1
|
Michalska Z, Ostaszewska A, Fularczyk M, Dzierżyńska M, Bielak K, Morytz J, Sieradzan AK, Archacka K, Brzoska E, Rodziewicz-Motowidło S, Ciemerych MA. In Vitro Bioactivity Evaluation of IL-4 and SDF-1 Mimicking Peptides Engineered to Enhance Skeletal Muscle Reconstruction. J Biomed Mater Res A 2025; 113:e37898. [PMID: 40087853 DOI: 10.1002/jbm.a.37898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Skeletal muscle regeneration depends on satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, this process may not be properly executed, and muscle function may be affected. Thus, pro-regenerative actions, such as the use of various factors or cells, are widely tested as a tool to improve muscle regeneration. In the current study, we designed peptides derived from the IL-4 and SDF-1 proteins, namely IL-4-X, IL-4-Y, SDF-1-X, and SDF-1-Y. We showed that these peptides can bind to appropriate receptors and can adopt proper structure in solution. Importantly, we documented, using in vitro culture, that they do not negatively affect the cells that are present and active in skeletal muscles, such as myoblasts and fibroblasts, bone marrow stromal cells, as well as induced pluripotent stem cells, which can serve as a source of myoblasts. The presence of peptides did not affect cell proliferation compared to untreated cells. In vitro culture and differentiation protocols documented that selected IL-4 and SDF-1 peptides increased cell migration and inhibited undesirable adipogenic differentiation. Thus, we proved that these peptides are safe to use in in vivo studies aimed at improving skeletal muscle regeneration.
Collapse
Affiliation(s)
- Zuzanna Michalska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Ostaszewska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Martyna Fularczyk
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Maria Dzierżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Kacper Bielak
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Justyna Morytz
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adam K Sieradzan
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Hu C, Chiang G, Chan AHP, Alcazar C, Nakayama KH, Quarta M, Rando TA, Huang NF. A mouse model of volumetric muscle loss and therapeutic scaffold implantation. Nat Protoc 2025; 20:608-619. [PMID: 39424992 PMCID: PMC11896750 DOI: 10.1038/s41596-024-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/24/2024] [Indexed: 10/21/2024]
Abstract
Skeletal myofibers naturally regenerate after damage; however, impaired muscle function can result in cases when a prominent portion of skeletal muscle mass is lost, for example, following traumatic muscle injury. Volumetric muscle loss can be modeled in mice using a surgical model of muscle ablation to study the pathology of volumetric muscle loss and to test experimental treatments, such as the implantation of acellular scaffolds, which promote de novo myogenesis and angiogenesis. Here we provide step-by-step instructions to perform full-thickness surgical ablation, using biopsy punches, and to remove a large volume of the tibialis anterior muscle of the lower limb in mice. This procedure results in a reduction in muscle mass and limited regeneration capacity; the approach is easy to reproduce and can also be applied to larger animal models. For therapeutic applications, we further explain how to implant bioscaffolds into the ablated muscle site. With adequate training and practice, the surgical procedure can be performed within 30 min.
Collapse
Affiliation(s)
- Caroline Hu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Gladys Chiang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Alex H-P Chan
- The Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA, USA
| | - Cynthia Alcazar
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Karina H Nakayama
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Marco Quarta
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas A Rando
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ngan F Huang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- The Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA.
- Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA, USA.
- Department of Chemical Engineering, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
3
|
Cai CW, Grey JA, Hubmacher D, Han WM. Biomaterial-Based Regenerative Strategies for Volumetric Muscle Loss: Challenges and Solutions. Adv Wound Care (New Rochelle) 2025; 14:159-175. [PMID: 38775429 PMCID: PMC11971559 DOI: 10.1089/wound.2024.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/15/2024] [Indexed: 07/11/2024] Open
Abstract
Significance: Volumetric muscle loss (VML) is caused by the loss of significant amounts of skeletal muscle tissue. VML cannot be repaired by intrinsic regenerative processes, resulting in permanent loss of muscle function and disability. Current rehabilitative-focused treatment strategies lack efficacy and do not restore muscle function, indicating the need for the development of effective regenerative strategies. Recent Advances: Recent developments implicate biomaterial-based approaches for promoting muscle repair and functional restoration post-VML. Specifically, bioscaffolds transplanted in the injury site have been utilized to mimic endogenous cues of the ablated tissue to promote myogenic pathways, increase neo-myofiber synthesis, and ultimately restore contractile function to the injured unit. Critical Issues: Despite the development and preclinical testing of various biomaterial-based regenerative strategies, effective therapies for patients are not available. The unique challenges posed for biomaterial-based treatments of VML injuries, including its scalability and clinical applicability beyond small-animal models, impede progress. Furthermore, production of tissue-engineered constructs is technically demanding, with reproducibility issues at scale and complexities in achieving vascularization and innervation of large constructs. Future Directions: Biomaterial-based regenerative strategies designed to comprehensively address the pathophysiology of VML are needed. Considerations for clinical translation, including scalability and regulatory compliance, should also be considered when developing such strategies. In addition, an integrated approach that combines regenerative and rehabilitative strategies is essential for ensuring functional improvement.
