1
|
Govta N, Govta L, Sela H, Peleg G, Distelfeld A, Fahima T, Beckles DM, Krugman T. Plasticity of Root System Architecture and Whole Transcriptome Responses Underlying Nitrogen Deficiency Tolerance Conferred by a Wild Emmer Wheat QTL. PLANT, CELL & ENVIRONMENT 2025; 48:2835-2855. [PMID: 39887777 PMCID: PMC11893928 DOI: 10.1111/pce.15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Our aim was to elucidate mechanisms underlying nitrogen (N)-deficiency tolerance in bread wheat (cultivar Ruta), conferred by a wild emmer wheat QTL (WEW; IL99). We hypothesised that the tolerance in IL99 is driven by enhanced N-uptake through modification of root system architecture (RSA) underscored by transcriptome modifications. Severe N-deficiency (0.1 N for 26 days) triggered significantly higher plasticity in IL99 compared to Ruta by modifying 16 RSA traits; nine of which were IL99-specific. The change in root growth in IL99 was collectively characterised by a transition in root orientation from shallow to steep, increased root number and length, and denser networks, enabling nutrient acquisition from a larger volume and deeper soil layers. Gene ontology and KEGG-enrichment analyses highlighted IL99-specific pathways and candidate genes elevated under N-deficiency. This included Jasmonic acid metabolism, a key hormone mediating RSA plasticity (AOS1, TIFY, MTB2, MYC2), and lignification-mediated root strengthening (CYP73A, 4CL). 'N-metabolism' was identified as a main shared pathway to IL99 and Ruta, with enhanced nitrate uptake predominant in IL99 (NRT2.4), while remobilisation was the main strategy in Ruta (NRT2.3). These findings provide novel insights into wheat plasticity response underlying tolerance to N-deficiency and demonstrate the potential of WEW for improving N-uptake under suboptimal conditions.
Collapse
Affiliation(s)
- Nikolai Govta
- Department of Evolutionary and Environmental Biology, and Institute of EvolutionUniversity of HaifaHaifaIsrael
| | - Liubov Govta
- Department of Evolutionary and Environmental Biology, and Institute of EvolutionUniversity of HaifaHaifaIsrael
| | - Hanan Sela
- Department of Evolutionary and Environmental Biology, and Institute of EvolutionUniversity of HaifaHaifaIsrael
| | | | - Assaf Distelfeld
- Department of Evolutionary and Environmental Biology, and Institute of EvolutionUniversity of HaifaHaifaIsrael
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, and Institute of EvolutionUniversity of HaifaHaifaIsrael
| | - Diane M. Beckles
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Tamar Krugman
- Department of Evolutionary and Environmental Biology, and Institute of EvolutionUniversity of HaifaHaifaIsrael
| |
Collapse
|
2
|
Liu C, Gu W, Liu C, Shi X, Li B, Zhou Y. Comparative phenotypic and transcriptomic analysis reveals genotypic differences in nitrogen use efficiency in sorghum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109028. [PMID: 39146913 DOI: 10.1016/j.plaphy.2024.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Sorghum (Sorghumbicolor L.), a model for C4 grass and an emerging biofuel crop, is known for its robust tolerance to low input field. However, the focus on enhancing nitrogen use efficiency (NUE) in sorghum under low nitrogen (N) conditions has been limited. This study conducted hydroponic experiments and field trials with two sorghum inbred lines, contrasting in their N efficiency: the N-efficient (398B) and the N-inefficient (CS3541) inbred lines. The aim was to analyze the key factors influencing NUE by integrating phenotypic, physiological, and multi-omics approaches under N deficiency conditions. The field experiments revealed that 398B displayed superior NUE and yield performance compared to CS3541. In hydroponic experiments, the growth of 398B outperformed CS3541 following N deficiency, attributing to its higher photosynthetic and sustaining activity of N metabolism-related enzymes. Genomic and transcriptomic integration highlighted fewer genomic diversities and alterations in global gene expression in 398B, which were likely contributor to its high NUE. Additionally, co-expression network analysis suggested the involvement of key genes which impact N uptake efficiency (NUpE) and N utilization efficiency (NUtE) in both lines, such as an N transporter, Sobic.003G371000.v3.2leaf(NPF5.10) and a transcription factor, Sobic.002G202800.v3.2leaf(WRKY) in bolstering NUE under low-N stress. The findings collectively suggested that 398B achieved higher NUpE and NUtE, effectively coordinating photosynthesis and N metabolism to enhance NUE. The candidate genes regulating N uptake and utilization efficiencies could provide valuable insights for developing sorghum breeds with improved NUE, contributing to sustainable agricultural practices and bioenergy crop development.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Wendong Gu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Chang Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Xiaolong Shi
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Bang Li
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Yufei Zhou
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China.
