimensional (2D) cell culture to the revolutionary field of organ-on-a-chip technology. Organ-on-a-chip technology integrates microfluidic systems to mimic the complex physiological environments of human organs, surpassing the limitations of conventional 2D cultures. This evolution has opened new possibilities for understanding cell-cell interactions, cellular responses, drug screening, and disease modeling. However, the design and manufacture of microchips significantly influence their functionality, reliability, and applicability to different biomedical applications. Therefore, it is important to carefully consider design parameters, including the number of channels (single, double, or multi-channels), the channel shape, and the biological context. Simultaneously, the selection of appropriate materials compatible with the cells and fabrication methods optimize the chips' capabilities for specific applications, mitigating some disadvantages associated with these systems. Furthermore, the success of organ-on-a-chip platforms greatly depends on the careful selection and utilization of cell resources. Advances in stem cell technology and tissue engineering have contributed to the availability of diverse cell sources, facilitating the development of more accurate and reliable organ-on-a-chip models. In conclusion, a holistic perspective of in vitro cellular modeling is provided, highlighting the integration of microfluidic technology and meticulous chip design, which play a pivotal role in replicating organ-specific microenvironments. At the same time, the sensible use of cell resources ensures the fidelity and applicability of these innovative platforms in several biomedical applications.
Collapse
Affiliation(s)
- Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Marta Agostinho Cordeiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - João J. Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| |
Collapse
|
12
|
Konopka J, Żuchowska A, Jastrzębska E. Vascularized tumor-on-chip microplatforms for the studies of neovasculature as hope for more effective cancer treatments. Biosens Bioelectron 2024; 249:115986. [PMID: 38194813 DOI: 10.1016/j.bios.2023.115986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Angiogenesis is the development of new blood vessels from pre-existing vasculature. Multiple factors control its course. Disorders of the distribution of angiogenic agents are responsible for development of solid tumors and its metastases. Understanding of the molecular interactions regulating pathological angiogenesis will allow for development of more effective, even personalized treatment. A simulation of angiogenesis under microflow conditions is a promising alternative to previous studies conducted on animals and on 2D cell cultures. In this review, we summarize what has been discovered so far in the field of vascularized tumor-on-a-chip platforms. For this purpose, we describe different vascularization techniques used in microfluidics, present various attempts to induce angiogenesis-on-a-chip and report some approaches to recapitulate vascularized tumor microenvironment under microflow conditions.
Collapse
Affiliation(s)
- Joanna Konopka
- Warsaw University of Technology, Faculty of Chemistry, Medical Biotechnology, 00-664, Warsaw, Poland
| | - Agnieszka Żuchowska
- Warsaw University of Technology, Faculty of Chemistry, Medical Biotechnology, 00-664, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Warsaw University of Technology, Faculty of Chemistry, Medical Biotechnology, 00-664, Warsaw, Poland.
| |
Collapse
|
13
|
Yu HC, Hsieh KL, Hirai T, Li MC. Dynamics of Nanocomposite Hydrogel Alignment during 3D Printing to Develop Tissue Engineering Technology. Biomacromolecules 2024; 25:605-613. [PMID: 37844272 DOI: 10.1021/acs.biomac.3c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Taking inspiration from spider silk protein spinning, we developed a method to produce tough filaments using extrusion-based 3D bioprinting and salting-out of the protein. To enhance both stiffness and ductility, we have designed a blend of partially crystalline, thermally sensitive natural polymer gelatin and viscoelastic G-polymer networks, mimicking the components of spider silk. Additionally, we have incorporated inorganic nanoparticles as a rheological modifier to fine-tune the 3D printing properties. This self-healing nanocomposite hydrogel exhibits exceptional mechanical properties, biocompatibility, shear thinning behavior, and a well-controlled gelation mechanism for 3D printing.
Collapse
Affiliation(s)
- Hao-Cheng Yu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Kun-Liang Hsieh
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Ming-Chia Li
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
14
|
Deir S, Mozhdehbakhsh Mofrad Y, Mashayekhan S, Shamloo A, Mansoori-Kermani A. Step-by-step fabrication of heart-on-chip systems as models for cardiac disease modeling and drug screening. Talanta 2024; 266:124901. [PMID: 37459786 DOI: 10.1016/j.talanta.2023.124901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases are caused by hereditary factors, environmental conditions, and medication-related issues. On the other hand, the cardiotoxicity of drugs should be thoroughly examined before entering the market. In this regard, heart-on-chip (HOC) systems have been developed as a more efficient and cost-effective solution than traditional methods, such as 2D cell culture and animal models. HOCs must replicate the biology, physiology, and pathology of human heart tissue to be considered a reliable platform for heart disease modeling and drug testing. Therefore, many efforts have been made to find the best methods to fabricate different parts of HOCs and to improve the bio-mimicry of the systems in the last decade. Beating HOCs with different platforms have been developed and techniques, such as fabricating pumpless HOCs, have been used to make HOCs more user-friendly systems. Recent HOC platforms have the ability to simultaneously induce and record electrophysiological stimuli. Additionally, systems including both heart and cancer tissue have been developed to investigate tissue-tissue interactions' effect on cardiac tissue response to cancer drugs. In this review, all steps needed to be considered to fabricate a HOC were introduced, including the choice of cellular resources, biomaterials, fabrication techniques, biomarkers, and corresponding biosensors. Moreover, the current HOCs used for modeling cardiac diseases and testing the drugs are discussed. We finally introduced some suggestions for fabricating relatively more user-friendly HOCs and facilitating the commercialization process.
Collapse
Affiliation(s)
- Sara Deir
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Amir Shamloo
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
15
|
Guo Y, Xie Y, Qin J. A generic pump-free organ-on-a-chip platform for assessment of intestinal drug absorption. Biotechnol J 2024; 19:e2300390. [PMID: 38375564 DOI: 10.1002/biot.202300390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 02/21/2024]
Abstract
Organ-on-a-chip technology has shown great potential in disease modeling and drug evaluation. However, traditional organ-on-a-chip devices are mostly pump-dependent with low throughput, which makes it difficult to leverage their advantages. In this study, we have developed a generic, pump-free organ-on-a-chip platform consisting of a 32-unit chip and an adjustable rocker, facilitating high-throughput dynamic cell culture with straightforward operation. By utilizing the rocker to induce periodic fluid forces, we can achieve fluidic conditions similar to those obtained with traditional pump-based systems. Through constructing a gut-on-a-chip model, we observed remarkable enhancements in the expression of barrier-associated proteins and the spatial distribution of differentiated intestinal cells compared to static culture. Furthermore, RNA sequencing analysis unveiled enriched pathways associated with cell proliferation, lipid transport, and drug metabolism, indicating the ability of the platform to mimic critical physiological processes. Additionally, we tested seven drugs that represent a range of high, medium, and low in vivo permeability using this model and found a strong correlation between their Papp values and human Fa, demonstrating the capability of this model for drug absorption evaluation. Our findings highlight the potential of this pump-free organ-on-a-chip platform as a valuable tool for advancing drug development and enabling personalized medicine.