Collapse
Affiliation(s)
- Charlene W. Cai
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Biology, The College of New Jersey, Ewing, New Jersey, USA
| | - Josh A. Grey
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dirk Hubmacher
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Woojin M. Han
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Rossi A, Bassi G, Cunha C, Baldisserri C, Ravaglia N, Gardini D, Molinari F, Lista F, Teran FJ, Piperno A, Montesi M, Panseri S. Magnetically induced anisotropic structure in an injectable hydrogel for skeletal muscle regeneration. J Colloid Interface Sci 2025; 678:334-345. [PMID: 39298986 DOI: 10.1016/j.jcis.2024.09.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Skeletal muscle integrity and its intrinsic aligned architecture are crucial for locomotion, postural support, and respiration functions, impacting overall quality of life. However, volumetric muscle loss (VML) can exceed intrinsic regenerative potential, leading to fibrosis and impairments. Autologous muscle grafting, the current gold standard, is constrained by tissue availability and success rates. Therefore, innovative strategies like cell-based therapies and scaffold-based approaches are needed. Our minimally invasive approach involves a tunable injectable hydrogel capable of achieving an aligned architecture post-injection via a low-intensity static magnetic field (SMF). Our hydrogel formulation uses gellan gum as the backbone polymer, enriched with essential extracellular matrix components such as hyaluronic acid and collagen type I, enhancing bio-functionality. To achieve an aligned architectural biomimicry, collagen type I is coupled with iron oxide magnetic nanoparticles, creating magnetic collagen bundles (MagC) that align within the hydrogel when exposed to a SMF. An extensive study was performed to characterize MagC and assess the hydrogel's stability, mechanical properties, and biological response in vitro and in vivo. The proposed system, fully composed of natural polymers, exhibited mechanical properties similar to human skeletal muscle and demonstrated effective biological performances, supporting its potential as a safe and patient-friendly treatment for VML.
Collapse
Affiliation(s)
- Arianna Rossi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy; University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy.
| | - Giada Bassi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy; University of G. D'Annunzio, Department of Neurosciences, Imaging and Clinical Sciences, Via Luigi Polacchi, 11, 66100 Chieti, Italy
| | - Carla Cunha
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Carlo Baldisserri
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Noemi Ravaglia
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Davide Gardini
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Filippo Molinari
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Francisco J Teran
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; Nanotech Solutions, Ctra Madrid 23, 40150 Villacastín, Spain
| | - Anna Piperno
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Monica Montesi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Silvia Panseri
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy.
| |
Collapse
|
5
|
Lee HS, Samolyk BL, Pins GD. Extrusion-Based Printing of Myoblast-Loaded Fibrin Microthreads to Induce Myogenesis. J Funct Biomater 2025; 16:21. [PMID: 39852577 PMCID: PMC11765554 DOI: 10.3390/jfb16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Large skeletal muscle injuries such as volumetric muscle loss (VML) disrupt native tissue structures, including biophysical and biochemical signaling cues that promote the regeneration of functional skeletal muscle. Various biofabrication strategies have been developed to create engineered skeletal muscle constructs that mimic native matrix and cellular microenvironments to enhance muscle regeneration; however, there remains a need to create scalable engineered tissues that provide mechanical stability as well as structural and spatiotemporal signaling cues to promote cell-mediated regeneration of contractile skeletal muscle. We describe a novel strategy for bioprinting multifunctional myoblast-loaded fibrin microthreads (myothreads) that recapitulate the cellular microniches to drive myogenesis and aligned myotube formation. We characterized myoblast alignment, myotube formation, and tensile properties of myothreads as a function of cell-loading density and culture time. We showed that increasing myoblast loading densities enhances myotube formation. Additionally, alignment analyses indicate that the bioprinting process confers myoblast alignment in the constructs. Finally, tensile characterizations suggest that myothreads possess the structural stability to serve as a potential platform for developing scalable muscle scaffolds. We anticipate that our myothread biofabrication approach will enable us to strategically investigate biophysical and biochemical signaling cues and cellular mechanisms that enhance functional skeletal muscle regeneration for the treatment of VML.
