1
|
Joseph I, Han J, Bianchi-Smak J, Yang J, Bhupana JN, Flores J, Delucia J, Tran TS, Goldenring JR, Bonder EM, Gao N. Rab11b is necessary for mitochondrial integrity and function in gut epithelial cells. Front Cell Dev Biol 2025; 13:1498902. [PMID: 40248353 PMCID: PMC12003269 DOI: 10.3389/fcell.2025.1498902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/04/2025] [Indexed: 04/19/2025] Open
Abstract
Introduction The RAB11 family of small GTPases are intracellular regulators of membrane and vesicular trafficking. We recently reported that RAB11A and RAB11B redundantly regulate spindle dynamics in dividing gut epithelial cells. However, in contrast to the well-studied RAB11A functions in transporting proteins and lipids through recycling endosomes, the distinct function of RAB11B is less clear. Methods and Results Our proteomic analysis of RAB11A or RAB11B interactome suggested a potential RAB11B specific involvement in regulating mitochondrial functions. Transcriptomic analysis of Rab11b knockout mouse intestines revealed an enhanced mitochondrial protein targeting program with an altered mitochondrial functional integrity. Flow cytometry assessment of mitochondrial membrane potential and reactive oxygen species production revealed an impaired mitochondrial function in vivo. Electron microscopic analysis demonstrated a particularly severe mitochondrial membrane defect in Paneth cells. Conclusion These genetic and functional data link RAB11B to mitochondrial structural and functional maintenance for the first time.
Collapse
Affiliation(s)
- Ivor Joseph
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Jiangmeng Han
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Jared Bianchi-Smak
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Jiaxing Yang
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Jagannatham Naidu Bhupana
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Jack Delucia
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Tracy S. Tran
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - James R. Goldenring
- Department of Surgery, and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Edward M. Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
2
|
Ji Y, Li R, Tang G, Wang W, Chen C, Yang Q. The interrelated roles of RAB family proteins in the advancement of neoplastic growth. Front Oncol 2025; 15:1513360. [PMID: 40196733 PMCID: PMC11974252 DOI: 10.3389/fonc.2025.1513360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Rab Proteins, A Subfamily Of The Ras Superfamily Of Small Gtpases, Are Critical Regulators Of Intracellular Vesicular Trafficking, Which Is Intricately Linked To Various Cellular Processes. These Proteins Play Essential Roles Not Only In Maintaining Cellular Homeostasis But Also In Mediating The Complex Interplay Between Cancer Cells and Their Microenvironment. Rab Proteins Can Act As Either Oncogenic Factors Or Tumor Suppressors, With Their Functions Highly Dependent On The Cellular Context. Mechanistic Studies Have Revealed That Rab Proteins Are Involved In A Variety Of Processes, Including Vesicular Transport, Tumor Microenvironment Regulation, Autophagy, Drug Resistance, and Metabolic Regulation, and Play Either A Promotional Or Inhibitory Role In Cancer Development. Consequently, Targeting Rab Gtpases To Restore Dysregulated Vesicular Transport Systems May Offer A Promising Therapeutic Strategy To Inhibit Cancer Progression. However, It Is Equally Important To Consider The Potential Risks Of Disrupting Rab Functions, As Their Roles Are Highly Context-Dependent and May Have Opposing Effects In Different Malignancies. This Review Focuses On The Multifaceted Involvement Of Rab Family Proteins In Cancer Progression Underscores Their Importance As Potential Therapeutic Targets and Underscores The Need For A Deeper Understanding Of Their Complex Roles In Tumorigenesis.
Collapse
Affiliation(s)
- Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
| | - Ruonan Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
| | - Guohui Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Wenrui Wang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Changjie Chen
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Qingling Yang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
3
|
Liang L, Kuang X, He Y, Zhu L, Lau P, Li X, Luo D, Gong L, Zhou W, Zhang F, Liang X, Li Z, Hu B, Liu D, Ding T, Li H, Zhao S, Su J, Hung MC, Liu J, Liu H, Chen X. Alterations in PD-L1 succinylation shape anti-tumor immune responses in melanoma. Nat Genet 2025; 57:680-693. [PMID: 40069506 PMCID: PMC11906371 DOI: 10.1038/s41588-025-02077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/06/2025] [Indexed: 03/15/2025]
Abstract
Tumors undergo metabolic reprogramming to meet the energetic, synthetic and redox demands essential for malignancy, often characterized by increased glycolysis and lactate production. However, the role of mitochondrial metabolism in tumor immunity remains unclear. The present study integrates spatial transcriptomics, bulk transcriptomics and proteomics, revealing a strong link between the metabolite succinyl-CoA and tumor immunity as well as the efficacy of anti-programmed cell death protein-1 (PD-1) therapy in patients with melanoma. Elevated succinyl-CoA levels, through α-ketoglutarate or succinate supplementation, enhanced T cell-mediated tumor elimination, both in vitro and in vivo. Mechanistically, succinylation of the ligand of PD-1 (PD-L1) at lysine 129 led to its degradation. Increased carnitine palmitoyltransferase 1A (CPT1A), identified as a succinyltransferase for PD-L1, boosted anti-tumor activity. Preclinically, bezafibrate, a hyperlipidemia drug, upregulated CPT1A and synergized with CTLA-4 monoclonal antibody to inhibit tumor growth. Clinically, higher PD-L1 and lower CPT1A levels in tumors correlated with better anti-PD-1 therapy responses, suggesting potential biomarkers for prediction of treatment efficacy.
Collapse
Affiliation(s)
- Long Liang
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Xinwei Kuang
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Yi He
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Lin Zhu
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Poyee Lau
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Xin Li
- Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Dingan Luo
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Lan Gong
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Wenbin Zhou
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Fanglin Zhang
- Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Xiaowei Liang
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Zhuofeng Li
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Bin Hu
- Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Dandan Liu
- Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Tao Ding
- Department of Statistical Science, University College London, London, UK
| | - Hui Li
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Jing Liu
- Medical Genetics & School of Life Sciences, Central South University, Changsha, China.