Collapse
Affiliation(s)
- Yaqiong Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yingying Xie
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| |
Collapse
|
16
|
Zhu L, Cheng C, Liu S, Yang L, Han P, Cui T, Zhang Y. Advancements and application prospects of three-dimensional models for primary liver cancer: a comprehensive review. Front Bioeng Biotechnol 2023; 11:1343177. [PMID: 38188493 PMCID: PMC10771299 DOI: 10.3389/fbioe.2023.1343177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Primary liver cancer (PLC) is one of the most commonly diagnosed cancers worldwide and a leading cause of cancer-related deaths. However, traditional liver cancer models fail to replicate tumor heterogeneity and the tumor microenvironment, limiting the study and personalized treatment of liver cancer. To overcome these limitations, scientists have introduced three-dimensional (3D) culture models as an emerging research tool. These 3D models, utilizing biofabrication technologies such as 3D bioprinting and microfluidics, enable more accurate simulation of the in vivo tumor microenvironment, replicating cell morphology, tissue stiffness, and cell-cell interactions. Compared to traditional two-dimensional (2D) models, 3D culture models better mimic tumor heterogeneity, revealing differential sensitivity of tumor cell subpopulations to targeted therapies or immunotherapies. Additionally, these models can be used to assess the efficacy of potential treatments, providing guidance for personalized therapy. 3D liver cancer models hold significant value in tumor biology, understanding the mechanisms of disease progression, and drug screening. Researchers can gain deeper insights into the impact of the tumor microenvironment on tumor cells and their interactions with the surrounding milieu. Furthermore, these models allow for the evaluation of treatment responses, offering more accurate guidance for clinical interventions. In summary, 3D models provide a realistic and reliable tool for advancing PLC research. By simulating tumor heterogeneity and the microenvironment, these models contribute to a better understanding of the disease mechanisms and offer new strategies for personalized treatment. Therefore, 3D models hold promising prospects for future PLC research.
Collapse
Affiliation(s)
- Liuyang Zhu
- First Central Clinical College of Tianjin Medical University, Tianjin, China
| | | | - Sen Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Pinsheng Han
- Nankai University of Medicine College, Tianjin, China
| | - Tao Cui
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
17
|
Yan J, Wu T, Zhang J, Gao Y, Wu JM, Wang S. Revolutionizing the female reproductive system research using microfluidic chip platform. J Nanobiotechnology 2023; 21:490. [PMID: 38111049 PMCID: PMC10729361 DOI: 10.1186/s12951-023-02258-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Comprehensively understanding the female reproductive system is crucial for safeguarding fertility and preventing diseases concerning women's health. With the capacity to simulate the intricate physio- and patho-conditions, and provide diagnostic platforms, microfluidic chips have fundamentally transformed the knowledge and management of female reproductive health, which will ultimately promote the development of more effective assisted reproductive technologies, treatments, and drug screening approaches. This review elucidates diverse microfluidic systems in mimicking the ovary, fallopian tube, uterus, placenta and cervix, and we delve into the culture of follicles and oocytes, gametes' manipulation, cryopreservation, and permeability especially. We investigate the role of microfluidics in endometriosis and hysteromyoma, and explore their applications in ovarian cancer, endometrial cancer and cervical cancer. At last, the current status of assisted reproductive technology and integrated microfluidic devices are introduced briefly. Through delineating the multifarious advantages and challenges of the microfluidic technology, we chart a definitive course for future research in the woman health field. As the microfluidic technology continues to evolve and advance, it holds great promise for revolutionizing the diagnosis and treatment of female reproductive health issues, thus propelling us into a future where we can ultimately optimize the overall wellbeing and health of women everywhere.
Collapse
Affiliation(s)
- Jinfeng Yan
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Tong Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jinjin Zhang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Yueyue Gao
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jia-Min Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
18
|
Ortiz-Ortiz DN, Mokarizadeh AH, Segal M, Dang F, Zafari M, Tsige M, Joy A. Synergistic Effect of Physical and Chemical Cross-Linkers Enhances Shape Fidelity and Mechanical Properties of 3D Printable Low-Modulus Polyesters. Biomacromolecules 2023; 24:5091-5104. [PMID: 37882707 DOI: 10.1021/acs.biomac.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Three-dimensional (3D) printing is becoming increasingly prevalent in tissue engineering, driving the demand for low-modulus, high-performance, biodegradable, and biocompatible polymers. Extrusion-based direct-write (EDW) 3D printing enables printing and customization of low-modulus materials, ranging from cell-free printing to cell-laden bioinks that closely resemble natural tissue. While EDW holds promise, the requirement for soft materials with excellent printability and shape fidelity postprinting remains unmet. The development of new synthetic materials for 3D printing applications has been relatively slow, and only a small polymer library is available for tissue engineering applications. Furthermore, most of these polymers require high temperature (FDM) or additives and solvents (DLP/SLA) to enable printability. In this study, we present low-modulus 3D printable polyester inks that enable low-temperature printing without the need for solvents or additives. To maintain shape fidelity, we incorporate physical and chemical cross-linkers. These 3D printable polyester inks contain pendant amide groups as the physical cross-linker and coumarin pendant groups as the photochemical cross-linker. Molecular dynamics simulations further confirm the presence of physical interactions between different pendants, including hydrogen bonding and hydrophobic interactions. The combination of the two types of cross-linkers enhances the zero-shear viscosity and hence provides good printability and shape fidelity.
Collapse
Affiliation(s)
- Deliris N Ortiz-Ortiz
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Maddison Segal
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Francis Dang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mahdi Zafari
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
19
|
Cauli E, Polidoro MA, Marzorati S, Bernardi C, Rasponi M, Lleo A. Cancer-on-chip: a 3D model for the study of the tumor microenvironment. J Biol Eng 2023; 17:53. [PMID: 37592292 PMCID: PMC10436436 DOI: 10.1186/s13036-023-00372-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
The approval of anticancer therapeutic strategies is still slowed down by the lack of models able to faithfully reproduce in vivo cancer physiology. On one hand, the conventional in vitro models fail to recapitulate the organ and tissue structures, the fluid flows, and the mechanical stimuli characterizing the human body compartments. On the other hand, in vivo animal models cannot reproduce the typical human tumor microenvironment, essential to study cancer behavior and progression. This study reviews the cancer-on-chips as one of the most promising tools to model and investigate the tumor microenvironment and metastasis. We also described how cancer-on-chip devices have been developed and implemented to study the most common primary cancers and their metastatic sites. Pros and cons of this technology are then discussed highlighting the future challenges to close the gap between the pre-clinical and clinical studies and accelerate the approval of new anticancer therapies in humans.
