1
|
Barua S, Iduu NV, Murillo DFB, Tarannum A, Dimino H, Barua S, Shu Y, Johnson C, Miller MR, Chenoweth K, Christopherson P, Huber L, Wood T, Turner K, Wang C. Nationwide seroprevalence of SARS-CoV-2 Delta variant and five Omicron sublineages in companion cats and dogs in the USA: insights into their role in COVID-19 epidemiology. Emerg Microbes Infect 2025; 14:2437246. [PMID: 39635731 PMCID: PMC11636146 DOI: 10.1080/22221751.2024.2437246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Understanding SARS-CoV-2 epidemiology in companion animals is critical for evaluating their role in viral transmission and their potential as sentinels for human infections. This large-scale serosurvey analyzed serum samples from 706 cats and 2,396 dogs collected across the USA in 2023 using a surrogate virus neutralization test (sVNT) to detect SARS-CoV-2 antibodies. Overall, 5.7% of cats and 4.7% of dogs tested positive for antibodies, with younger animals (under 12 months) showing significantly lower seropositivity rates (p = 0.0048). Additionally, we analyzed 153 positive samples for variant-specific antibody responses using six sVNT kits targeting the Delta variant and five Omicron sublineages. Among cats, 67.5% showed antibodies to Delta, with positivity rates for Omicron sublineages as follows: BA.1 (62.5%), BA.2 (42.5%), BA.4/BA.5 (77.5%), XBB (52.5%), and XBB.1.5 (45.0%). In dogs, 55.8% were positive for Delta, and Omicron sublineage rates were BA.1 (46.0%), BA.4/BA.5 (37.2%), XBB (58.4%), BA.2 (13.3%), and XBB.1.5 (9.7%). Given the close contact between companion animals and humans, and the persistence of antibodies against various SARS-CoV-2 variants and sublineages, our findings suggest that seroprevalence in cats and dogs may serve as valuable tool for tracking COVID-19 epidemiology.
Collapse
Affiliation(s)
- Subarna Barua
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Nneka Vivian Iduu
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | | - Asfiha Tarannum
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Hill Dimino
- College of Sciences and Mathematics, Auburn University, Auburn, AL, USA
| | - Suchita Barua
- College of Sciences and Mathematics, Auburn University, Auburn, AL, USA
| | - Yue Shu
- College of Sciences and Mathematics, Auburn University, Auburn, AL, USA
| | - Calvin Johnson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Megan R. Miller
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Kelly Chenoweth
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Peter Christopherson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Laura Huber
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Theresa Wood
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Kelley Turner
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Okwumabua O, Bradley-Siemens N, Cruz C, Chittick L, Thompson M. Detection of SARS-CoV-2 and a possible variant in shelter cats. PLoS One 2025; 20:e0317104. [PMID: 39804893 PMCID: PMC11730420 DOI: 10.1371/journal.pone.0317104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
SARS-CoV-2 is the cause of mild to severe acute respiratory disease that led to significant loss of human lives worldwide between 2019 and 2022. The virus has been detected in various animals including cats and dogs making it a major public health concern and a One Health issue. In this study, conjunctival and pharyngeal swabs (n = 350) and serum samples (n = 350) were collected between July and December 2020 from cats that were housed in an animal shelter and tested for the infection of SARS-CoV-2 using real time reverse-transcription polymerase chain reaction (rRT-PCR) that targeted the N1 and N2 genes, and a SARS-CoV-2 surrogate virus neutralization Test (sVNT), respectively. 203 (58%) swab samples were negative (N1 and N2 not detected), 2 (0.6%) were positive (N1 and N2 detected) and 145 (41%) were inconclusive (only N1 detected). Analysis of the N2 region and multiple sequence alignment revealed base-pair deletions and substitutions in the N2 probe binding region of the feline samples RNA extracts in comparison with the positive control and human SARS-CoV-2 sequences in the GenBank database. Substituting the N2 probe with a probe derived from the cat sample amplicon sequences, 123 of 127 (96.9%) of the N2 negative samples returned positive. All but one of the 350 serum samples were negative for SARS-CoV-2 antibody. These observations indicated that although detection of SARS-CoV-2 infection was low in the samples tested, pet cats can harbor the virus and serve as potential source for virus spread that may lead to human infections. Additionally, cats may harbor a yet-to-be described virus that is somewhat related to SARS-CoV-2.