Collapse
Affiliation(s)
| | | | - George D. Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.S.L.); (B.L.S.)
| |
Collapse
|
6
|
Lopez-Espejo ME, Jimena I, Gil-Belmonte MJ, Rivero JLL, Peña-Amaro J. Influence of Physical Exercise on the Rehabilitation of Volumetric Muscle Loss Injury Reconstructed with Autologous Adipose Tissue. J Funct Morphol Kinesiol 2024; 9:188. [PMID: 39449482 PMCID: PMC11503405 DOI: 10.3390/jfmk9040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND In volumetric muscle loss (VML) injuries, spontaneous muscle regeneration capacity is limited. The implantation of autologous adipose tissue in the affected area is an option to treat these lesions; however, the effectiveness of this therapy alone is insufficient for a complete recovery of the damaged muscle. This study examined the influence of treadmill exercise on the rehabilitation of VML injuries reconstructed with autologous adipose tissue, as a strategy to counteract the limitations of spontaneous regeneration observed in these injuries. METHODS Forty adult male Wistar rats were divided into eight groups of five individuals each: normal control (NC), regenerative control (RC), VML control (VML), VML injury reconstructed with fresh autologous adipose tissue (FAT), exercise-rehabilitated control (RNC), exercise-rehabilitated regenerative control (RRC), exercise-rehabilitated VML injury (RVML), and exercise-rehabilitated VML injury reconstructed with fresh autologous adipose tissue (RFAT). Histological and histochemical staining techniques were used for the analysis of structural features and histomorphometric parameters of the tibialis anterior muscle. Grip strength tests were conducted to assess muscle force. RESULTS Exercise rehabilitation decreased the proportion of disoriented fibers in RFAT vs. FAT group. The percentage of fibrosis was significantly higher in FAT and RFAT groups versus NC and RNC groups but did not vary significantly between FAT and RFAT groups. Overall, muscle grip strength and fiber size increased significantly in the exercise-rehabilitated groups compared to control groups. CONCLUSIONS To conclude, rehabilitation with physical exercise tended to normalize the process of muscle repair in a model of VML injury reconstructed with fresh autologous adipose tissue, but it did not reduce the intense fibrosis associated with these injuries.
Collapse
Affiliation(s)
- Maria E. Lopez-Espejo
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
| | - Ignacio Jimena
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
| | - Maria-Jesus Gil-Belmonte
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
- Department of Pathology, Torrecardenas University Hospital, 04009 Almeria, Spain
| | - Jose-Luis L. Rivero
- Muscular Biopathology Laboratory, Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Medicine, University of Cordoba, 14014 Cordoba, Spain;
| | - Jose Peña-Amaro
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
| |
Collapse
|
7
|
Şeker Ş, Lalegül-Ülker Ö, Elçin AE, Elçin YM. Regeneration of Volumetric Muscle Loss Using MSCs Encapsulated in PRP-Derived Fibrin Microbeads. Methods Mol Biol 2024. [PMID: 38578577 DOI: 10.1007/7651_2024_533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Volumetric muscle loss (VML) is one of the major types of soft tissue injury frequently encountered worldwide. In case of VML, the endogenous regenerative capacity of the skeletal muscle tissue is usually not sufficient for complete healing of the damaged area resulting in permanent functional musculoskeletal impairment. Therefore, the development of new tissue engineering approaches that will enable functional skeletal muscle regeneration by overcoming the limitations of current clinical treatments for VML injuries has become a critical goal. Platelet-rich plasma (PRP) is an inexpensive and relatively effective blood product with a high concentration of platelets containing various growth factors and cytokines involved in wound healing and tissue regeneration. Due to its autologous nature, PRP has been a safe and widely used treatment option for various wound types for many years. Recently, PRP-based biomaterials have emerged as a promising approach to promote muscle tissue regeneration upon injury. This chapter describes the use of PRP-derived fibrin microbeads as a versatile encapsulation matrix for the localized delivery of mesenchymal stem cells and growth factors to treat VML using tissue engineering strategies.
Collapse
|
8
|
Samadi A, Moammeri A, Azimi S, Bustillo-Perez BM, Mohammadi MR. Biomaterial engineering for cell transplantation. BIOMATERIALS ADVANCES 2024; 158:213775. [PMID: 38252986 DOI: 10.1016/j.bioadv.2024.213775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The current paradigm of medicine is mostly designed to block or prevent pathological events. Once the disease-led tissue damage occurs, the limited endogenous regeneration may lead to depletion or loss of function for cells in the tissues. Cell therapy is rapidly evolving and influencing the field of medicine, where in some instances attempts to address cell loss in the body. Due to their biological function, engineerability, and their responsiveness to stimuli, cells are ideal candidates for therapeutic applications in many cases. Such promise is yet to be fully obtained as delivery of cells that functionally integrate with the desired tissues upon transplantation is still a topic of scientific research and development. Main known impediments for cell therapy include mechanical insults, cell viability, host's immune response, and lack of required nutrients for the transplanted cells. These challenges could be divided into three different steps: 1) Prior to, 2) during the and 3) after the transplantation procedure. In this review, we attempt to briefly summarize published approaches employing biomaterials to mitigate the above technical challenges. Biomaterials are offering an engineerable platform that could be tuned for different classes of cell transplantation to potentially enhance and lengthen the pharmacodynamics of cell therapies.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, CA 92617, USA
| | - Ali Moammeri
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Shamim Azimi
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bexi M Bustillo-Perez
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, CA 92866, USA.