| |
Collapse
|
3
|
Wang Y, Li P, Zhu Y, Shang Y, Wu Z, Tao Y, Wang H, Li D, Zhang C. Transcriptome Profiling Reveals the Gene Network Responding to Low Nitrogen Stress in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:371. [PMID: 38337903 PMCID: PMC10856819 DOI: 10.3390/plants13030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%; 3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF) and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide insight into the functional mechanisms in response to LN stress and five candidate regulatory genes in wheat. These results will provide a basis for further research on promoting NUE in wheat.
Collapse
Affiliation(s)
- Yiwei Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yuping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yongfu Tao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Dongxi Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| |
Collapse
|
4
|
Chen E, Qin L, Li F, Yang Y, Liu Z, Wang R, Yu X, Niu J, Zhang H, Wang H, Liu B, Guan Y. Physiological and Transcriptomic Analysis Provides Insights into Low Nitrogen Stress in Foxtail Millet ( Setaria italica L.). Int J Mol Sci 2023; 24:16321. [PMID: 38003509 PMCID: PMC10671652 DOI: 10.3390/ijms242216321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv) is an important food and forage crop that is well adapted to nutrient-poor soils. However, our understanding of how different LN-tolerant foxtail millet varieties adapt to long-term low nitrogen (LN) stress at the physiological and molecular levels remains limited. In this study, two foxtail millet varieties with contrasting LN tolerance properties were investigated through analyses of physiological parameters and transcriptomics. The physiological results indicate that JG20 (high tolerance to LN) exhibited superior biomass accumulation both in its shoots and roots, and higher nitrogen content, soluble sugar concentration, soluble protein concentration, zeatin concentration in shoot, and lower soluble sugar and soluble protein concentration in its roots compared to JG22 (sensitive to LN) under LN, this indicated that the LN-tolerant foxtail millet variety can allocate more functional substance to its shoots to sustain aboveground growth and maintain high root activity by utilizing low soluble sugar and protein under LN conditions. In the transcriptomics analysis, JG20 exhibited a greater number of differentially expressed genes (DEGs) compared to JG22 in both its shoots and roots in response to LN stress. These LN-responsive genes were enriched in glycolysis metabolism, photosynthesis, hormone metabolism, and nitrogen metabolism. Furthermore, in the shoots, the glutamine synthetase gene SiGS5, chlorophyll apoprotein of photosystem II gene SiPsbQ, ATP synthase subunit gene Sib, zeatin synthesis genes SiAHP1, and aldose 1-epimerase gene SiAEP, and, in the roots, the high-affinity nitrate transporter genes SiNRT2.3, SiNRT2.4, glutamate synthase gene SiGOGAT2, fructose-bisphosphate aldolase gene SiFBA5, were important genes involved in the LN tolerance of the foxtail millet variety. Hence, our study implies that the identified genes and metabolic pathways contribute valuable insights into the mechanisms underlying LN tolerance in foxtail millet.
Collapse
Affiliation(s)
- Erying Chen
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Ling Qin
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Feifei Li
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Yanbing Yang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Zhenyu Liu
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Runfeng Wang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Xiao Yu
- College of Life Science, Shandong Normal University, Jinan 250014, China; (X.Y.); (J.N.)
| | - Jiahong Niu
- College of Life Science, Shandong Normal University, Jinan 250014, China; (X.Y.); (J.N.)
| | - Huawen Zhang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Hailian Wang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Bin Liu
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Yanan Guan
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
- College of Life Science, Shandong Normal University, Jinan 250014, China; (X.Y.); (J.N.)