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital & School of Life Sciences & Furong Laboratory, Central South University, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.
| |
Collapse
|
4
|
Kastendiek N, Coletti R, Gross T, Lopes MB. Exploring glioma heterogeneity through omics networks: from gene network discovery to causal insights and patient stratification. BioData Min 2024; 17:56. [PMID: 39696678 DOI: 10.1186/s13040-024-00411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Gliomas are primary malignant brain tumors with a typically poor prognosis, exhibiting significant heterogeneity across different cancer types. Each glioma type possesses distinct molecular characteristics determining patient prognosis and therapeutic options. This study aims to explore the molecular complexity of gliomas at the transcriptome level, employing a comprehensive approach grounded in network discovery. The graphical lasso method was used to estimate a gene co-expression network for each glioma type from a transcriptomics dataset. Causality was subsequently inferred from correlation networks by estimating the Jacobian matrix. The networks were then analyzed for gene importance using centrality measures and modularity detection, leading to the selection of genes that might play an important role in the disease. To explore the pathways and biological functions these genes are involved in, KEGG and Gene Ontology (GO) enrichment analyses on the disclosed gene sets were performed, highlighting the significance of the genes selected across several relevent pathways and GO terms. Spectral clustering based on patient similarity networks was applied to stratify patients into groups with similar molecular characteristics and to assess whether the resulting clusters align with the diagnosed glioma type. The results presented highlight the ability of the proposed methodology to uncover relevant genes associated with glioma intertumoral heterogeneity. Further investigation might encompass biological validation of the putative biomarkers disclosed.
Collapse
Affiliation(s)
- Nina Kastendiek
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| | - Roberta Coletti
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology (NOVA FCT), Caparica, 2829-516, Portugal
| | - Thilo Gross
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, 26129, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - Marta B Lopes
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology (NOVA FCT), Caparica, 2829-516, Portugal.
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology (NOVA FCT), Caparica, 2829-516, Portugal.
| |
Collapse
|
5
|
Rockenbach JAZ, Nader GPF, Antoku S, Gundersen GG. The kinesin KIF3AC recycles endocytosed integrin to polarize adhesion formation towards the leading edge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627580. [PMID: 39713396 PMCID: PMC11661233 DOI: 10.1101/2024.12.09.627580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The recycling of integrin endocytosed during focal adhesion (FA) disassembly is critical for cell migration and contributes to the polarized formation of new FAs toward the leading edge. How this occurs is unclear. Here, we sought to identify the kinesin motor protein(s) that is involved in recycling endocytosed integrin back to the plasma membrane. We show that the kinesin-2 heterodimer, KIF3AC and the Rab11 adaptor protein RCP are required for FA reformation after the disassembly of FAs in mouse and human fibroblasts. In the absence of KIF3AC, integrin does not return to the cell surface after FA disassembly and is found in the Rab11 endocytic recycling compartment. Biochemical pulldowns revealed that KIF3C associated with β1 integrin in an RCP dependent fashion, but only after FA disassembly. KIF3AC knockdown inhibited cell migration, trafficking of RCP toward the leading edge, and polarized formation of FAs at the leading edge. These results show that KIF3AC promotes cell migration by recycling integrin so that it generates new FAs in a polarized fashion. Summary The study reveals that the heterodimeric kinesin-2 motor KIF3AC and its adaptor RCP are crucial for polarized formation of focal adhesions at the front of migrating fibroblasts. KIF3AC and RCP associate with intracellularly recycling integrin to promote its return to the cell surface after its endocytosis from disassembled focal adhesions.
Collapse
|
6
|
Lempicki C, Milosavljevic J, Laggner C, Tealdi S, Meyer C, Walz G, Lang K, Campa CC, Hermle T. Discovery of a Small Molecule with an Inhibitory Role for RAB11. Int J Mol Sci 2024; 25:13224. [PMID: 39684933 DOI: 10.3390/ijms252313224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
RAB11, a pivotal RabGTPase, regulates essential cellular processes such as endocytic recycling, exocytosis, and autophagy. The protein was implicated in various human diseases, including cancer, neurodegenerative disorders, viral infections, and podocytopathies. However, a small-molecular inhibitor is lacking. The complexity and workload associated with potential assays make conducting large-scale screening for RAB11 challenging. We employed a tiered approach for drug discovery, utilizing deep learning-based computational screening to preselect compounds targeting a specific pocket of RAB11 protein with experimental validation by an in vitro platform reflecting RAB11 activity through the exocytosis of GFP. Further validation included the exposure of Drosophila by drug feeding. In silico pre-screening identified 94 candidates, of which 9 were confirmed using our in vitro platform for Rab11 activity. Focusing on compounds with high potency, we assessed autophagy, which independently requires RAB11, and validated three of these compounds. We further analyzed the dose-response relationship, observing a biphasic, potentially hormetic effect. Two candidate compounds specifically caused a shift in Rab11 vesicles to the cell periphery, without significant impact on Rab5 or Rab7. Drosophila larvae exposed to another candidate compound with predicted oral bioavailability exhibited minimal toxicity, subcellular dispersal of endogenous Rab11, and a decrease in RAB11-dependent nephrocyte function, further supporting an inhibitory role. Taken together, the combination of computational screening and experimental validation allowed the identification of small molecules that modify the function of Rab11. This discovery may further open avenues for treating RAB11-associated disorders.
Collapse
Affiliation(s)
- Camille Lempicki
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Julian Milosavljevic
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | | | - Simone Tealdi
- Italian Institute for Genomic Medicine, Str. Prov. le 142, km 3.95, 10060 Candiolo, Turin, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Turin, Italy
| | - Charlotte Meyer
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, 79104 Freiburg, Germany
| | - Konrad Lang
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Carlo Cosimo Campa
- Italian Institute for Genomic Medicine, Str. Prov. le 142, km 3.95, 10060 Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| |
Collapse
|
7
|
Johnson D, Colijn S, Richee J, Yano J, Burns M, Davis AE, Pham VN, Saric A, Jain A, Yin Y, Castranova D, Melani M, Fujita M, Grainger S, Bonifacino JS, Weinstein BM, Stratman AN. Angiogenesis is limited by LIC1-mediated lysosomal trafficking. Angiogenesis 2024; 27:943-962. [PMID: 39356418 DOI: 10.1007/s10456-024-09951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Dynein cytoplasmic 1 light intermediate chain 1 (LIC1, DYNC1LI1) is a core subunit of the dynein motor complex. The LIC1 subunit also interacts with various cargo adaptors to regulate Rab-mediated endosomal recycling and lysosomal degradation. Defects in this gene are predicted to alter dynein motor function, Rab binding capabilities, and cytoplasmic cargo trafficking. Here, we have identified a dync1li1 zebrafish mutant, harboring a premature stop codon at the exon 12/13 splice acceptor site, that displays increased angiogenesis. In vitro, LIC1-deficient human endothelial cells display increases in cell surface levels of the pro-angiogenic receptor VEGFR2, SRC phosphorylation, and Rab11-mediated endosomal recycling. In vivo, endothelial-specific expression of constitutively active Rab11a leads to excessive angiogenesis, similar to the dync1li1 mutants. Increased angiogenesis is also evident in zebrafish harboring mutations in rilpl1/2, the adaptor proteins that promote Rab docking to Lic1 to mediate lysosomal targeting. These findings suggest that LIC1 and the Rab-adaptor proteins RILPL1 and 2 restrict angiogenesis by promoting degradation of VEGFR2-containing recycling endosomes. Disruption of LIC1- and RILPL1/2-mediated lysosomal targeting increases Rab11-mediated recycling endosome activity, promoting excessive SRC signaling and angiogenesis.