| |
Collapse
|
9
|
Ahmad K, Shaikh S, Chun HJ, Ali S, Lim JH, Ahmad SS, Lee EJ, Choi I. Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review. Inflamm Regen 2023; 43:58. [PMID: 38008778 PMCID: PMC10680355 DOI: 10.1186/s41232-023-00308-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
10
|
Sato H, Kohyama K, Uchibori T, Takanari K, Huard J, Badylak SF, D'Amore A, Wagner WR. Creating and Transferring an Innervated, Vascularized Muscle Flap Made from an Elastic, Cellularized Tissue Construct Developed In Situ. Adv Healthc Mater 2023; 12:e2301335. [PMID: 37499214 DOI: 10.1002/adhm.202301335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Reanimating facial structures following paralysis and muscle loss is a surgical objective that would benefit from improved options for harvesting appropriately sized muscle flaps. The objective of this study is to apply electrohydrodynamic processing to generate a cellularized, elastic, biocomposite scaffold that could develop and mature as muscle in a prepared donor site in vivo, and then be transferred as a thin muscle flap with a vascular and neural pedicle. First, an effective extracellular matrix (ECM) gel type is selected for the biocomposite scaffold from three types of ECM combined with poly(ester urethane)urea microfibers and evaluated in rat abdominal wall defects. Next, two types of precursor cells (muscle-derived and adipose-derived) are compared in constructs placed in rat hind limb defects for muscle regeneration capacity. Finally, with a construct made from dermal ECM and muscle-derived stem cells, protoflaps are implanted in one hindlimb for development and then microsurgically transferred as a free flap to the contralateral limb where stimulated muscle function is confirmed. This construct generation and in vivo incubation procedure may allow the generation of small-scale muscle flaps appropriate for transfer to the face, offering a new strategy for facial reanimation.
Collapse
Affiliation(s)
- Hideyoshi Sato
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keishi Kohyama
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Takafumi Uchibori
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keisuke Takanari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, 181 West Meadow Dr., Vail, CO, 81657, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Fondazione Ri.MED, Palermo, 90133, Italy
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| |
Collapse
|
11
|
Kozan NG, Caswell S, Patel M, Grasman JM. Aligned Collagen Sponges with Tunable Pore Size for Skeletal Muscle Tissue Regeneration. J Funct Biomater 2023; 14:533. [PMID: 37998102 PMCID: PMC10672557 DOI: 10.3390/jfb14110533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023] Open
Abstract
Volumetric muscle loss (VML) is a traumatic injury where at least 20% of the mass of a skeletal muscle has been destroyed and functionality is lost. The standard treatment for VML, autologous tissue transfer, is limited as approximately 1 in 10 grafts fail because of necrosis or infection. Tissue engineering strategies seek to develop scaffolds that can regenerate injured muscles and restore functionality. Many of these scaffolds, however, are limited in their ability to restore muscle functionality because of an inability to promote the alignment of regenerating myofibers. For aligned myofibers to form on a scaffold, myoblasts infiltrate the scaffold and receive topographical cues to direct targeted myofiber growth. We seek to determine the optimal pore size for myoblast infiltration and differentiation. We developed a method of tuning the pore size within collagen scaffolds while inducing longitudinal alignment of these pores. Significantly different pore sizes were generated by adjusting the freezing rate of the scaffolds. Scaffolds frozen at -20 °C contained the largest pores. These scaffolds promoted the greatest level of cell infiltration and orientation in the direction of pore alignment. Further research will be conducted to induce higher levels of myofiber formation, to ultimately create an off-the-shelf treatment for VML injuries.