| |
Collapse
|
5
|
Zhang S, Li G, Wang Y, Anwar A, He B, Zhang J, Chen C, Hao Y, Chen R, Song S. Genome-wide identification of BcGRF genes in flowering Chinese cabbage and preliminary functional analysis of BcGRF8 in nitrogen metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1144748. [PMID: 36968362 PMCID: PMC10034182 DOI: 10.3389/fpls.2023.1144748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Growth-regulating factors (GRFs) are a unique family of transcription factors with well-characterized functions in plant growth and development. However, few studies have evaluated their roles in the absorption and assimilation of nitrate. In this study, we characterized the GRF family genes of flowering Chinese cabbage (Brassica campestris), an important vegetable crop in South China. Using bioinformatics methods, we identified BcGRF genes and analyzed their evolutionary relationships, conserved motifs, and sequence characteristics. Through genome-wide analysis, we identified 17 BcGRF genes distributed on seven chromosomes. A phylogenetic analysis revealed that the BcGRF genes could be categorized into five subfamilies. RT-qPCR analysis showed that BcGRF1, 8, 10, and 17 expression clearly increased in response to nitrogen (N) deficiency, particularly at 8 h after treatment. BcGRF8 expression was the most sensitive to N deficiency and was significantly correlated with the expression patterns of most key genes related to N metabolism. Using yeast one-hybrid and dual-luciferase assays, we discovered that BcGRF8 strongly enhances the driving activity of the BcNRT1.1 gene promoter. Next, we investigated the molecular mechanism by which BcGRF8 participates in nitrate assimilation and N signaling pathways by expressing it in Arabidopsis. BcGRF8 was localized in the cell nucleus and BcGRF8 overexpression significantly increased the shoot and root fresh weights, seedling root length, and lateral root number in Arabidopsis. In addition, BcGRF8 overexpression considerably reduced the nitrate contents under both nitrate-poor and -rich conditions in Arabidopsis. Finally, we found that BcGRF8 broadly regulates genes related to N uptake, utilization, and signaling. Our results demonstrate that BcGRF8 substantially accelerates plant growth and nitrate assimilation under both nitrate-poor and -rich conditions by increasing the number of lateral roots and the expression of genes involved in N uptake and assimilation, providing a basis for crop improvement.
Collapse
Affiliation(s)
- Shuaiwei Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guangguang Li
- Guangzhou Institute of Agriculture Science, Guangzhou, China
| | - Yudan Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ali Anwar
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bin He
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiewen Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Changming Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Zhang X, Ding Y, Ma Q, Li F, Tao R, Li T, Zhu M, Ding J, Li C, Guo W, Zhu X. Comparative transcriptomic and metabolomic analysis revealed molecular mechanism of two wheat near-isogenic lines response to nitrogen application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:47-57. [PMID: 36599275 DOI: 10.1016/j.plaphy.2022.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) is an essential nutrient element required for plant growth, and the development of wheat varieties with high nitrogen use efficiency (NUE) is an urgent need for sustainable crop production. However, the molecular mechanism of NUE between diverse wheat varieties in response to N application remains unclear. To reveal the possible molecular mechanisms underlying this complex phenomenon, we investigated the transcriptional and metabolic changes of flag leaves of two wheat near-isogenic lines (NILs) differing in NUE under two N fertilizer treatments. Comparative transcriptome analysis indicated that the expression levels of the genes responsible for carbon and nitrogen metabolism were significantly higher in high-NUE wheat. The metabolome comparison revealed that the activity of the tricarboxylic acid (TCA) cycle was enhanced in high-NUE wheat, while reduced in low-NUE wheat after the N fertilizer application. Additionally, amino acid metabolism increased in both wheat NILs but more increased in high-NUE wheat. In summary, more upregulated transcripts and metabolites were identified in high-NUE wheat, and this study provides valuable new insights for improving NUE in wheat.
Collapse
Affiliation(s)
- Xinbo Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Xuzhou Vocational College of Bioengineering, Xuzhou, 221006, China.