Collapse
Affiliation(s)
- Ogi Okwumabua
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, Arizona, United States of America
| | - Nancy Bradley-Siemens
- Department of Small Animal Shelter and Community Medicine, College of Veterinary Medicine, Midwestern University, Glendale, Arizona, United States of America
| | - Catherine Cruz
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, Arizona, United States of America
| | - Lauren Chittick
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, Arizona, United States of America
| | - Melissa Thompson
- Arizona Humane Society, Phoenix, Arizona, United States of America
| |
Collapse
|
3
|
Oltjen H, Crook E, Lanier WA, Rettler H, Oakeson KF, Young EL, Torchetti M, Van Wettere AJ. SARS-CoV-2 delta variant in African lions (Panthera leo) and humans at Utah's Hogle Zoo, USA, 2021-22. Zoonoses Public Health 2024; 71:807-816. [PMID: 38825749 PMCID: PMC11455604 DOI: 10.1111/zph.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 06/04/2024]
Abstract
AIMS We conducted a One Health investigation to assess the source and transmission dynamics of SARS-CoV-2 infection in African lions (Panthera leo) at Utah's Hogle Zoo in Salt Lake City from October 2021 to February 2022. METHODS AND RESULTS Following observation of respiratory illness in the lions, zoo staff collected pooled faecal samples and individual nasal swabs from four lions. All specimens tested positive for SARS-CoV-2 by reverse transcription-polymerase chain reaction (RT-PCR). The resulting investigation included: lion observation; RT-PCR testing of lion faeces every 1-7 days; RT-PCR testing of lion respiratory specimens every 2-3 weeks; staff interviews and RT-PCR testing; whole-genome sequencing of viruses from lions and staff; and comparison with existing SARS-CoV-2 human community surveillance sequences. In addition to all five lions, three staff displayed respiratory symptoms. All lions recovered and no hospitalizations or deaths were reported among staff. Three staff reported close contact with the lions in the 10 days before lion illness onset, one of whom developed symptoms and tested positive for SARS-CoV-2 on days 3 and 4, respectively, after lion illness onset. The other two did not report symptoms or test positive. Two staff who did not have close contact with the lions were symptomatic and tested positive on days 5 and 8, respectively, after lion illness onset. We detected SARS-CoV-2 RNA in lion faeces for 33 days and in lion respiratory specimens for 14 weeks after illness onset. The viruses from lions were genetically highly related to those from staff and two contemporaneous surveillance specimens from Salt Lake County; all were delta variants (AY.44). CONCLUSIONS We did not determine the sources of these infections, although human-to-lion transmission likely occurred. The observed period of respiratory shedding was longer than in previously documented SARS-CoV-2 infections in large felids, indicating the need to further assess duration and potential implications of shedding.
Collapse
Affiliation(s)
- Heather Oltjen
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | | | - William A. Lanier
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
- Centers for Disease Control and Prevention, Office of Readiness and Response, Division of State and Local Readiness, Career Epidemiology Field Officer Program, Atlanta, Georgia, USA
- US Public Health Service, Rockville, Maryland, USA
| | - Hannah Rettler
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Kelly F. Oakeson
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Erin L. Young
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Mia Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa, USA
| | | |
Collapse
|
4
|
Choi A, Stout AE, Rollins A, Wang K, Guo Q, Jaimes JA, Kennedy M, Wagner B, Whittaker GR. SARS-COV-2 SEROSURVEY OF HEALTHY, PRIVATELY OWNED CATS PRESENTING TO A NEW YORK CITY ANIMAL HOSPITAL IN THE EARLY PHASE OF THE COVID-19 PANDEMIC (2020-2021). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580068. [PMID: 38405835 PMCID: PMC10888843 DOI: 10.1101/2024.02.13.580068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
SARS-CoV-2, the cause of the ongoing COVID-19 pandemic, not only infects humans but is also known to infect various species, including domestic and wild animals. While many species have been identified as susceptible to SARS-CoV-2, there are limited studies on the prevalence of SARS-CoV-2 in animals. Both domestic and non-domestic cats are now established to be susceptible to infection by SARS-CoV-2. While serious disease in cats may occur in some instances, the majority of infections appear to be subclinical. Differing prevalence data for SARS-CoV-2 infection of cats have been reported, and are highly context-dependent. Here, we report a retrospective serological survey of cats presented to an animal practice in New York City, located in close proximity to a large medical center that treated the first wave