Collapse
Affiliation(s)
| | | | | | - Jonathan M. Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
12
|
Kozan NG, Joshi M, Sicherer ST, Grasman JM. Porous biomaterial scaffolds for skeletal muscle tissue engineering. Front Bioeng Biotechnol 2023; 11:1245897. [PMID: 37854885 PMCID: PMC10579822 DOI: 10.3389/fbioe.2023.1245897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Volumetric muscle loss is a traumatic injury which overwhelms the innate repair mechanisms of skeletal muscle and results in significant loss of muscle functionality. Tissue engineering seeks to regenerate these injuries through implantation of biomaterial scaffolds to encourage endogenous tissue formation and to restore mechanical function. Many types of scaffolds are currently being researched for this purpose. Scaffolds are typically made from either natural, synthetic, or conductive polymers, or any combination therein. A major criterion for the use of scaffolds for skeletal muscle is their porosity, which is essential for myoblast infiltration and myofiber ingrowth. In this review, we summarize the various methods of fabricating porous biomaterial scaffolds for skeletal muscle regeneration, as well as the various types of materials used to make these scaffolds. We provide guidelines for the fabrication of scaffolds based on functional requirements of skeletal muscle tissue, and discuss the general state of the field for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jonathan M. Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
13
|
Chan AHP, Jain I, Oropeza BP, Zhou T, Nelsen B, Geisse NA, Huang NF. Combinatorial extracellular matrix cues with mechanical strain induce differential effects on myogenesis in vitro. Biomater Sci 2023; 11:5893-5907. [PMID: 37477446 PMCID: PMC10443049 DOI: 10.1039/d3bm00448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
Skeletal muscle regeneration remains a clinical unmet need for volumetric muscle loss and atrophy where muscle function cannot be restored to prior capacity. Current experimental approaches do not account for the complex microenvironmental factors that modulate myogenesis. In this study we developed a biomimetic tissue chip platform to systematically study the combined effects of the extracellular matrix (ECM) microenvironment and mechanical strain on myogenesis of murine myoblasts. Using stretchable tissue chips composed of collagen I (C), fibronectin (F) and laminin (L), as well as their combinations thereof, we tested the addition of mechanical strain regimens on myogenesis at the transcriptomic and translational levels. Our results show that ECMs have a significant effect on myotube formation in C2C12 murine myoblasts. Under static conditions, laminin substrates induced the longest myotubes, whereas fibronectin produced the widest myotubes. Combinatorial ECMs showed non-intuitive effects on myotube formation. Genome-wide analysis revealed the upregulation in actin cytoskeletal related genes that are suggestive of myogenesis. When mechanical strain was introduced to C + F + L combinatorial ECM substrates in the form of constant or intermittent uniaxial strain at low (5%) and high (15%) levels, we observed synergistic enhancements in myotube width, along with transcriptomic upregulation in myosin heavy chain genes. Together, these studies highlight the complex role of microenvironmental factors such as ECM interactions and strain on myotube formation and the underlying signaling pathways.
Collapse
Affiliation(s)
- Alex H P Chan
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ishita Jain
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Beu P Oropeza
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Tony Zhou
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | | | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Rehman A, Nigam A, Laino L, Russo D, Todisco C, Esposito G, Svolacchia F, Giuzio F, Desiderio V, Ferraro G. Mesenchymal Stem Cells in Soft Tissue Regenerative Medicine: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1449. [PMID: 37629738 PMCID: PMC10456353 DOI: 10.3390/medicina59081449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Soft tissue regeneration holds significant promise for addressing various clinical challenges, ranging from craniofacial and oral tissue defects to blood vessels, muscle, and fibrous tissue regeneration. Mesenchymal stem cells (MSCs) have emerged as a promising tool in regenerative medicine due to their unique characteristics and potential to differentiate into multiple cell lineages. This comprehensive review explores the role of MSCs in different aspects of soft tissue regeneration, including their application in craniofacial and oral soft tissue regeneration, nerve regeneration, blood vessel regeneration, muscle regeneration, and fibrous tissue regeneration. By examining the latest research findings and clinical advancements, this article aims to provide insights into the current state of MSC-based therapies in soft tissue regenerative medicine.