Collapse
Affiliation(s)
- Dymonn Johnson
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Sarah Colijn
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Jahmiera Richee
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph Yano
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Burns
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew E Davis
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Van N Pham
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amra Saric
- Section On Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Akansha Jain
- Section On Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ying Yin
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel Castranova
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mariana Melani
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Fundación Instituto Leloir, Buenos Aires, Argentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Buenos Aires, Argentina
| | - Misato Fujita
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Kanagawa University, Kanagawa, 221-8686, Japan
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Juan S Bonifacino
- Section On Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Amber N Stratman
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Li Y, Gao X, Li Y, Yan S, Zhang Y, Zheng X, Gu Q. Endocytosis: the match point of nanoparticle-based cancer therapy. J Mater Chem B 2024; 12:9435-9458. [PMID: 39192831 DOI: 10.1039/d4tb01227e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Nanomedicine has inspired a ground-breaking strategy for cancer therapy. By intelligently assembling diverse moieties to form nanoparticles, numerous functionalities such as controlled release, synergistic efficiency, and in situ killing can be achieved. The emerging nanoparticles have been designed with elevated targeting efficiency as targeting cancer cells is the primary requirement for nanoparticles. However, effective targeting does not guarantee therapeutic effects as endocytosis is a prerequisite for nanoparticles to exert effects. The recent decade has witnessed the rapid development of endocytosis-oriented nanoparticles, and this review subtly analyzes, categorizes, and exemplifies these nanoparticles according to their biological internalization patterns, and the correlation between the endocytosis mechanism and the property of nanoparticles is bridged. Based on the interdisciplinary vision, the present challenges and future perspectives of nanoparticle design for successful endocytosis are discussed, highlighting the potential strategies for the future development of endocytosis-oriented nanoparticles, thus facilitating the endocytosis-oriented strategy from bench to bedside. The undeniable fact is that endocytosis-oriented nanoparticles will definitely bring new blood to the next generation of advanced cancer therapies.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yiru Zhang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Ng QY, Mahendran V, Lim ZQ, Tan JHY, Wong JJF, Chu JJH, Chow VTK, Sze NSK, Alonso S. Enterovirus-A71 exploits RAB11 to recruit chaperones for virus morphogenesis. J Biomed Sci 2024; 31:65. [PMID: 38943128 PMCID: PMC11212238 DOI: 10.1186/s12929-024-01053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Enterovirus 71 (EV-A71) causes Hand, Foot and Mouth Disease (HFMD) in children and has been associated with neurological complications. The molecular mechanisms involved in EV-A71 pathogenesis have remained elusive. METHODS A siRNA screen in EV-A71 infected-motor neurons was performed targeting 112 genes involved in intracellular membrane trafficking, followed by validation of the top four hits using deconvoluted siRNA. Downstream approaches including viral entry by-pass, intracellular viral genome quantification by qPCR, Western blot analyses, and Luciferase reporter assays allowed determine the stage of the infection cycle the top candidate, RAB11A was involved in. Proximity ligation assay, co-immunoprecipitation and multiplex confocal imaging were employed to study interactions between viral components and RAB11A. Dominant negative and constitutively active RAB11A constructs were used to determine the importance of the protein's GTPase activity during EV-A71 infection. Mass spectrometry and protein interaction analyses were employed for the identification of RAB11A's host interacting partners during infection. RESULTS Small GTPase RAB11A was identified as a novel pro-viral host factor during EV-A71 infection. RAB11A and RAB11B isoforms were interchangeably exploited by strains from major EV-A71 genogroups and by Coxsackievirus A16, another major causative agent of HFMD. We showed that RAB11A was not involved in viral entry, IRES-mediated protein translation, viral genome replication, and virus exit. RAB11A co-localized with replication organelles where it interacted with structural and non-structural viral components. Over-expression of dominant negative (S25N; GDP-bound) and constitutively active (Q70L; GTP-bound) RAB11A mutants had no effect on EV-A71 infection outcome, ruling out RAB11A's involvement in intracellular trafficking of viral or host components. Instead, decreased ratio of intracellular mature viral particles to viral RNA copies and increased VP0:VP2 ratio in siRAB11-treated cells supported a role in provirion maturation hallmarked by VP0 cleavage into VP2 and VP4. Finally, chaperones, not trafficking and transporter proteins, were found to be RAB11A's top interacting partners during EV-A71 infection. Among which, CCT8 subunit from the chaperone complex TRiC/CCT was further validated and shown to interact with viral structural proteins specifically, representing yet another novel pro-viral host factor during EV-A71 infection. CONCLUSIONS This study describes a novel, unconventional role for RAB11A during viral infection where it participates in the complex process of virus morphogenesis by recruiting essential chaperone proteins.