Collapse
Affiliation(s)
- Elisa Cauli
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy.
- Accelera Srl, Nerviano, Milan, Italy.
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Simona Marzorati
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
20
|
Luo Z, Zhang H, Chen R, Li H, Cheng F, Zhang L, Liu J, Kong T, Zhang Y, Wang H. Digital light processing 3D printing for microfluidic chips with enhanced resolution via dosing- and zoning-controlled vat photopolymerization. MICROSYSTEMS & NANOENGINEERING 2023; 9:103. [PMID: 37593440 PMCID: PMC10427687 DOI: 10.1038/s41378-023-00542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 08/19/2023]
Abstract
Conventional manufacturing techniques to fabricate microfluidic chips, such as soft lithography and hot embossing process, have limitations that include difficulty in preparing multiple-layered structures, cost- and labor-consuming fabrication process, and low productivity. Digital light processing (DLP) technology has recently emerged as a cost-efficient microfabrication approach for the 3D printing of microfluidic chips; however, the fabrication resolution for microchannels is still limited to sub-100 microns at best. Here, we developed an innovative DLP printing strategy for high resolution and scalable microchannel fabrication by dosing- and zoning-controlled vat photopolymerization (DZC-VPP). Specifically, we proposed a modified mathematical model to precisely predict the accumulated UV irradiance for resin photopolymerization, thereby providing guidance for the fabrication of microchannels with enhanced resolution. By fine-tuning the printing parameters, including optical irradiance, exposure time, projection region, and step distance, we can precisely tailor the penetration irradiance stemming from the photopolymerization of the neighboring resin layers, thereby preventing channel blockage due to UV overexposure or compromised bonding stability owing to insufficient resin curing. Remarkably, this strategy can allow the preparation of microchannels with cross-sectional dimensions of 20 μm × 20 μm using a commercial printer with a pixel size of 10 μm × 10 μm; this is significantly higher resolution than previous reports. In addition, this method can enable the scalable and biocompatible fabrication of microfluidic drop-maker units that can be used for cell encapsulation. In general, the current DZC-VPP method can enable major advances in precise and scalable microchannel fabrication and represents a significant step forward for widespread applications of microfluidics-based techniques in biomedical fields.
Collapse
Affiliation(s)
- Zhiming Luo
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518000 P. R. China
| | - Haoyue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| | - Runze Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| | - Hanting Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| | - Lijun Zhang
- Third People’s Hospital of Dalian, Dalian Eye Hospital, Dalian, 116024 P. R. China
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital of The, Chinese University of Hong Kong, Shenzhen, 518172 P. R. China
| | - Tiantian Kong
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518000 P. R. China
| | - Yang Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518000 P. R. China
| | - Huanan Wang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518000 P. R. China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| |
Collapse
|
21
|
Tabatabaei Rezaei N, Kumar H, Liu H, Lee SS, Park SS, Kim K. Recent Advances in Organ-on-Chips Integrated with Bioprinting Technologies for Drug Screening. Adv Healthc Mater 2023; 12:e2203172. [PMID: 36971091 PMCID: PMC11469032 DOI: 10.1002/adhm.202203172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Currently, the demand for more reliable drug screening devices has made scientists and researchers develop novel potential approaches to offer an alternative to animal studies. Organ-on-chips are newly emerged platforms for drug screening and disease metabolism investigation. These microfluidic devices attempt to recapitulate the physiological and biological properties of different organs and tissues using human-derived cells. Recently, the synergistic combination of additive manufacturing and microfluidics has shown a promising impact on improving a wide array of biological models. In this review, different methods are classified using bioprinting to achieve the relevant biomimetic models in organ-on-chips, boosting the efficiency of these devices to produce more reliable data for drug investigations. In addition to the tissue models, the influence of additive manufacturing on microfluidic chip fabrication is discussed, and their biomedical applications are reviewed.
Collapse
Affiliation(s)
- Nima Tabatabaei Rezaei
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Hitendra Kumar
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- Department of Pathology and Laboratory MedicineCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Hongqun Liu
- Liver UnitCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Samuel S. Lee
- Liver UnitCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Simon S. Park
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- Department of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| |
Collapse
|
22
|
Valchanov P, Dukov N, Pavlov S, Kontny A, Dikova T. 3D Printing, Histological, and Radiological Analysis of Nanosilicate-Polysaccharide Composite Hydrogel as a Tissue-Equivalent Material for Complex Biological Bone Phantom. Gels 2023; 9:547. [PMID: 37504427 PMCID: PMC10379613 DOI: 10.3390/gels9070547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Nanosilicate-polysaccharide composite hydrogels are a well-studied class of materials in regenerative medicine that combine good 3D printability, staining, and biological properties, making them an excellent candidate material for complex bone scaffolds. The aim of this study was to develop a hydrogel suitable for 3D printing that has biological and radiological properties similar to those of the natural bone and to develop protocols for their histological and radiological analysis. We synthesized a hydrogel based on alginate, methylcellulose, and laponite, then 3D printed it into a series of complex bioscaffolds. The scaffolds were scanned with CT and CBCT scanners and exported as DICOM datasets, then cut into histological slides and stained using standard histological protocols. From the DICOM datasets, the average value of the voxels in Hounsfield Units (HU) was calculated and compared with natural trabecular bone. In the histological sections, we tested the effect of standard histological stains on the hydrogel matrix in the context of future cytological and histological analysis. The results confirmed that an alginate/methylcellulose/laponite-based composite hydrogel can be used for 3D printing of complex high fidelity three-dimensional scaffolds. This opens an avenue for the development of dynamic biological physical phantoms for bone tissue engineering and the development of new CT-based imaging algorithms for the needs of radiology and radiation therapy.