Collapse
Affiliation(s)
- Ayesha Rehman
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Aditya Nigam
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Luigi Laino
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| | - Diana Russo
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| | | | | | - Fabiano Svolacchia
- Departments of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00118 Rome, Italy;
| | - Federica Giuzio
- Department of Sciences, University of Basilicata, Via Nazario Sauro 85, 85100 Potenza, Italy;
- U.O.S.D. of Plastic Surgery A.O.R “San Carlo”, 85100 Potenza, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Giuseppe Ferraro
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| |
Collapse
|
15
|
Kulwatno J, Goldman SM, Dearth CL. Volumetric Muscle Loss: A Bibliometric Analysis of a Decade of Progress. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36475848 DOI: 10.1089/ten.teb.2022.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The consequences of military conflict, accidents, and diseases have led to the definition-and subsequent study-of the pathological condition now known as volumetric muscle loss (VML). VML is a significant injury to skeletal muscle tissue on a scale that is endogenously irrecoverable and leads to chronic functional deficits and long-term disability. Currently, there lacks a definitive approach to meaningfully restore the tissue and function lost by those afflicted, ushering a need for scientific activities and associated funding to both facilitate a deeper understanding of the pathobiology of VML as well as to develop and assess clinically relevant therapeutics and treatment strategies. Thereby, evaluation of the VML field is crucial to gauging the return on resource expenditures and to understand the evolution of the field to guide future directions. This article presents a bibliometric analysis of publicly available data to explore the growth of the VML field since its genesis and to highlight its prosperity through its expanding literature, its development and evaluation of promising treatment strategies, rising financial investments, and innovation. Altogether, the bibliometric analysis reveals the field of VML as an emergent research focus that is productive and translational. Impact statement Analyses of a research topic are fundamental toward evaluating the returns on investment and appreciating the evolution of the research toward novel directions. This study aims to highlight the growing field of volumetric muscle loss (VML), defined as a significant injury to skeletal muscle tissue that leads to functional impairment and is irrecoverable through inherent regenerative mechanisms. The analysis of bibliometric and publicly available data provides evidence that the field of VML has an expanding research interest and investment, with biomaterials at the forefront of study.
Collapse
Affiliation(s)
- Jonathan Kulwatno
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Stephen M Goldman
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Christopher L Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
16
|
McFaline-Figueroa J, Schifino AG, Nichenko AS, Lord MN, Hunda ET, Winders EA, Noble EE, Greising SM, Call JA. Pharmaceutical Agents for Contractile-Metabolic Dysfunction After Volumetric Muscle Loss. Tissue Eng Part A 2022; 28:795-806. [PMID: 35620911 PMCID: PMC9634984 DOI: 10.1089/ten.tea.2022.0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/21/2022] [Indexed: 11/12/2022] Open
Abstract
Volumetric muscle loss (VML) injuries represent a majority of military service member casualties and are common in civilian populations following blunt and/or penetrating traumas. Characterized as a skeletal muscle injury with permanent functional impairments, there is currently no standard for rehabilitation, leading to lifelong disability. Toward developing rehabilitative strategies, previous research demonstrates that the remaining muscle after a VML injury lacks similar levels of plasticity or adaptability as healthy, uninjured skeletal muscle. This may be due, in part, to impaired innervation and vascularization of the remaining muscle, as well as disrupted molecular signaling cascades commonly associated with muscle adaptation. The primary objective of this study was to assess the ability of four pharmacological agents with a strong record of modulating muscle contractile and metabolic function to improve functional deficits in a murine model of VML injury. Male C57BL/6 mice underwent a 15% multimuscle VML injury of the posterior hindlimb and were randomized into drug treatment groups (formoterol [FOR], 5-aminoimidazole-4-carboxamide riboside [AICAR], pioglitazone [PIO], or sildenafil [SIL]) or untreated VML group. At the end of 60 days, the injury model was first validated by comparison to age-matched injury-naive mice. Untreated VML mice had 22% less gastrocnemius muscle mass, 36% less peak-isometric torque, and 27% less maximal mitochondrial oxygen consumption rate compared to uninjured mice (p < 0.01). Experimental drug groups were, then, compared to VML untreated, and there was minimal evidence of efficacy for AICAR, PIO, or SIL in improving contractile and metabolic functional outcomes. However, FOR-treated VML mice had 18% greater peak isometric torque (p < 0.01) and permeabilized muscle fibers had 36% greater State III mitochondrial oxygen consumption rate (p < 0.01) compared to VML untreated mice, suggesting an overall improvement in muscle condition. There was minimal evidence that these benefits came from greater mitochondrial biogenesis and/or mitochondrial complex protein content, but could be due to greater enzyme activity levels for complex I and complex II. These findings suggest that FOR treatment is candidate to pair with a rehabilitative approach to maximize functional improvements in VML-injured muscle. Impact statement Volumetric muscle loss (VML) injuries result in deficiencies in strength and mobility, which have a severe impact on patient quality of life. Despite breakthroughs in tissue engineering, there are currently no treatments available that can restore function to the affected limb. Our data show that treatment of VML injuries with clinically available and FDA-approved formoterol (FOR), a beta-agonist, significantly improves strength and metabolism of VML-injured muscle. FOR is therefore a promising candidate for combined therapeutic approaches (i.e., regenerative rehabilitation) such as pairing FOR with structured rehabilitation or cell-seeded biomaterials as it may provide greater functional improvements than either strategy alone.