| | - Yonggang Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Quan Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Fujian Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Rongrong Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Tao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
| | - Min Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Jinfeng Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Chunyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Wenshan Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Effah Z, Li L, Xie J, Karikari B, Wang J, Zeng M, Wang L, Boamah S, Padma Shanthi J. Post-anthesis Relationships Between Nitrogen Isotope Discrimination and Yield of Spring Wheat Under Different Nitrogen Levels. FRONTIERS IN PLANT SCIENCE 2022; 13:859655. [PMID: 35371181 PMCID: PMC8971053 DOI: 10.3389/fpls.2022.859655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Wheat grain yield and nitrogen (N) content are influenced by the amount of N remobilized to the grain, together with pre-anthesis and post-anthesis N uptake. Isotopic techniques in farmed areas may provide insight into the mechanism underlying the N cycle. 15N-labeled urea was applied to microplots within five different fertilized treatments 0 kg ha-1 (N1), 52.5 kg ha-1 (N2), 105 kg ha-1 (N3), 157.5 kg ha-1 (N4), and 210 kg ha-1 (N5) of a long-term field trial (2003-2021) in a rainfed wheat field in the semi-arid loess Plateau, China, to determine post-anthesis N uptake and remobilization into the grain, as well as the variability of 15N enrichment in aboveground parts. Total N uptake was between 7.88 and 29.27 kg ha-1 for straw and 41.85 and 95.27 kg ha-1 for grain. In comparison to N1, N fertilization increased straw and grain N uptake by 73.1 and 56.1%, respectively. Nitrogen use efficiency (NUE) and harvest index were altered by N application rates. The average NUE at maturity was 19.9% in 2020 and 20.01% in 2021; however, it was usually higher under the control and low N conditions. The amount of 15N excess increased as the N rate increased: N5 had the highest 15N excess at the maturity stage in the upper (2.28 ± 0.36%), the middle (1.77 ± 0.28%), and the lower portion (1.68 ± 1.01%). Compared to N1, N fertilization (N2-N5) increased 15N excess in the various shoot portions by 50, 38, and 35% at maturity for upper, middle, and lower portions, respectively. At maturity, the 15N excess remobilized to the grain under N1-N5 was between 5 and 8%. Our findings revealed that N had a significant impact on yield and N isotope discrimination in spring wheat that these two parameters can interact, and that future research on the relationship between yield and N isotope discrimination in spring wheat should take these factors into account.
Collapse
Affiliation(s)
- Zechariah Effah
- State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Council for Scientific and Industrial Research (CSIR)-Plant Genetic Resources Research Institute, Bunso, Ghana
| | - Lingling Li
- State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Junhong Xie
- State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Benjamin Karikari
- Department of Crop Science, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Jinbin Wang
- State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Min Zeng
- State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Linlin Wang
- State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Solomon Boamah
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | | |
Collapse
|
8
|
Zhang X, Ma Q, Li F, Ding Y, Yi Y, Zhu M, Ding J, Li C, Guo W, Zhu X. Transcriptome Analysis Reveals Different Responsive Patterns to Nitrogen Deficiency in Two Wheat Near-Isogenic Lines Contrasting for Nitrogen Use Efficiency. BIOLOGY 2021; 10:biology10111126. [PMID: 34827119 PMCID: PMC8614915 DOI: 10.3390/biology10111126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Nitrogen (N) limitation is the key factor for wheat production worldwide. Therefore, the development of genotypes with improved nitrogen use efficiency (NUE) is a prerequisite for sustainable and productive agriculture. Exploring the molecular mechanisms of low N stress tolerance is significant for breeding wheat cultivars with high NUE. To clarify the underlying molecular mechanisms of enhanced resilience to low N in high-NUE wheat, we performed an RNA sequencing (RNA-seq) analysis. In the current research, two wheat near-isogenic lines (NILs) differing dramatically in NUE were used to measure gene expression differences under different N treatments. There was a dramatic difference between two wheat NILs in response to N deficiency at the transcriptional level, and the classification of identified candidate genes may provide new valuable insights into the resilience mechanism of wheat. Abstract The development of crop cultivars with high nitrogen use efficiency (NUE) under low-N fertilizer inputs is imperative for sustainable agriculture. However, there has been little research on the molecular mechanisms underlying enhanced resilience to low N in high-NUE plants. The comparison of the transcriptional responses of genotypes contrasting for NUE will facilitate an understanding of the key molecular mechanism of wheat resilience to low-N stress. In the current study, the RNA sequencing (RNA-seq) technique was employed to investigate the genotypic difference in response to N deficiency between two wheat NILs (1Y, high-NUE, and 1W, low-NUE). In our research, high- and low-NUE wheat NILs showed different patterns of gene expression under N-deficient conditions, and these N-responsive genes were classified into two major classes, including “frontloaded genes” and “relatively upregulated genes”. In total, 103 and 45 genes were identified as frontloaded genes in high-NUE and low-NUE wheat, respectively. In summary, our study might provide potential directions for further understanding the molecular mechanism of high-NUE genotypes adapting to low-N stress.
Collapse
Affiliation(s)
- Xinbo Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
| | - Quan Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
| | - Fujian Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
| | - Yonggang Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
| | - Yuan Yi
- Jiangsu Xuhuai Regional Institute of Agricultural Science, Xuzhou 221131, China;
| | - Min Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jinfeng Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chunyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenshan Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|