Collapse
Affiliation(s)
- Petar Valchanov
- Depatment of Anatomy and Cell Biology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Nikolay Dukov
- Department of Medical Equipment, Electronic and Information Technologies in Healthcare, Faculty of Public Health, Medical University of Varna, 9002 Varna, Bulgaria
| | - Stoyan Pavlov
- Depatment of Anatomy and Cell Biology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Andreas Kontny
- Depatment of Anatomy and Cell Biology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Tsanka Dikova
- Department of Dental Material Science and Prosthetic Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria
| |
Collapse
|
23
|
Hsia CR, Melters DP, Dalal Y. The Force is Strong with This Epigenome: Chromatin Structure and Mechanobiology. J Mol Biol 2023; 435:168019. [PMID: 37330288 PMCID: PMC10567996 DOI: 10.1016/j.jmb.2023.168019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/JeremiahHsia
| | - Daniël P Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/dpmelters
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/NCIYaminiDalal
| |
Collapse
|
24
|
Yang U, Kang B, Yong MJ, Yang DH, Choi SY, Je JH, Oh SS. Type-Independent 3D Writing and Nano-Patterning of Confined Biopolymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207403. [PMID: 36825681 PMCID: PMC10161081 DOI: 10.1002/advs.202207403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Indexed: 05/06/2023]
Abstract
Biopolymers are essential building blocks that constitute cells and tissues with well-defined molecular structures and diverse biological functions. Their three-dimensional (3D) complex architectures are used to analyze, control, and mimic various cells and their ensembles. However, the free-form and high-resolution structuring of various biopolymers remain challenging because their structural and rheological control depend critically on their polymeric types at the submicron scale. Here, direct 3D writing of intact biopolymers is demonstrated using a systemic combination of nanoscale confinement, evaporation, and solidification of a biopolymer-containing solution. A femtoliter solution is confined in an ultra-shallow liquid interface between a fine-tuned nanopipette and a chosen substrate surface to achieve directional growth of biopolymer nanowires via solvent-exclusive evaporation and concurrent solution supply. The evaporation-dependent printing is biopolymer type-independent, therefore, the 3D motor-operated precise nanopipette positioning allows in situ printing of nucleic acids, polysaccharides, and proteins with submicron resolution. By controlling concentrations and molecular weights, several different biopolymers are reproducibly patterned with desired size and geometry, and their 3D architectures are biologically active in various solvents with no structural deformation. Notably, protein-based nanowire patterns exhibit pin-point localization of spatiotemporal biofunctions, including target recognition and catalytic peroxidation, indicating their application potential in organ-on-chips and micro-tissue engineering.
Collapse
Affiliation(s)
- Un Yang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Byunghwa Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Moon-Jung Yong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Dong-Hwan Yang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jung Ho Je
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
- Nanoblesse, 85-11 (4th fl.) Namwon-Ro, Pohang, Gyeongbuk, 37883, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| |
Collapse
|
25
|
Zhu Y, Shi Z, Ding W, Li C. On-chip construction of a fully structured scaffold-free vascularized renal tubule. Biomed Microdevices 2023; 25:8. [PMID: 36826720 DOI: 10.1007/s10544-023-00648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2023] [Indexed: 02/25/2023]
Abstract
Renal tubule chips have emerged as a promising platform for drug nephrotoxicity testing. However, the reported renal tubule chips hardly replicate the unique structure of renal tubules with thick proximal and distal tubules and a thin loop of Henle. In this study, we developed a fully structured scaffold-free vascularized renal tubule on a microfluidic chip. On the chip, the renal epithelial cell-laden hollow calcium-polymerized alginate tube with thick segments at both ends and a thin middle segment was U-shaped embedded in collagen hydrogel, parallel to the endothelial cell-laden hollow calcium-polymerized alginate tube with uniform tube diameter. After the alginate tubes were on-chip degraded, the renal epithelial cells and endothelial cells automatically attached to the collagen hydrogel and proliferated to form the renal tubule with proximal tubule, loop of Henle and distal tubule as well as peritubular blood vessel. We evaluated the viability of cells on the hollow alginate tubes, characterized the distribution and morphology of cells before and after the degradation of the alginate tube, and confirmed the proliferation of cells and the metabolic function of cells in terms of ATP synthesis, fibronectin secretion and VEGFR2 expression on the chip. The enhanced metabolic functions of renal epithelial cells and endothelial cells were preliminarily demonstrated. This study provides new insights into designing a more biomimetic renal tubule on a microfluidic chip.
Collapse
Affiliation(s)
- Yuntian Zhu
- , Hefei No.1 High School, 230041, Hefei, Anhui, China
| | - Zhengdi Shi
- School of Information Science and Technology, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Weiping Ding
- School of Information Science and Technology, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, 230027, Hefei, Anhui, China. .,Center for Biomedical Imaging, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| |
Collapse
|
26
|
Cao UMN, Zhang Y, Chen J, Sayson D, Pillai S, Tran SD. Microfluidic Organ-on-A-chip: A Guide to Biomaterial Choice and Fabrication. Int J Mol Sci 2023; 24:3232. [PMID: 36834645 PMCID: PMC9966054 DOI: 10.3390/ijms24043232] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Organ-on-A-chip (OoAC) devices are miniaturized, functional, in vitro constructs that aim to recapitulate the in vivo physiology of an organ using different cell types and extracellular matrix, while maintaining the chemical and mechanical properties of the surrounding microenvironments. From an end-point perspective, the success of a microfluidic OoAC relies mainly on the type of biomaterial and the fabrication strategy employed. Certain biomaterials, such as PDMS (polydimethylsiloxane), are preferred over others due to their ease of fabrication and proven success in modelling complex organ systems. However, the inherent nature of human microtissues to respond differently to surrounding stimulations has led to the combination of biomaterials ranging from simple PDMS chips to 3D-printed polymers coated with natural and synthetic materials, including hydrogels. In addition, recent advances in 3D printing and bioprinting techniques have led to the powerful combination of utilizing these materials to develop microfluidic OoAC devices. In this narrative review, we evaluate the different materials used to fabricate microfluidic OoAC devices while outlining their pros and cons in different organ systems. A note on combining the advances made in additive manufacturing (AM) techniques for the microfabrication of these complex systems is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
27
|
Margadant C. Cell Migration in Three Dimensions. Methods Mol Biol 2023; 2608:1-14. [PMID: 36653698 DOI: 10.1007/978-1-0716-2887-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell migration plays an essential role in many pathophysiological processes, including embryonic development, wound healing, immunity, and cancer invasion, and is therefore a widely studied phenomenon in many different fields from basic cell biology to regenerative medicine. During the past decades, a multitude of increasingly complex methods have been developed to study cell migration. Here we compile a series of current state-of-the-art methods and protocols to investigate cell migration in a variety of model systems ranging from cells, organoids, tissue explants, and microfluidic systems to Drosophila, zebrafish, and mice. Together they cover processes as diverse as nuclear deformation, energy consumption, endocytic trafficking, and matrix degradation, as well as tumor vascularization and cancer cell invasion, sprouting angiogenesis, and leukocyte extravasation. Furthermore, methods to study developmental processes such as neural tube closure, germ layer specification, and branching morphogenesis are included, as well as scripts for the automated analysis of several aspects of cell migration. Together, this book constitutes a unique collection of methods of prime importance to those interested in the analysis of cell migration.