Collapse
Affiliation(s)
- Jennifer McFaline-Figueroa
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Albino G. Schifino
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Anna S. Nichenko
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Magen N. Lord
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA
| | - Edward T. Hunda
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | | | - Emily E. Noble
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jarrod A. Call
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
17
|
Heidari Moghadam A, Bayati V, Orazizadeh M, Rashno M. Redesigning of 3-Dimensional Vascular-Muscle Structure Using ADSCs/HUVECs Co-Culture and VEGF on Engineered Skeletal Muscle ECM. CELL JOURNAL 2022; 24:380-390. [PMID: 36043406 PMCID: PMC9428474 DOI: 10.22074/cellj.2022.8098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The main objective of this study is to determine the myogenic effects of skeletal muscle extracellular matrix, vascular endothelial growth factor and human umbilical vein endothelial cells on adipose-derived stem cells to achieve a 3-dimensional engineered vascular-muscle structure. MATERIALS AND METHODS The present experimental research was designed based on two main groups, i.e. monoculture of adipose tissue-derived stem cells (ADSCs) and co-culture of ADSCs and human umbilical vein endothelial cells (HUVECs) in a ratio of 1:1. Skeletal muscle tissue was isolated, decellularized and its surface was electrospun using polycaprolactone/gelatin parallel nanofibers and then matrix topography was evaluated through H and E, trichrome staining and SEM. The expression of MyHC2 gene and tropomyosin protein were examined through real-time reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence, respectively. Finally, the morphology of mesenchymal and endothelial cells and their relationship with each other and with the engineered scaffold were examined by scanning electron microscopy (SEM). RESULTS According to H and E and Masson's Trichrome staining, muscle tissue was completely decellularized. SEM showed parallel Polycaprolactone (PCL)/gelatin nanofibers with an average diameter of about 300 nm. The immunofluorescence proved that tropomyosin was positive in the ADSCs monoculture and the ADSCs/HUVECs coculture in horse serum (HS) and HS/VEGF groups. There was a significant difference in the expression of the MyHC2 gene between the ADSCs and ADSCs/HUVECs culture groups (P<0.05) and between the 2D and 3D models in HS/ VEGF differentiation groups (P<001). Moreover, a significant increase existed between the HS/VEGF group and other groups in terms of endothelial cells growth and proliferation as well as their relationship with differentiated myoblasts (P<0.05). CONCLUSION Co-culture of ADSCs/HUVECs on the engineered cell-free muscle scaffold and the dual effects of VEGF can lead to formation of a favorable engineered vascular-muscular tissue. These engineered structures can be used as an acceptable tool for tissue implantation in muscle injuries and regeneration, especially in challenging injuries such as volumetric muscle loss, which also require vascular repair.
Collapse
Affiliation(s)
- Abbas Heidari Moghadam
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,P.O.Box: 45Cellular and Molecular Research CenterMedical Basic Sciences Research InstituteAhvaz Jundishapur
University of Medical SciencesAhvazIran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Hu C, Ayan B, Chiang G, Chan AHP, Rando TA, Huang NF. Comparative Effects of Basic Fibroblast Growth Factor Delivery or Voluntary Exercise on Muscle Regeneration after Volumetric Muscle Loss. Bioengineering (Basel) 2022; 9:37. [PMID: 35049746 PMCID: PMC8773127 DOI: 10.3390/bioengineering9010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/29/2022] Open
Abstract
Volumetric muscle loss (VML) is associated with irreversibly impaired muscle function due to traumatic injury. Experimental approaches to treat VML include the delivery of basic fibroblast growth factor (bFGF) or rehabilitative exercise. The objective of this study was to compare the effects of spatially nanopatterned collagen scaffold implants with either bFGF delivery or in conjunction with voluntary exercise. Aligned nanofibrillar collagen scaffold bundles were adsorbed with bFGF, and the bioactivity of bFGF-laden scaffolds was examined by skeletal myoblast or endothelial cell proliferation. The therapeutic efficacy of scaffold implants with either bFGF release or exercise was examined in a murine VML model. Our results show an initial burst release of bFGF from the scaffolds, followed by a slower release over 21 days. The released bFGF induced myoblast and endothelial cell proliferation in vitro. After 3 weeks of implantation in a mouse VML model, twitch force generation was significantly higher in mice treated with bFGF-laden scaffolds compared to bFGF-laden scaffolds with exercise. However, myofiber density was not significantly improved with bFGF scaffolds or voluntary exercise. In contrast, the scaffold implant with exercise induced more re-innervation than all other groups. These results highlight the differential effects of bFGF and exercise on muscle regeneration.
Collapse
Affiliation(s)
- Caroline Hu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (C.H.); (G.C.); (A.H.P.C.); (T.A.R.)