of COVID-19 patients in the U.S. in the Spring of 2020. We sampled 79, mostly indoor, cats between June 2020 to May 2021, the early part of which time the community was under a strict public health "lock-down". Using a highly sensitive and specific fluorescent bead-based multiplex assay, we found an overall prevalence of 13/79 (16%) serologically-positive animals for the study period; however, cats sampled in the Fall of 2020 had a confirmed positive prevalence of 44%. For SARS-CoV-2 seropositive cats, we performed viral neutralization test with live SARS-CoV-2 to additionally confirm presence of SARS-CoV-2 specific antibodies. Of the thirteen seropositive cats, 7/13 (54%) were also positive by virus neutralization, and two of seropositive cats had previously documented respiratory signs, with high neutralization titers of 1/1024 and 1/4096; overall however, there was no statistically significant association of SARS-CoV-2 seropositivity with respiratory signs, or with breed, sex or age of the animals. Follow up sampling of cats showed that positive serological titers were maintained over time. In comparison, we found an overall confirmed positive prevalence of 51% for feline coronavirus (FCoV), an endemic virus of cats, with 30% confirmed negative for FCoV. We demonstrate the impact of SARS-CoV-2 in a defined feline population during the first wave of SARS-CoV-2 infection of humans, and suggest that human-cat transmission was substantial in our study group. Our study provide a new context for SARS-CoV-2 transmission events across species.
Collapse
Affiliation(s)
- Annette Choi
- Departments of Microbiology & Immunology, Ithaca NY and Sutton Animal Hospital, New York NY
| | - Alison E. Stout
- Departments of Microbiology & Immunology, Ithaca NY and Sutton Animal Hospital, New York NY
| | - Alicia Rollins
- Population Medicine & Diagnostic Sciences, Ithaca NY and Sutton Animal Hospital, New York NY
| | - Kally Wang
- Departments of Microbiology & Immunology, Ithaca NY and Sutton Animal Hospital, New York NY
- College of Veterinary Medicine, and Cornell Public Health Program, Ithaca NY and Sutton Animal Hospital, New York NY
| | - Qinghua Guo
- Departments of Microbiology & Immunology, Ithaca NY and Sutton Animal Hospital, New York NY
- College of Veterinary Medicine, and Cornell Public Health Program, Ithaca NY and Sutton Animal Hospital, New York NY
| | - Javier A. Jaimes
- Departments of Microbiology & Immunology, Ithaca NY and Sutton Animal Hospital, New York NY
| | - Monica Kennedy
- Cornell University, Ithaca NY and Sutton Animal Hospital, New York NY
| | - Bettina Wagner
- Population Medicine & Diagnostic Sciences, Ithaca NY and Sutton Animal Hospital, New York NY
| | - Gary R. Whittaker
- Departments of Microbiology & Immunology, Ithaca NY and Sutton Animal Hospital, New York NY
- Public & Ecosystem Health, Ithaca NY and Sutton Animal Hospital, New York NY
- College of Veterinary Medicine, and Cornell Public Health Program, Ithaca NY and Sutton Animal Hospital, New York NY
| |
Collapse
|
5
|
Drozd M, Ritter JM, Samuelson JP, Parker M, Wang L, Sander SJ, Yoshicedo J, Wright L, Odani J, Shrader T, Lee E, Lockhart SR, Ghai RR, Terio KA. Mortality associated with SARS-CoV-2 in nondomestic felids. Vet Pathol 2024; 61:609-620. [PMID: 38323378 DOI: 10.1177/03009858231225500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Between September and November 2021, 5 snow leopards (Panthera uncia) and 1 lion (Panthera leo) were naturally infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) and developed progressive respiratory disease that resulted in death. Severe acute respiratory syndrome coronavirus 2 sequencing identified the delta variant in all cases sequenced, which was the predominant human variant at that time. The time between initial clinical signs and death ranged from 3 to 45 days. Gross lesions in all 6 cats included nasal turbinate hyperemia with purulent discharge and marked pulmonary edema. Ulcerative tracheitis and bronchitis were noted in 4 cases. Histologically, there was necrotizing and ulcerative rhinotracheitis and bronchitis with fibrinocellular exudates and fibrinosuppurative to pyogranulomatous bronchopneumonia. The 4 cats that survived longer than 8 days had fungal abscesses. Concurrent bacteria were noted in 4 cases, including those with more acute disease courses. Severe acute respiratory syndrome coronavirus 2 was detected by in situ hybridization using probes against SARS-CoV-2 spike and nucleocapsid genes and by immunohistochemistry. Viral nucleic acid and protein were variably localized to mucosal and glandular epithelial cells, pneumocytes, macrophages, and fibrinocellular debris. Based on established criteria, SARS-CoV-2 was considered a contributing cause of death in all 6 cats. While mild clinical infections are more common, these findings suggest that some SARS-CoV-2 variants may cause more severe disease and that snow leopards may be more severely affected than other felids.