Collapse
Affiliation(s)
- Coert Margadant
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Tolabi H, Davari N, Khajehmohammadi M, Malektaj H, Nazemi K, Vahedi S, Ghalandari B, Reis RL, Ghorbani F, Oliveira JM. Progress of Microfluidic Hydrogel-Based Scaffolds and Organ-on-Chips for the Cartilage Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2208852. [PMID: 36633376 DOI: 10.1002/adma.202208852] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Indexed: 05/09/2023]
Abstract
Cartilage degeneration is among the fundamental reasons behind disability and pain across the globe. Numerous approaches have been employed to treat cartilage diseases. Nevertheless, none have shown acceptable outcomes in the long run. In this regard, the convergence of tissue engineering and microfabrication principles can allow developing more advanced microfluidic technologies, thus offering attractive alternatives to current treatments and traditional constructs used in tissue engineering applications. Herein, the current developments involving microfluidic hydrogel-based scaffolds, promising structures for cartilage regeneration, ranging from hydrogels with microfluidic channels to hydrogels prepared by the microfluidic devices, that enable therapeutic delivery of cells, drugs, and growth factors, as well as cartilage-related organ-on-chips are reviewed. Thereafter, cartilage anatomy and types of damages, and present treatment options are briefly overviewed. Various hydrogels are introduced, and the advantages of microfluidic hydrogel-based scaffolds over traditional hydrogels are thoroughly discussed. Furthermore, available technologies for fabricating microfluidic hydrogel-based scaffolds and microfluidic chips are presented. The preclinical and clinical applications of microfluidic hydrogel-based scaffolds in cartilage regeneration and the development of cartilage-related microfluidic chips over time are further explained. The current developments, recent key challenges, and attractive prospects that should be considered so as to develop microfluidic systems in cartilage repair are highlighted.
Collapse
Affiliation(s)
- Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, 15875-4413, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 15875-4413, Iran
| | - Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd, 89195-741, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 8916877391, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg, 9220, Denmark
| | - Katayoun Nazemi
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Samaneh Vahedi
- Department of Material Science and Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, 34149-16818, Iran
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Farnaz Ghorbani
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058, Erlangen, Germany
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| |
Collapse
|
29
|
Sood A, Kumar A, Gupta VK, Kim CM, Han SS. Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects. ACS Biomater Sci Eng 2023; 9:62-84. [PMID: 36541361 DOI: 10.1021/acsbiomaterials.2c01080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Forecasting the consequence of nanoparticles (NPs) and therapeutically significant molecules before materializing for human clinical trials is a mainstay for drug delivery and screening processes. One of the noteworthy obstacles that has prevented the clinical translation of NP-based drug delivery systems and novel drugs is the lack of effective preclinical platforms. As a revolutionary technology, the organ-on-a-chip (OOC), a coalition of microfluidics and tissue engineering, has surfaced as an alternative to orthodox screening platforms. OOC technology recapitulates the structural and physiological features of human organs along with intercommunications between tissues on a chip. The current review discusses the concept of microfluidics and confers cutting-edge fabrication processes for chip designing. We also outlined the advantages of microfluidics in analyzing NPs in terms of characterization, transport, and degradation in biological systems. The review further elaborates the scope and research on translational nanomedicines in human reproductive organs (testis, placenta, uterus, and menstrual cycle) by taking the advantages offered by microfluidics and shedding light on their potential future implications. Finally, we accentuate the existing challenges for clinical translation and scale-up dynamics for microfluidics chips and emphasize its future perspectives.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College, Edinburgh EH9 3JG, United Kingdom
| | - Chul Min Kim
- Department of Mechatronics Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongsangnam-do 52725, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| |
Collapse
|
30
|
Cho S, Lee S, Ahn SI. Design and engineering of organ-on-a-chip. Biomed Eng Lett 2023; 13:97-109. [PMID: 36620430 PMCID: PMC9806813 DOI: 10.1007/s13534-022-00258-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Organ-on-a-chip (OOC) is an emerging interdisciplinary technology that reconstitutes the structure, function, and physiology of human tissues as an alternative to conventional preclinical models for drug screening. Over the last decade, substantial progress has been made in mimicking tissue- and organ-level functions on chips through technical advances in biomaterials, stem cell engineering, microengineering, and microfluidic technologies. Structural and engineering constituents, as well as biological components, are critical factors to be considered to reconstitute the tissue function and microenvironment on chips. In this review, we highlight critical engineering technologies for reconstructing the tissue microarchitecture and dynamic spatiotemporal microenvironment in OOCs. We review the technological advances in the field of OOCs for a range of applications, including systemic analysis tools that can be integrated with OOCs, multiorgan-on-chips, and large-scale manufacturing. We then discuss the challenges and future directions for the development of advanced end-user-friendly OOC systems for a wide range of applications.
Collapse
Affiliation(s)
- Sujin Cho
- School of Mechanical Engineering, Pusan National University, Busan, 46241 Republic of Korea
| | - Sumi Lee
- School of Mechanical Engineering, Pusan National University, Busan, 46241 Republic of Korea
| | - Song Ih Ahn
- School of Mechanical Engineering, Pusan National University, Busan, 46241 Republic of Korea
| |
Collapse
|
31
|
Raw Materials, Technology, Healthcare Applications, Patent Repository and Clinical Trials on 4D Printing Technology: An Updated Review. Pharmaceutics 2022; 15:pharmaceutics15010116. [PMID: 36678745 PMCID: PMC9865937 DOI: 10.3390/pharmaceutics15010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 01/01/2023] Open
Abstract
After the successful commercial exploitation of 3D printing technology, the advanced version of additive manufacturing, i.e., 4D printing, has been a new buzz in the technology-driven industries since 2013. It is a judicious combination of 3D printing technologies and smart materials (stimuli responsive), where time is the fourth dimension. Materials such as liquid crystal elastomer (LCE), shape memory polymers, alloys and composites exhibiting properties such as self-assembling and self-healing are used in the development/manufacturing of these products, which respond to external stimuli such as solvent, temperature, light, etc. The technologies being used are direct ink writing (DIW), fused filament fabrication (FFF), etc. It offers several advantages over 3D printing and has been exploited in different sectors such as healthcare, textiles, etc. Some remarkable applications of 4D printing technology in healthcare are self-adjusting stents, artificial muscle and drug delivery applications. Potential of applications call for further research into more responsive materials and technologies in this field. The given review is an attempt to collate all the information pertaining to techniques employed, raw materials, applications, clinical trials, recent patents and publications specific to healthcare products. The technology has also been evaluated in terms of regulatory perspectives. The data garnered is expected to make a strong contribution to the field of technology for human welfare and healthcare.