Collapse
Affiliation(s)
- Qing Yong Ng
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vikneswari Mahendran
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ze Qin Lim
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Jasmine Hwee Yee Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Joel Jie Feng Wong
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vincent T K Chow
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Newman Siu Kwan Sze
- Proteomics and Mass Spectrometry Services Core Facility, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Johnson D, Colijn S, Richee J, Yano J, Burns M, Davis AE, Pham VN, Saric A, Jain A, Yin Y, Castranova D, Melani M, Fujita M, Grainger S, Bonifacino JS, Weinstein BM, Stratman AN. Regulation of angiogenesis by endocytic trafficking mediated by cytoplasmic dynein 1 light intermediate chain 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587559. [PMID: 38903077 PMCID: PMC11188074 DOI: 10.1101/2024.04.01.587559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Dynein cytoplasmic 1 light intermediate chain 1 (LIC1, DYNC1LI1) is a core subunit of the dynein motor complex. The LIC1 subunit also interacts with various cargo adaptors to regulate Rab-mediated endosomal recycling and lysosomal degradation. Defects in this gene are predicted to alter dynein motor function, Rab binding capabilities, and cytoplasmic cargo trafficking. Here, we have identified a dync1li1 zebrafish mutant, harboring a premature stop codon at the exon 12/13 splice acceptor site, that displays increased angiogenesis. In vitro, LIC1-deficient human endothelial cells display increases in cell surface levels of the pro-angiogenic receptor VEGFR2, SRC phosphorylation, and Rab11-mediated endosomal recycling. In vivo, endothelial-specific expression of constitutively active Rab11a leads to excessive angiogenesis, similar to the dync1li1 mutants. Increased angiogenesis is also evident in zebrafish harboring mutations in rilpl1/2, the adaptor proteins that promote Rab docking to Lic1 to mediate lysosomal targeting. These findings suggest that LIC1 and the Rab-adaptor proteins RILPL1 and 2 restrict angiogenesis by promoting degradation of VEGFR2-containing recycling endosomes. Disruption of LIC1- and RILPL1/2-mediated lysosomal targeting increases Rab11-mediated recycling endosome activity, promoting excessive SRC signaling and angiogenesis.
Collapse
Affiliation(s)
- Dymonn Johnson
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Sarah Colijn
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Jahmiera Richee
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Joseph Yano
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
- Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Margaret Burns
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Andrew E. Davis
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Van N. Pham
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Amra Saric
- Section on Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Akansha Jain
- Section on Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Ying Yin
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Daniel Castranova
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Mariana Melani
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
- Fundación Instituto Leloir, Buenos Aires, Argentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Buenos Aires, Argentina
| | - Misato Fujita
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
- Kanagawa University, Kanagawa, 221-8686, Japan
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503
| | - Juan S. Bonifacino
- Section on Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Brant M. Weinstein
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Amber N. Stratman
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| |
Collapse
|
11
|
Bapat J, Yamamoto TM, Woodruff ER, Qamar L, Mikeska RG, Aird KM, Watson ZL, Brubaker LW, Bitler BG. CASC4/GOLM2 drives high grade serous carcinoma anoikis resistance through the recycling of EGFR. Cancer Gene Ther 2024; 31:300-310. [PMID: 38030811 PMCID: PMC10874890 DOI: 10.1038/s41417-023-00703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Ovarian cancer is the deadliest gynecological malignancy, and accounts for over 150,000 deaths per year worldwide. The high grade serous ovarian carcinoma (HGSC) subtype accounts for almost 70% of ovarian cancers and is the deadliest. HGSC originates in the fimbria of the fallopian tube and disseminates through the peritoneal cavity. HGSC survival in peritoneal fluid requires cells to resist anoikis (anchorage-independent apoptosis). Most anoikis resistant mechanisms are dependent on microenvironment interactions with cell surface-associated proteins, such as integrins and receptor tyrosine kinases (RTKs). We previously identified the gene CASC4 as a driver of anoikis resistance. CASC4 is predicted to be a Golgi-associated protein that may regulate protein trafficking to the plasma membrane, but CASC4 is largely uncharacterized in literature; thus, we sought to determine how CASC4 confers anoikis resistance to HGSC cells. Mining of publicly available ovarian cancer datasets (TCGA) showed that CASC4 is associated with worse overall survival and increased resistance to platinum-based chemotherapies. For experiments, we cultured three human HGSC cell lines (PEO1, CaOV3, OVCAR3), and a murine HGSC cell line, (ID8) with shRNA-mediated CASC4 knockdowns (CASC4 KD) in suspension, to recapitulate the peritoneal fluid environment in vitro. CASC4 KD significantly inhibited cell proliferation and colony formation ability, and increased apoptosis. A Reverse Phase Protein Assay (RPPA) showed that CASC4 KD resulted in a broad re-programming of membrane-associated proteins. Specifically, CASC4 KD led to decreased protein levels of the RTK Epidermal Growth Factor Receptor (EGFR), an initiator of several oncogenic signaling pathways, leading us to hypothesize that CASC4 drives HGSC survival through mediating recycling and trafficking of EGFR. Indeed, loss of CASC4 led to a decrease in both EGFR membrane localization, reduced turnover of EGFR, and increased EGFR ubiquitination. Moreover, a syngeneic ID8 murine model of ovarian cancer showed that knocking down CASC4 leads to decreased tumor burden and dissemination.
Collapse
Affiliation(s)
- Jaidev Bapat
- Cancer Biology Graduate Program, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tomomi M Yamamoto
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth R Woodruff
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lubna Qamar
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Railey G Mikeska
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine M Aird
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zachary L Watson
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lindsay W Brubaker
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin G Bitler
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
12
|
Joseph I, Flores J, Farrell V, Davis J, Bianchi‐Smak J, Feng Q, Goswami S, Lin X, Wei Z, Tong K, Feng Z, Verzi MP, Bonder EM, Goldenring JR, Gao N. RAB11A and RAB11B control mitotic spindle function in intestinal epithelial progenitor cells. EMBO Rep 2023; 24:e56240. [PMID: 37424454 PMCID: PMC10481667 DOI: 10.15252/embr.202256240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
RAB11 small GTPases and associated recycling endosome have been localized to mitotic spindles and implicated in regulating mitosis. However, the physiological significance of such regulation has not been observed in mammalian tissues. We have used newly engineered mouse models to investigate intestinal epithelial renewal in the absence of single or double isoforms of RAB11 family members: Rab11a and Rab11b. Comparing with single knockouts, mice with compound ablation demonstrate a defective cell cycle entry and robust mitotic arrest followed by apoptosis, leading to a total penetrance of lethality within 3 days of gene ablation. Upon Rab11 deletion ex vivo, enteroids show abnormal mitotic spindle formation and cell death. Untargeted proteomic profiling of Rab11a and Rab11b immunoprecipitates has uncovered a shared interactome containing mitotic spindle microtubule regulators. Disrupting Rab11 alters kinesin motor KIF11 function and impairs bipolar spindle formation and cell division. These data demonstrate that RAB11A and RAB11B redundantly control mitotic spindle function and intestinal progenitor cell division, a mechanism that may be utilized to govern the homeostasis and renewal of other mammalian tissues.