Collapse
Affiliation(s)
- Mary Drozd
- University of Nebraska-Lincoln, Lincoln, NE
| | - Jana M Ritter
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | | | - Leyi Wang
- University of Illinois Urbana-Champaign, Urbana, IL
| | | | | | - Louden Wright
- Great Plain Zoo, Sioux Falls, SD
- Nashville Zoo at Grassmere, Nashville, TN
| | - Jenee Odani
- University of Hawai'i at Mānoa, Honolulu, HI
| | | | - Elizabeth Lee
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Ria R Ghai
- Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
6
|
Mūrniece G, Šteingolde Ž, Cvetkova S, Valciņa O, Zrelovs Ņ, Brīvība M, Kloviņš J, Birzniece L, Megnis K, Fridmanis D, Bērziņš A, Kovaļčuka L, Kovaļenko K. Prevalence of SARS-CoV-2 in domestic cats (Felis catus) during COVID-19 pandemic in Latvia. Vet Med Sci 2024; 10:e1338. [PMID: 38140758 PMCID: PMC10951624 DOI: 10.1002/vms3.1338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/20/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The causative agent of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is of zoonotic origin and has shown reverse zoonotic transmissibility. OBJECTIVES The aim of this cross-sectional study was to investigate the serological and molecular prevalence of SARS-CoV-2 infection in the domestic cat (Felis catus) population from Latvia in natural conditions and subsequently perform viral genome analysis. METHODS Oropharyngeal and rectal swabs and blood samples were collected from 273 domestic cats during the second wave of COVID-19 infection in Latvia. Molecular prevalence was determined by using reverse transcriptase-polymerase chain reaction (RT-PCR). Serum samples were analysed via double antigen enzyme-linked immunosorbent assay targeting the antibody against the nucleocapsid protein of SARS-CoV-2. Positive swab samples were analysed using whole viral genome sequencing and subsequent phylogenetic analysis of the whole genome sequencing data of the samples was performed. RESULTS The overall SARS-CoV-2 RT-PCR positivity and seroprevalence was 1.1% (3/273) and 2.6% (7/273), respectively. The SARS-CoV-2 genome sequences from three RT-PCR positive cats were assigned to the three common lineages (PANGOLIN lineage S.1.; B.1.177.60. and B.1.1.7.) circulating in Latvia during the particular period of time. CONCLUSIONS These findings indicate that feline infection with SARS-CoV-2 occurred during the second wave of the COVID-19 pandemic in Latvia, yet the overall prevalence was low. In addition, it seems like no special 'cat' pre-adaptations were necessary for successful infection of cats by the common lineages of SARS-CoV-2.