Collapse
|
32
|
Lee SR, Kim Y, Kim S, Kim J, Park S, Rhee S, Park D, Lee B, Baek K, Kim HY, Jeon NL. U-IMPACT: a universal 3D microfluidic cell culture platform. MICROSYSTEMS & NANOENGINEERING 2022; 8:126. [PMID: 36478874 PMCID: PMC9719897 DOI: 10.1038/s41378-022-00431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/15/2022] [Accepted: 05/22/2022] [Indexed: 06/17/2023]
Abstract
The development of organs-on-a-chip has resulted in advances in the reconstruction of 3D cellular microenvironments. However, there remain limitations regarding applicability and manufacturability. Here, we present an injection-molded plastic array 3D universal culture platform (U-IMPACT) for various biological applications in a single platform, such as cocultures of various cell types, and spheroids (e.g., tumor spheroids, neurospheres) and tissues (e.g., microvessels). The U-IMPACT consists of three channels and a spheroid zone with a 96-well plate form factor. Specifically, organoids or spheroids (~500 μm) can be located in designated areas, while cell suspensions or cell-laden hydrogels can be selectively placed in three channels. For stable multichannel patterning, we developed a new patterning method based on capillary action, utilizing capillary channels and the native contact angle of the materials without any modification. We derived the optimal material hydrophilicity (contact angle of the body, 45-90°; substrate, <30°) for robust patterning through experiments and theoretical calculations. We demonstrated that the U-IMPACT can implement 3D tumor microenvironments for angiogenesis, vascularization, and tumor cell migration. Furthermore, we cultured neurospheres from induced neural stem cells. The U-IMPACT can serve as a multifunctional organ-on-a-chip platform for high-content and high-throughput screening.
Collapse
Affiliation(s)
- Seung-Ryeol Lee
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Youngtaek Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Suryong Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jiho Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seonghyuk Park
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Stephen Rhee
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Dohyun Park
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | | | | | - Ho-Young Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
- Institute of Advanced Machines and Design Seoul National University, Seoul, Republic of Korea
| | - Noo Li Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
- Institute of Advanced Machines and Design Seoul National University, Seoul, Republic of Korea
- Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Kumar A, Sood A, Han SS. Technological and structural aspects of scaffold manufacturing for cultured meat: recent advances, challenges, and opportunities. Crit Rev Food Sci Nutr 2022; 63:585-612. [PMID: 36239416 DOI: 10.1080/10408398.2022.2132206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro cultured meat is an emerging area of research focus with an innovative approach through tissue engineering (i.e., cellular engineering) to meet the global food demand. The manufacturing of lab-cultivated meat is an innovative business that alleviates life-threatening environmental issues concerning public health and animal well-being on the global platform. There has been a noteworthy advancement in cultivating artificial meat, but still, there are numerous challenges that impede the swift headway of lab-grown meat production at a commercially large scale. In this review, we focus on the manufacturing of edible scaffolds for cultured meat production. In brief, first an introduction to cultivating artificial meat and its current scenario in the market is provided. Further, a discussion on the understanding of composition, cellular, and molecular communications in muscle tissue is presented, which are vital to scaling up the production of lab-grown meat. In continuation, the major components (e.g., cells, biomaterial scaffolds, and their manufacturing technologies, media, and potential bioreactors) for cultured meat production are conferred followed by a comprehensive discussion on the most recent advances in lab-cultured meat. Finally, existing challenges and opportunities including future research perspectives for scaling-up cultured meat production are discussed with conclusive interpretations.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
35
|
3D Bioprinting with Live Cells. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
37
|
Messelmani T, Morisseau L, Sakai Y, Legallais C, Le Goff A, Leclerc E, Jellali R. Liver organ-on-chip models for toxicity studies and risk assessment. LAB ON A CHIP 2022; 22:2423-2450. [PMID: 35694831 DOI: 10.1039/d2lc00307d] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liver is a key organ that plays a pivotal role in metabolism and ensures a variety of functions in the body, including homeostasis, synthesis of essential components, nutrient storage, and detoxification. As the centre of metabolism for exogenous molecules, the liver is continuously exposed to a wide range of compounds, such as drugs, pesticides, and environmental pollutants. Most of these compounds can cause hepatotoxicity and lead to severe and irreversible liver damage. To study the effects of chemicals and drugs on the liver, most commonly, animal models or in vitro 2D cell cultures are used. However, data obtained from animal models lose their relevance when extrapolated to the human metabolic situation and pose ethical concerns, while 2D static cultures are poorly predictive of human in vivo metabolism and toxicity. As a result, there is a widespread need to develop relevant in vitro liver models for toxicology studies. In recent years, progress in tissue engineering, biomaterials, microfabrication, and cell biology has created opportunities for more relevant in vitro models for toxicology studies. Of these models, the liver organ-on-chip (OoC) has shown promising results by reproducing the in vivo behaviour of the cell/organ or a group of organs, the controlled physiological micro-environment, and in vivo cellular metabolic responses. In this review, we discuss the development of liver organ-on-chip technology and its use in toxicity studies. First, we introduce the physiology of the liver and summarize the traditional experimental models for toxicity studies. We then present liver OoC technology, including the general concept, materials used, cell sources, and different approaches. We review the prominent liver OoC and multi-OoC integrating the liver for drug and chemical toxicity studies. Finally, we conclude with the future challenges and directions for developing or improving liver OoC models.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Lisa Morisseau
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Anne Le Goff
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Eric Leclerc
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
38
|
Amirifar L, Shamloo A, Nasiri R, de Barros NR, Wang ZZ, Unluturk BD, Libanori A, Ievglevskyi O, Diltemiz SE, Sances S, Balasingham I, Seidlits SK, Ashammakhi N. Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials 2022; 285:121531. [DOI: 10.1016/j.biomaterials.2022.121531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
|
39
|
Kassem T, Sarkar T, Nguyen T, Saha D, Ahsan F. 3D Printing in Solid Dosage Forms and Organ-on-Chip Applications. BIOSENSORS 2022; 12:bios12040186. [PMID: 35448246 PMCID: PMC9027319 DOI: 10.3390/bios12040186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 05/18/2023]
Abstract
3D printing (3DP) can serve not only as an excellent platform for producing solid dosage forms tailored to individualized dosing regimens but can also be used as a tool for creating a suitable 3D model for drug screening, sensing, testing and organ-on-chip applications. Several new technologies have been developed to convert the conventional dosing regimen into personalized medicine for the past decade. With the approval of Spritam, the first pharmaceutical formulation produced by 3DP technology, this technology has caught the attention of pharmaceutical researchers worldwide. Consistent efforts are being made to improvise the process and mitigate other shortcomings such as restricted excipient choice, time constraints, industrial production constraints, and overall cost. The objective of this review is to provide an overview of the 3DP process, its types, types of material used, and the pros and cons of each technique in the application of not only creating solid dosage forms but also producing a 3D model for sensing, testing, and screening of the substances. The application of producing a model for the biosensing and screening of drugs besides the creation of the drug itself, offers a complete loop of application for 3DP in pharmaceutics.