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Gladys Chiang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (C.H.); (G.C.); (A.H.P.C.); (T.A.R.)
| | - Alex H. P. Chan
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (C.H.); (G.C.); (A.H.P.C.); (T.A.R.)
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Thomas A. Rando
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (C.H.); (G.C.); (A.H.P.C.); (T.A.R.)
- Department of Neurology, Stanford University, Stanford, CA 94305, USA
| | - Ngan F. Huang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (C.H.); (G.C.); (A.H.P.C.); (T.A.R.)
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021; 278:121173. [PMID: 34619561 PMCID: PMC8556323 DOI: 10.1016/j.biomaterials.2021.121173] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022]
Abstract
Severe traumatic skeletal muscle injuries, such as volumetric muscle loss (VML), result in the obliteration of large amounts of skeletal muscle and lead to permanent functional impairment. Current clinical treatments are limited in their capacity to regenerate damaged muscle and restore tissue function, promoting the need for novel muscle regeneration strategies. Advances in tissue engineering, including cell therapy, scaffold design, and bioactive factor delivery, are promising solutions for VML therapy. Herein, we review tissue engineering strategies for regeneration of skeletal muscle, development of vasculature and nerve within the damaged muscle, and achievements in immunomodulation following VML. In addition, we discuss the limitations of current state of the art technologies and perspectives of tissue-engineered bioconstructs for muscle regeneration and functional recovery following VML.
Collapse
Affiliation(s)
- Ioannis Eugenis
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Di Wu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
20
|
Kiran S, Dwivedi P, Kumar V, Price RL, Singh UP. Immunomodulation and Biomaterials: Key Players to Repair Volumetric Muscle Loss. Cells 2021; 10:cells10082016. [PMID: 34440785 PMCID: PMC8394423 DOI: 10.3390/cells10082016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Volumetric muscle loss (VML) is defined as a condition in which a large volume of skeletal muscle is lost due to physical insult. VML often results in a heightened immune response, resulting in significant long-term functional impairment. Estimates indicate that ~250,000 fractures occur in the US alone that involve VML. Currently, there is no active treatment to fully recover or repair muscle loss in VML patients. The health economics burden due to VML is rapidly increasing around the world. Immunologists, developmental biologists, and muscle pathophysiologists are exploring both immune responses and biomaterials to meet this challenging situation. The inflammatory response in muscle injury involves a non-specific inflammatory response at the injured site that is coordination between the immune system, especially macrophages and muscle. The potential role of biomaterials in the regenerative process of skeletal muscle injury is currently an important topic. To this end, cell therapy holds great promise for the regeneration of damaged muscle following VML. However, the delivery of cells into the injured muscle site poses a major challenge as it might cause an adverse immune response or inflammation. To overcome this obstacle, in recent years various biomaterials with diverse physical and chemical nature have been developed and verified for the treatment of various muscle injuries. These biomaterials, with desired tunable physicochemical properties, can be used in combination with stem cells and growth factors to repair VML. In the current review, we focus on how various immune cells, in conjunction with biomaterials, can be used to promote muscle regeneration and, most importantly, suppress VML pathology.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy, St. Louis, MO 63110, USA;
| | - Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
| | - Robert L. Price
- Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208, USA;
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
- Correspondence:
| |
Collapse
|
21
|
Nuge T, Liu Z, Liu X, Ang BC, Andriyana A, Metselaar HSC, Hoque ME. Recent Advances in Scaffolding from Natural-Based Polymers for Volumetric Muscle Injury. Molecules 2021; 26:699. [PMID: 33572728 PMCID: PMC7865392 DOI: 10.3390/molecules26030699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Volumetric Muscle Loss (VML) is associated with muscle loss function and often untreated and considered part of the natural sequelae of trauma. Various types of biomaterials with different physical and properties have been developed to treat VML. However, much work remains yet to be done before the scaffolds can pass from the bench to the bedside. The present review aims to provide a comprehensive summary of the latest developments in the construction and application of natural polymers-based tissue scaffolding for volumetric muscle injury. Here, the tissue engineering approaches for treating volumetric muscle loss injury are highlighted and recent advances in cell-based therapies using various sources of stem cells are elaborated in detail. An overview of different strategies of tissue scaffolding and their efficacy on skeletal muscle cells regeneration and migration are presented. Furthermore, the present paper discusses a wide range of natural polymers with a special focus on proteins and polysaccharides that are major components of the extracellular matrices. The natural polymers are biologically active and excellently promote cell adhesion and growth. These bio-characteristics justify natural polymers as one of the most attractive options for developing scaffolds for muscle cell regeneration.
Collapse
Affiliation(s)
- Tamrin Nuge
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Bee Chin Ang
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Andri Andriyana
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Hendrik Simon Cornelis Metselaar
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh;
| |
Collapse
|