Collapse
Affiliation(s)
- Ivor Joseph
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Juan Flores
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | | | - Justin Davis
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | | | - Qiang Feng
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | | | - Xiang Lin
- Department of Computer SciencesNew Jersey Institute of TechnologyNewarkNJUSA
| | - Zhi Wei
- Department of Computer SciencesNew Jersey Institute of TechnologyNewarkNJUSA
| | - Kevin Tong
- Department of GeneticsRutgers UniversityNew BrunswickNJUSA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New JerseyNew BrunswickNJUSA
| | | | - Edward M Bonder
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - James R Goldenring
- Section of Surgical Sciences and Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Nan Gao
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| |
Collapse
|
13
|
Nagano M, Aoshima K, Shimamura H, Siekhaus DE, Toshima JY, Toshima J. Distinct role of TGN-resident clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway. J Cell Sci 2023; 136:jcs261448. [PMID: 37539494 DOI: 10.1242/jcs.261448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Clathrin-mediated vesicle trafficking plays central roles in post-Golgi transport. In yeast (Saccharomyces cerevisiae), the AP-1 complex and GGA adaptors are predicted to generate distinct transport vesicles at the trans-Golgi network (TGN), and the epsin-related proteins Ent3p and Ent5p (collectively Ent3p/5p) act as accessories for these adaptors. Recently, we showed that vesicle transport from the TGN is crucial for yeast Rab5 (Vps21p)-mediated endosome formation, and that Ent3p/5p are crucial for this process, whereas AP-1 and GGA adaptors are dispensable. However, these observations were incompatible with previous studies showing that these adaptors are required for Ent3p/5p recruitment to the TGN, and thus the overall mechanism responsible for regulation of Vps21p activity remains ambiguous. Here, we investigated the functional relationships between clathrin adaptors in post-Golgi-mediated Vps21p activation. We show that AP-1 disruption in the ent3Δ5Δ mutant impaired transport of the Vps21p guanine nucleotide exchange factor Vps9p transport to the Vps21p compartment and severely reduced Vps21p activity. Additionally, GGA adaptors, the phosphatidylinositol-4-kinase Pik1p and Rab11 GTPases Ypt31p and Ypt32p were found to have partially overlapping functions for recruitment of AP-1 and Ent3p/5p to the TGN. These findings suggest a distinct role of clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway.
Collapse
Affiliation(s)
- Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kaito Aoshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiroki Shimamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | | | - Junko Y Toshima
- School of Health Science, Tokyo University of Technology, 5-23-22 Nishikamada, Ota-ku, Tokyo 144-8535, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
14
|
Balasubramaniam B, Topalidou I, Kelley M, Meadows SM, Funk O, Ailion M, Fay DS. Effectors of anterior morphogenesis in C. elegans embryos. Biol Open 2023; 12:bio059982. [PMID: 37345480 PMCID: PMC10339035 DOI: 10.1242/bio.059982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023] Open
Abstract
During embryogenesis the nascent Caenorhabditis elegans epidermis secretes an apical extracellular matrix (aECM) that serves as an external stabilizer, preventing deformation of the epidermis by mechanical forces exerted during morphogenesis. At present, the factors that contribute to aECM function are mostly unknown, including the aECM components themselves, their posttranslational regulators, and the pathways required for their secretion. Here we showed that two proteins previously linked to aECM function, SYM-3/FAM102A and SYM-4/WDR44, colocalize to intracellular and membrane-associated puncta and likely function in a complex. Proteomics experiments also suggested potential roles for SYM-3/FAM102A and SYM-4/WDR44 family proteins in intracellular trafficking. Nonetheless, we found no evidence to support a critical function for SYM-3 or SYM-4 in the apical deposition of two aECM components, NOAH-1 and FBN-1. Moreover, loss of a key splicing regulator of fbn-1, MEC-8/RBPMS2, had surprisingly little effect on the abundance or deposition of FBN-1. Using a focused screening approach, we identified 32 additional proteins that likely contribute to the structure and function of the embryonic aECM. We also characterized morphogenesis defects in embryos lacking mir-51 microRNA family members, which display a similar phenotype to mec-8; sym double mutants. Collectively, these findings add to our knowledge of factors controlling embryonic morphogenesis.
Collapse
Affiliation(s)
- Boopathi Balasubramaniam
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle 98195-7350, WA, USA
| | - Melissa Kelley
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| | - Sarina M. Meadows
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| | - Owen Funk
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle 98195-7350, WA, USA
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| |
Collapse
|
15
|
Costa DS, Kenny-Ganzert IW, Chi Q, Park K, Kelley LC, Garde A, Matus DQ, Park J, Yogev S, Goldstein B, Gibney TV, Pani AM, Sherwood DR. The Caenorhabditis elegans anchor cell transcriptome: ribosome biogenesis drives cell invasion through basement membrane. Development 2023; 150:dev201570. [PMID: 37039075 PMCID: PMC10259517 DOI: 10.1242/dev.201570] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Cell invasion through basement membrane (BM) barriers is important in development, immune function and cancer progression. As invasion through BM is often stochastic, capturing gene expression profiles of actively invading cells in vivo remains elusive. Using the stereotyped timing of Caenorhabditis elegans anchor cell (AC) invasion, we generated an AC transcriptome during BM breaching. Through a focused RNAi screen of transcriptionally enriched genes, we identified new invasion regulators, including translationally controlled tumor protein (TCTP). We also discovered gene enrichment of ribosomal proteins. AC-specific RNAi, endogenous ribosome labeling and ribosome biogenesis analysis revealed that a burst of ribosome production occurs shortly after AC specification, which drives the translation of proteins mediating BM removal. Ribosomes also enrich near the AC endoplasmic reticulum (ER) Sec61 translocon and the endomembrane system expands before invasion. We show that AC invasion is sensitive to ER stress, indicating a heightened requirement for translation of ER-trafficked proteins. These studies reveal key roles for ribosome biogenesis and endomembrane expansion in cell invasion through BM and establish the AC transcriptome as a resource to identify mechanisms underlying BM transmigration.