Collapse
|
40
|
Aydin O, Passaro AP, Raman R, Spellicy SE, Weinberg RP, Kamm RD, Sample M, Truskey GA, Zartman J, Dar RD, Palacios S, Wang J, Tordoff J, Montserrat N, Bashir R, Saif MTA, Weiss R. Principles for the design of multicellular engineered living systems. APL Bioeng 2022; 6:010903. [PMID: 35274072 PMCID: PMC8893975 DOI: 10.1063/5.0076635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell-cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the "black box" of living cells.
Collapse
Affiliation(s)
| | - Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, USA
| | - Ritu Raman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Robert P. Weinberg
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts 02115, USA
| | | | - Matthew Sample
- Center for Ethics and Law in the Life Sciences, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sebastian Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jesse Tordoff
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | | | - M. Taher A. Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ron Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
41
|
Maji S, Lee H. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. Int J Mol Sci 2022; 23:2662. [PMID: 35269803 PMCID: PMC8910155 DOI: 10.3390/ijms23052662] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
The superiority of in vitro 3D cultures over conventional 2D cell cultures is well recognized by the scientific community for its relevance in mimicking the native tissue architecture and functionality. The recent paradigm shift in the field of tissue engineering toward the development of 3D in vitro models can be realized with its myriad of applications, including drug screening, developing alternative diagnostics, and regenerative medicine. Hydrogels are considered the most suitable biomaterial for developing an in vitro model owing to their similarity in features to the extracellular microenvironment of native tissue. In this review article, recent progress in the use of hydrogel-based biomaterial for the development of 3D in vitro biomimetic tissue models is highlighted. Discussions of hydrogel sources and the latest hybrid system with different combinations of biopolymers are also presented. The hydrogel crosslinking mechanism and design consideration are summarized, followed by different types of available hydrogel module systems along with recent microfabrication technologies. We also present the latest developments in engineering hydrogel-based 3D in vitro models targeting specific tissues. Finally, we discuss the challenges surrounding current in vitro platforms and 3D models in the light of future perspectives for an improved biomimetic in vitro organ system.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
| | - Hyungseok Lee
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
- Department of Smart Health Science and Technology, Kangwon National University (KNU), Chuncheon 24341, Korea
| |
Collapse
|
42
|
Taghizadeh M, Taghizadeh A, Yazdi MK, Zarrintaj P, Stadler FJ, Ramsey JD, Habibzadeh S, Hosseini Rad S, Naderi G, Saeb MR, Mozafari M, Schubert US. Chitosan-based inks for 3D printing and bioprinting. GREEN CHEMISTRY 2022; 24:62-101. [DOI: 10.1039/d1gc01799c] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
3D printing gave biomedical engineering great potential to mimic native tissues, accelerated regenerative medicine, and enlarged capacity of drug delivery systems; thus, advanced biomimetic functional biomaterial developed by 3D-printing for tissue engineering demands.
Collapse
Affiliation(s)
- Mohsen Taghizadeh
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Ali Taghizadeh
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Florian J. Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-39675, Iran
| | - Somayeh Hosseini Rad
- Department of Mechanical Engineering, Polytechnique Montreal, Montreal, QC, H3C 3A7, Canada
| | - Ghasem Naderi
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11, /12 80-233, Gdańsk, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
43
|
Abstract
AbstractThe multidisciplinary research field of bioprinting combines additive manufacturing, biology and material sciences to create bioconstructs with three-dimensional architectures mimicking natural living tissues. The high interest in the possibility of reproducing biological tissues and organs is further boosted by the ever-increasing need for personalized medicine, thus allowing bioprinting to establish itself in the field of biomedical research, and attracting extensive research efforts from companies, universities, and research institutes alike. In this context, this paper proposes a scientometric analysis and critical review of the current literature and the industrial landscape of bioprinting to provide a clear overview of its fast-changing and complex position. The scientific literature and patenting results for 2000–2020 are reviewed and critically analyzed by retrieving 9314 scientific papers and 309 international patents in order to draw a picture of the scientific and industrial landscape in terms of top research countries, institutions, journals, authors and topics, and identifying the technology hubs worldwide. This review paper thus offers a guide to researchers interested in this field or to those who simply want to understand the emerging trends in additive manufacturing and 3D bioprinting.
Graphic abstract
Collapse
|
44
|
Kim M, Jang J. Construction of 3D hierarchical tissue platforms for modeling diabetes. APL Bioeng 2021; 5:041506. [PMID: 34703970 PMCID: PMC8530538 DOI: 10.1063/5.0055128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most serious systemic diseases worldwide, and the majority of DM patients face severe complications. However, many of underlying disease mechanisms related to these complications are difficult to understand with the use of currently available animal models. With the urgent need to fundamentally understand DM pathology, a variety of 3D biomimetic platforms have been generated by the convergence of biofabrication and tissue engineering strategies for the potent drug screening platform of pre-clinical research. Here, we suggest key requirements for the fabrication of physiomimetic tissue models in terms of recapitulating the cellular organization, creating native 3D microenvironmental niches for targeted tissue using biomaterials, and applying biofabrication technologies to implement tissue-specific geometries. We also provide an overview of various in vitro DM models, from a cellular level to complex living systems, which have been developed using various bioengineering approaches. Moreover, we aim to discuss the roadblocks facing in vitro tissue models and end with an outlook for future DM research.