Collapse
Affiliation(s)
- Daniel S. Costa
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27708, USA
| | | | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Kieop Park
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Laura C. Kelley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Aastha Garde
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - David Q. Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Junhyun Park
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Theresa V. Gibney
- Department of Biology, University of Virginia, Charlottesville, VA 29903, USA
| | - Ariel M. Pani
- Department of Biology, University of Virginia, Charlottesville, VA 29903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 29904, USA
| | - David R. Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| |
Collapse
|
16
|
Boopathi B, Topalidou I, Kelley M, Meadows SM, Funk O, Ailion M, Fay DS. Pathways that affect anterior morphogenesis in C. elegans embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537986. [PMID: 37163004 PMCID: PMC10168279 DOI: 10.1101/2023.04.23.537986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During embryogenesis the nascent Caenorhabditis elegans epidermis secretes an apical extracellular matrix (aECM) that serves as an external stabilizer, preventing deformation of the epidermis by mechanical forces exerted during morphogenesis. We showed that two conserved proteins linked to this process, SYM-3/FAM102A and SYM-4/WDR44, colocalize to intracellular and membrane-associated puncta and likely function together in a complex. Proteomics data also suggested potential roles for FAM102A and WDR44 family proteins in intracellular trafficking, consistent with their localization patterns. Nonetheless, we found no evidence to support a clear function for SYM-3 or SYM-4 in the apical deposition of two aECM components, FBN-1 and NOAH. Surprisingly, loss of MEC-8/RBPMS2, a conserved splicing factor and regulator of fbn-1 , had little effect on the abundance or deposition of FBN-1 to the aECM. Using a focused screening approach, we identified 32 additional proteins that likely contribute to the structure and function of the embryonic aECM. Lastly, we examined morphogenesis defects in embryos lacking mir-51 microRNA family members, which display a related embryonic phenotype to mec-8; sym double mutants. Collectively, our findings add to our knowledge of pathways controlling embryonic morphogenesis. SUMMARY STATEMENT We identify new proteins in apical ECM biology in C. elegans and provide evidence that SYM-3/FAM102A and SYM-4/WDR44 function together in trafficking but do not regulate apical ECM protein deposition.
Collapse
Affiliation(s)
- Balasubramaniam Boopathi
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, United States of America
| | - Melissa Kelley
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sarina M Meadows
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Owen Funk
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, United States of America
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
17
|
Jiang J, Chen Z, Wang H, Wang Y, Zheng J, Guo Y, Jiang Y, Mo Z. Screening and Identification of a Prognostic Model of Ovarian Cancer by Combination of Transcriptomic and Proteomic Data. Biomolecules 2023; 13:685. [PMID: 37189432 PMCID: PMC10136255 DOI: 10.3390/biom13040685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The integration of transcriptome and proteome analysis can lead to the discovery of a myriad of biological insights into ovarian cancer. Proteome, clinical, and transcriptome data about ovarian cancer were downloaded from TCGA's database. A LASSO-Cox regression was used to uncover prognostic-related proteins and develop a new protein prognostic signature for patients with ovarian cancer to predict their prognosis. Patients were brought together in subgroups using a consensus clustering analysis of prognostic-related proteins. To further investigate the role of proteins and protein-coding genes in ovarian cancer, additional analyses were performed using multiple online databases (HPA, Sangerbox, TIMER, cBioPortal, TISCH, and CancerSEA). The final resulting prognosis factors consisted of seven protective factors (P38MAPK, RAB11, FOXO3A, AR, BETACATENIN, Sox2, and IGFRb) and two risk factors (AKT_pS473 and ERCC5), which can be used to construct a prognosis-related protein model. A significant difference in overall survival (OS), disease-free interval (DFI), disease-specific survival (DSS), and progression-free interval (PFI) curves were found in the training, testing, and whole sets when analyzing the protein-based risk score (p < 0.05). We also illustrated a wide range of functions, immune checkpoints, and tumor-infiltrating immune cells in prognosis-related protein signatures. Additionally, the protein-coding genes were significantly correlated with each other. EMTAB8107 and GSE154600 single-cell data revealed that the genes were highly expressed. Furthermore, the genes were related to tumor functional states (angiogenesis, invasion, and quiescence). We reported and validated a survivability prediction model for ovarian cancer based on prognostic-related protein signatures. A strong correlation was found between the signatures, tumor-infiltrating immune cells, and immune checkpoints. The protein-coding genes were highly expressed in single-cell RNA and bulk RNA sequencing, correlating with both each other and tumor functional states.
Collapse
Affiliation(s)
- Jinghang Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Graduate School, Guangxi Medical University, Nanning 530021, China
| | - Zhongyuan Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Graduate School, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Honghong Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Graduate School, Guangxi Medical University, Nanning 530021, China
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yifu Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| | - Jie Zheng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Graduate School, Guangxi Medical University, Nanning 530021, China
| | - Yi Guo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Graduate School, Guangxi Medical University, Nanning 530021, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
18
|
Wang S, Liu Y, Li S, Chen Y, Liu Y, Yan J, Wu J, Li J, Wang L, Xiang R, Shi Y, Qin X, Yang S. COMMD3-Mediated Endosomal Trafficking of HER2 Inhibits the Progression of Ovarian Carcinoma. Mol Cancer Res 2023; 21:199-213. [PMID: 36445330 DOI: 10.1158/1541-7786.mcr-22-0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The dysregulated endocytic traffic of oncogenic receptors, such as the EGFR family especially HER2, contributes to the uncontrolled activation of the downstream oncogenic signaling and progression of various carcinomas, including 90% of ovarian carcinoma. However, the key regulators in the intracellular trafficking of HER2 and their impacts for cancer progression remain largely unknown. In this study, through a genome-wide CRISPR/Cas9 screening for key genes affecting the peritoneal disseminated metastasis of ovarian carcinoma, we identified a member of COMMD family, that is, COMMD3, as a key regulator in the endosomal trafficking of HER2. In the patients with high-grade serous ovarian carcinoma (HGSOC), the expression of COMMD3 is dramatically decreased in the peritoneal disseminated ovarian carcinoma cells comparing with that in the primary ovarian carcinoma cells. COMMD3 greatly inhibits the proliferation, migration, and epithelial-mesenchymal transition (EMT) of HGSOC cells, and dramatically suppresses the tumor growth, the formation of malignant ascites, and the peritoneal dissemination of cancer cells in the orthotopic murine model of HGSOC. Further transcriptome analysis reveals that silencing COMMD3 boosts the activation of HER2 downstream signaling. As a component in the Retriever-associated COMMD/CCDC22/CCDC93 complex responsible for the recognition and recycling of membrane receptors, COMMD3 physically interacts with HER2 for directing it to the slow recycling pathway, leading to the attenuated downstream tumor-promoting signaling. IMPLICATIONS Collectively, this study reveals a novel HER2 inactivation mechanism with a high value for the clinic diagnosis of new ovarian carcinoma types and the design of new therapeutic strategy.
Collapse
Affiliation(s)
- Shiqing Wang
- The School of Medicine, Nankai University, Tianjin, China
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuxin Liu
- The School of Medicine, Nankai University, Tianjin, China
| | - Siyu Li
- The School of Medicine, Nankai University, Tianjin, China
| | - Yanan Chen
- The School of Medicine, Nankai University, Tianjin, China
| | - Yanhua Liu
- The School of Medicine, Nankai University, Tianjin, China
| | - Jie Yan
- The School of Medicine, Nankai University, Tianjin, China
| | - Jiayi Wu
- The School of Medicine, Nankai University, Tianjin, China
| | - Jia Li
- The School of Medicine, Nankai University, Tianjin, China
| | - Longlong Wang
- The School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- The School of Medicine, Nankai University, Tianjin, China
| | - Yi Shi
- The School of Medicine, Nankai University, Tianjin, China
| | - Xuan Qin
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shuang Yang
- The School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
19
|
RAB11A Promotes Cell Malignant Progression and Tumor Formation of Prostate Cancer via Activating FAK/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5885387. [PMID: 36760469 PMCID: PMC9904921 DOI: 10.1155/2023/5885387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023]
Abstract
Background RAB11A, a member of the GTPase family, acts as a regulator in diverse cancers development. The dysregulation of the FAK/AKT signaling pathway is mainly related to tumorigenesis. This study aimed to investigate the possible effect of RAB11A in prostate cancer and further explore the potential mechanisms. Results In this study, we illustrated the tumor-promoting effects of RAB11A based on in vivo and in vitro experiments. RAB11A expression was upregulated in prostate cancer cells. RAB11A knockdown decreased the prostate cancer cell proliferation, migration, and invasion. RAB11A also induced the epithelial-mesenchymal transition. PF562271 suppressed the malignant characteristics of prostate cancer cells caused by RAB11A knockdown. Furthermore, the interference of RAB11A reduced the tumor growth and the protein levels of p-FAK/FAK and p-AKT/AKT in vivo. Conclusion RAB11A promotes cell malignant progression and tumor formation in prostate cancer via activating FAK/AKT signaling pathway.
Collapse
|
20
|
Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23137206. [PMID: 35806209 PMCID: PMC9267071 DOI: 10.3390/ijms23137206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. This implies the need for cancer cells to accommodate an increased delivery of LDL along the endocytic pathway to late endosomes/lysosomes (LE/Lys), providing a rapid and effective distribution of LDL-derived cholesterol from LE/Lys to other organelles for cholesterol to foster cancer growth and spread. LDL-cholesterol exported from LE/Lys is facilitated by Niemann–Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families. In addition, lysosomal membrane proteins, small Rab GTPases as well as scaffolding proteins, including annexin A6 (AnxA6), contribute to regulating cholesterol egress from LE/Lys. Here, we summarize current knowledge that links upregulated activity and expression of cholesterol transporters and related proteins in LE/Lys with cancer growth, progression and treatment outcomes. Several mechanisms on how cellular distribution of LDL-derived cholesterol from LE/Lys influences cancer cell behavior are reviewed, some of those providing opportunities for treatment strategies to reduce cancer progression and anticancer drug resistance.
Collapse
|
21
|
Hu J, Zhu Z, Chen Z, Yang Q, Liang W, Ding G. Alteration in Rab11-mediated endocytic trafficking of LDL receptor contributes to angiotensin II-induced cholesterol accumulation and injury in podocytes. Cell Prolif 2022; 55:e13229. [PMID: 35567428 PMCID: PMC9201372 DOI: 10.1111/cpr.13229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Objectives Exposure of podocytes to angiotensin II (Ang II) enhances the abundance of the cell surface glycoprotein, low‐density lipoprotein receptor (LDLR) and promotes significant changes in the cellular cholesterol content. Recent investigation provides evidence that the small GTPase Rab11 is involved in the regulation of LDLR, but the exact mechanisms remain unknown. In this study, the role of Rab11 in post‐transcriptional regulation of LDLR was evaluated to investigate potential mechanisms of podocyte cholesterol dysregulation in chronic kidney disease. Materials and Methods Cholesterol content, LDLR and Rab11 expression were assessed in podocytes from Ang II‐infused mice. In vitro, the intracellular localization of LDLR was detected under different conditions. Rab11 expression was modulated and we then explored the effect of anti‐lipid cytotoxicity by detecting LDLR expression and trafficking, cholesterol content and apoptosis in podocytes. Results Cholesterol accumulation, upregulated expression of LDLR and Rab11 were discovered in podocytes from Ang II‐infused mice. Ang II enhanced the co‐precipitation of LDLR with Rab11 and accelerated the endocytic recycling of LDLR to the plasma membrane. Additionally, silencing Rab11 promoted lysosomal degradation of LDLR and alleviated Ang II‐induced cholesterol accumulation and apoptosis in podocytes. Conversely, overexpression of Rab11 or inhibition of lysosomal degradation up‐regulated the abundance of LDLR and aggravated podocyte cholesterol deposition. Conclusions Rab11 triggers the endocytic trafficking and recycling of LDLR; overactivation of this pathway contributes to Ang II‐induced podocyte cholesterol accumulation and injury.
Collapse
Affiliation(s)
- Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Qian Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
22
|
Bajaj R, Warner AN, Fradette JF, Gibbons DL. Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells 2022; 11:1484. [PMID: 35563790 PMCID: PMC9102947 DOI: 10.3390/cells11091484] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
The Golgi apparatus is at the center of protein processing and trafficking in normal cells. Under pathological conditions, such as in cancer, aberrant Golgi dynamics alter the tumor microenvironment and the immune landscape, which enhances the invasive and metastatic potential of cancer cells. Among these changes in the Golgi in cancer include altered Golgi orientation and morphology that contribute to atypical Golgi function in protein trafficking, post-translational modification, and exocytosis. Golgi-associated gene mutations are ubiquitous across most cancers and are responsible for modifying Golgi function to become pro-metastatic. The pharmacological targeting of the Golgi or its associated genes has been difficult in the clinic; thus, studying the Golgi and its role in cancer is critical to developing novel therapeutic agents that limit cancer progression and metastasis. In this review, we aim to discuss how disrupted Golgi function in cancer cells promotes invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Amanda N. Warner
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jared F. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
23
|
Vaidžiulytė K, Macé AS, Battistella A, Beng W, Schauer K, Coppey M. Persistent cell migration emerges from a coupling between protrusion dynamics and polarized trafficking. eLife 2022; 11:69229. [PMID: 35302488 PMCID: PMC8963884 DOI: 10.7554/elife.69229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
Migrating cells present a variety of paths, from random to highly directional ones. While random movement can be explained by basal intrinsic activity, persistent movement requires stable polarization. Here, we quantitatively address emergence of persistent migration in (hTERT)–immortalizedRPE1 (retinal pigment epithelial) cells over long timescales. By live cell imaging and dynamic micropatterning, we demonstrate that the Nucleus-Golgi axis aligns with direction of migration leading to efficient cell movement. We show that polarized trafficking is directed toward protrusions with a 20-min delay, and that migration becomes random after disrupting internal cell organization. Eventually, we prove that localized optogenetic Cdc42 activation orients the Nucleus-Golgi axis. Our work suggests that polarized trafficking stabilizes the protrusive activity of the cell, while protrusive activity orients this polarity axis, leading to persistent cell migration. Using a minimal physical model, we show that this feedback is sufficient to recapitulate the quantitative properties of cell migration in the timescale of hours.