Collapse
Affiliation(s)
- Myungji Kim
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 77 Cheongam-ro, Namgu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Jinah Jang
- Author to whom correspondence should be addressed:
| |
Collapse
|
45
|
Bhusal A, Dogan E, Nguyen HA, Labutina O, Nieto D, Khademhosseini A, Miri AK. Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips. Biofabrication 2021; 14:10.1088/1758-5090/ac2d78. [PMID: 34614486 PMCID: PMC10700126 DOI: 10.1088/1758-5090/ac2d78] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022]
Abstract
Recent advancements in digital-light-processing (DLP)-based bioprinting and hydrogel engineering have enabled novel developments in organs-on-chips. In this work, we designed and developed a multi-material, DLP-based bioprinter for rapid, one-step prototyping of hydrogel-based microfluidic chips. A composite hydrogel bioink based on poly-ethylene-glycol-diacrylate (PEGDA) and gelatin methacryloyl (GelMA) was optimized through varying the bioprinting parameters such as light exposure time, bioink composition, and layer thickness. We showed a wide range of mechanical properties of the microfluidic chips for various ratios of PEGDA:GelMA. Microfluidic features of hydrogel-based chips were then tested using dynamic flow experiments. Human-derived tumor cells were encapsulated in 3D bioprinted structures to demonstrate their bioactivity and cell-friendly environment. Cell seeding experiments then validated the efficacy of the selected bioinks for vascularized micro-tissues. Our biofabrication approach offers a useful tool for the rapid integration of micro-tissue models into organs-on-chips and high-throughput drug screening platforms.
Collapse
Affiliation(s)
- Anant Bhusal
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028
| | - Elvan Dogan
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028
| | - Hai-Anh Nguyen
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028
| | - Olga Labutina
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028
| | - Daniel Nieto
- Photonics4life Research Group, Department of Physics, University of Santiago de Compostela, A Coruña, Spain
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
- Department of Radiology and Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095 USA
- Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Amir K. Miri
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
46
|
Khanna A, Zamani M, Huang NF. Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering. J Cardiovasc Dev Dis 2021; 8:137. [PMID: 34821690 PMCID: PMC8622600 DOI: 10.3390/jcdd8110137] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
Collapse
Affiliation(s)
| | - Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
47
|
In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021; 9:biomedicines9101415. [PMID: 34680532 PMCID: PMC8533367 DOI: 10.3390/biomedicines9101415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The ethical constraints and shortcomings of animal models, combined with the demand to study disease pathogenesis under controlled conditions, are giving rise to a new field at the interface of tissue engineering and pathophysiology, which focuses on the development of in vitro models of disease. In vitro models are defined as synthetic experimental systems that contain living human cells and mimic tissue- and organ-level physiology in vitro by taking advantage of recent advances in tissue engineering and microfabrication. This review provides an overview of in vitro models and focuses specifically on in vitro disease models of the endocrine pancreas and diabetes. First, we briefly review the anatomy, physiology, and pathophysiology of the human pancreas, with an emphasis on islets of Langerhans and beta cell dysfunction. We then discuss different types of in vitro models and fundamental elements that should be considered when developing an in vitro disease model. Finally, we review the current state and breakthroughs in the field of pancreatic in vitro models and conclude with some challenges that need to be addressed in the future development of in vitro models.
Collapse
|
48
|
Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies. Polymers (Basel) 2021; 13:polym13193281. [PMID: 34641095 PMCID: PMC8512409 DOI: 10.3390/polym13193281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
The demand for wound care products, especially advanced and active wound care products is huge. In this study, gellan gum (GG) and virgin coconut oil (VCO) were utilized to develop microemulsion-based hydrogel for wound dressing materials. A ternary phase diagram was constructed to obtain an optimized ratio of VCO, water, and surfactant to produce VCO microemulsion. The VCO microemulsion was incorporated into gellan gum (GG) hydrogel (GVCO) and their chemical interaction, mechanical performance, physical properties, and thermal behavior were examined. The stress-at-break (σ) and Young's modulus (YM) of GVCO hydrogel films were increased along with thermal behavior with the inclusion of VCO microemulsion. The swelling degree of GVCO hydrogel decreased as the VCO microemulsion increased and the water vapor transmission rate of GVCO hydrogels was comparable to commercial dressing in the range of 332-391 g m-2 d-1. The qualitative antibacterial activities do not show any inhibition against Gram-negative (Escherichia coli and Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. In vivo studies on Sprague-Dawley rats show the wound contraction of GVCO hydrogel is best (95 ± 2%) after the 14th day compared to a commercial dressing of Smith and Nephew Opsite post-op waterproof dressing, and this result is supported by the ultrasound images of wound skin and histological evaluation of the wound. The findings suggest that GVCO hydrogel has the potential to be developed as a biomedical material.
Collapse
|
49
|
Celikkin N, Presutti D, Maiullari F, Fornetti E, Agarwal T, Paradiso A, Volpi M, Święszkowski W, Bearzi C, Barbetta A, Zhang YS, Gargioli C, Rizzi R, Costantini M. Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies. Front Bioeng Biotechnol 2021; 9:732130. [PMID: 34604190 PMCID: PMC8481890 DOI: 10.3389/fbioe.2021.732130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, biomedical research has significantly boomed in the academia and industrial sectors, and it is expected to continue to grow at a rapid pace in the future. An in-depth analysis of such growth is not trivial, given the intrinsic multidisciplinary nature of biomedical research. Nevertheless, technological advances are among the main factors which have enabled such progress. In this review, we discuss the contribution of two state-of-the-art technologies-namely biofabrication and organ-on-a-chip-in a selection of biomedical research areas. We start by providing an overview of these technologies and their capacities in fabricating advanced in vitro tissue/organ models. We then analyze their impact on addressing a range of current biomedical challenges. Ultimately, we speculate about their future developments by integrating these technologies with other cutting-edge research fields such as artificial intelligence and big data analysis.
Collapse
Affiliation(s)
- Nehar Celikkin
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Dario Presutti
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Fabio Maiullari
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
| | | | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
| | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, MA, United States
| | - Cesare Gargioli
- Department of Biology, Rome University Tor Vergata, Rome, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Milan, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
50
|
Bioprinting of Organ-on-Chip Systems: A Literature Review from a Manufacturing Perspective. JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING 2021. [DOI: 10.3390/jmmp5030091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review discusses the reported studies investigating the use of bioprinting to develop functional organ-on-chip systems from a manufacturing perspective. These organ-on-chip systems model the liver, kidney, heart, lung, gut, bone, vessel, and tumors to demonstrate the viability of bioprinted organ-on-chip systems for disease modeling and drug screening. In addition, the paper highlights the challenges involved in using bioprinting techniques for organ-on-chip system fabrications and suggests future research directions. Based on the reviewed studies, it is concluded that bioprinting can be applied for the automated and assembly-free fabrication of organ-on chip systems. These bioprinted organ-on-chip systems can help in the modeling of several different diseases and can thereby expedite drug discovery by providing an efficient platform for drug screening in the preclinical phase of drug development processes.
Collapse
|