Collapse
Affiliation(s)
| | | | | | | | - Kristine Schauer
- Tumor Cell Dynamics Unit, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
24
|
Spier A, Connor MG, Steiner T, Carvalho F, Cossart P, Eisenreich W, Wai T, Stavru F. Mitochondrial respiration restricts Listeria monocytogenes infection by slowing down host cell receptor recycling. Cell Rep 2021; 37:109989. [PMID: 34758302 PMCID: PMC8595641 DOI: 10.1016/j.celrep.2021.109989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
Mutations in mitochondrial genes impairing energy production cause mitochondrial diseases (MDs), and clinical studies have shown that MD patients are prone to bacterial infections. However, the relationship between mitochondrial (dys)function and infection remains largely unexplored, especially in epithelial cells, the first barrier to many pathogens. Here, we generate an epithelial cell model for one of the most common mitochondrial diseases, Leigh syndrome, by deleting surfeit locus protein 1 (SURF1), an assembly factor for respiratory chain complex IV. We use this genetic model and a complementary, nutrient-based approach to modulate mitochondrial respiration rates and show that impaired mitochondrial respiration favors entry of the human pathogen Listeria monocytogenes, a well-established bacterial infection model. Reversely, enhanced mitochondrial energy metabolism decreases infection efficiency. We further demonstrate that endocytic recycling is reduced in mitochondrial respiration-dependent cells, dampening L. monocytogenes infection by slowing the recycling of its host cell receptor c-Met, highlighting a previously undescribed role of mitochondrial respiration during infection. Enhanced mitochondrial respiration decreases L. monocytogenes infection Bacterial entry is affected by the host cell metabolism Mitochondrial respiration restricts host cell receptor recycling and thus infection
Collapse
Affiliation(s)
- Anna Spier
- Evolutionary Biology of the Microbial Cell Unit, Institut Pasteur, Paris, France; Bacteria-Cell Interactions Unit, Institut Pasteur, Paris, France; Université de Paris, Paris, France; UMR2001, CNRS, Paris, France
| | - Michael G Connor
- Université de Paris, Paris, France; Chromatin and Infection Unit, Institut Pasteur, Paris, France
| | - Thomas Steiner
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Filipe Carvalho
- Bacteria-Cell Interactions Unit, Institut Pasteur, Paris, France
| | - Pascale Cossart
- Bacteria-Cell Interactions Unit, Institut Pasteur, Paris, France; Université de Paris, Paris, France.
| | - Wolfgang Eisenreich
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Timothy Wai
- Université de Paris, Paris, France; Mitochondrial Biology Unit, Institut Pasteur, Paris, France.
| | - Fabrizia Stavru
- Evolutionary Biology of the Microbial Cell Unit, Institut Pasteur, Paris, France; Bacteria-Cell Interactions Unit, Institut Pasteur, Paris, France; Université de Paris, Paris, France; UMR2001, CNRS, Paris, France
| |
Collapse
|
25
|
Placidi G, Campa CC. Deliver on Time or Pay the Fine: Scheduling in Membrane Trafficking. Int J Mol Sci 2021; 22:11773. [PMID: 34769203 PMCID: PMC8583995 DOI: 10.3390/ijms222111773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Membrane trafficking is all about time. Automation in such a biological process is crucial to ensure management and delivery of cellular cargoes with spatiotemporal precision. Shared molecular regulators and differential engagement of trafficking components improve robustness of molecular sorting. Sequential recruitment of low affinity protein complexes ensures directionality of the process and, concomitantly, serves as a kinetic proofreading mechanism to discriminate cargoes from the whole endocytosed material. This strategy helps cells to minimize losses and operating errors in membrane trafficking, thereby matching the appealed deadline. Here, we summarize the molecular pathways of molecular sorting, focusing on their timing and efficacy. We also highlight experimental procedures and genetic approaches to robustly probe these pathways, in order to guide mechanistic studies at the interface between biochemistry and quantitative biology.
Collapse
Affiliation(s)
- Giampaolo Placidi
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy
| |
Collapse
|
26
|
Liu G, Kang G, Wang S, Huang Y, Cai Q. Extracellular Vesicles: Emerging Players in Plant Defense Against Pathogens. FRONTIERS IN PLANT SCIENCE 2021; 12:757925. [PMID: 34659325 PMCID: PMC8515046 DOI: 10.3389/fpls.2021.757925] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Communication between plants and interacting microorganisms requires functional molecule trafficking, which is essential for host defense and pathogen virulence. Extracellular vesicles (EVs) are single membrane-bound spheres that carry complex cargos, including lipids, proteins, and nucleic acids. They mediate cell-to-cell communication via the transfer of molecules between cells. Plant EVs have been isolated from many plant species and play a prominent role in immune system modulation and plant defense response. Recent studies have shown that plant EVs are emerging players in cross-kingdom regulation and contribute to plant immunity by mediating the trafficking of regulatory small RNA into pathogens, leading to the silencing of pathogen virulence-related genes. This review summarizes the current understanding of plant EV isolation technologies, the role of plant EVs in plant immunity, and the mechanism of plant EV biogenesis, as well as approaches for how these findings can be developed into innovative strategies for crop protection.
Collapse
Affiliation(s)
- Guosheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guangren Kang
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shumei Wang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Yifan Huang
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|