Collapse
Affiliation(s)
- Gundega Mūrniece
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
| | - Žanete Šteingolde
- Institute of Food SafetyAnimal Health and Environment “BIOR”RigaLatvia
| | - Svetlana Cvetkova
- Institute of Food SafetyAnimal Health and Environment “BIOR”RigaLatvia
| | - Olga Valciņa
- Institute of Food SafetyAnimal Health and Environment “BIOR”RigaLatvia
| | | | - Monta Brīvība
- Latvian Biomedical Research and Study CentreRigaLatvia
| | - Jānis Kloviņš
- Latvian Biomedical Research and Study CentreRigaLatvia
| | | | | | | | - Aivars Bērziņš
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
- Institute of Food SafetyAnimal Health and Environment “BIOR”RigaLatvia
| | - Līga Kovaļčuka
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
| | - Kaspars Kovaļenko
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
| |
Collapse
|
7
|
Silva MJA, Santana DS, Lima MBM, Silva CS, de Oliveira LG, Monteiro EOL, Dias RDS, Pereira BDKB, Nery PADS, Ferreira MAS, Sarmento MADS, Ayin AAN, Mendes de Oliveira AC, Lima KVB, Lima LNGC. Assessment of the Risk Impact of SARS-CoV-2 Infection Prevalence between Cats and Dogs in America and Europe: A Systematic Review and Meta-Analysis. Pathogens 2024; 13:314. [PMID: 38668269 PMCID: PMC11053406 DOI: 10.3390/pathogens13040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024] Open
Abstract
The COVID-19 pandemic represented a huge obstacle for public health and demonstrated weaknesses in surveillance and health promotion systems around the world. Its etiological agent, SARS-CoV-2, of zoonotic origin, has been the target of several studies related to the control and prevention of outbreaks and epidemics of COVID-19 not only for humans but also for animals. Domestic animals, such as dogs and cats, have extensive contact with humans and can acquire the infection both naturally and directly from humans. The objective of this article was to summarize the seroprevalence findings of SARS-CoV-2 in dogs and cats and correlate them with the strength of infection risk between each of them. This is a systematic review and meta-analysis following the recommendations of PRISMA 2020. The search and selection of papers was carried out using in vivo experimental works with animals using the descriptors (MeSH/DeCS) "Animal", "Public Health", "SARS-CoV-2" and "Pandemic" (together with AND) in English, Portuguese or Spanish for Science Direct, PUBMED, LILACS and SciELO databases. The ARRIVE checklist was used for methodological evaluation and the Comprehensive Meta-Analysis v2.2 software with the Difference Risk (RD) test to evaluate statistical inferences (with subgroups by continent). Cats showed greater susceptibility to SARS-CoV-2 compared to dogs both in a joint analysis of studies (RD = 0.017; 95% CI = 0.008-0.025; p < 0.0001) and in the American subgroup (RD = 0.053; 95% CI = 0.032-0.073; p < 0.0001), unlike the lack of significant difference on the European continent (RD = 0.009; 95% CI = -0.001-0.018; p = 0.066). Therefore, it was observed that cats have a greater interest in health surveillance due to the set of biological and ecological aspects of these animals, but also that there are a set of factors that can influence the spread and possible spillover events of the virus thanks to the anthropozoonotic context.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Center for Biological and Health Sciences (CCBS), University of the State of Pará (UEPA), Belém 66087-670, PA, Brazil;
| | - Davi Silva Santana
- Institute of Health Sciences (ICS), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66077-830, PA, Brazil; (D.S.S.); (M.B.M.L.); (R.d.S.D.); (M.A.S.F.); (A.C.M.d.O.)
| | - Marceli Batista Martins Lima
- Institute of Health Sciences (ICS), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66077-830, PA, Brazil; (D.S.S.); (M.B.M.L.); (R.d.S.D.); (M.A.S.F.); (A.C.M.d.O.)
| | - Caroliny Soares Silva
- Center for Biological and Health Sciences (CCBS), University of the State of Pará (UEPA), Belém 66087-670, PA, Brazil;
| | - Letícia Gomes de Oliveira
- Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil; (L.G.d.O.); (K.V.B.L.); (L.N.G.C.L.)
| | | | - Rafael dos Santos Dias
- Institute of Health Sciences (ICS), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66077-830, PA, Brazil; (D.S.S.); (M.B.M.L.); (R.d.S.D.); (M.A.S.F.); (A.C.M.d.O.)
| | - Bruna de Kássia Barbosa Pereira
- Department of Veterinary Medicine, University of the Amazon (UNAMA), Belém 66120-901, PA, Brazil; (B.d.K.B.P.); (P.A.d.S.N.)
| | - Paula Andresa da Silva Nery
- Department of Veterinary Medicine, University of the Amazon (UNAMA), Belém 66120-901, PA, Brazil; (B.d.K.B.P.); (P.A.d.S.N.)
| | - Márcio André Silva Ferreira
- Institute of Health Sciences (ICS), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66077-830, PA, Brazil; (D.S.S.); (M.B.M.L.); (R.d.S.D.); (M.A.S.F.); (A.C.M.d.O.)
| | | | - Andrea Alexandra Narro Ayin
- Faculty of Medicine, Centro Universitário do Estado do Pará (CESUPA), Belém 66613-903, PA, Brazil; (M.A.d.S.S.); (A.A.N.A.)
| | - Ana Cristina Mendes de Oliveira
- Institute of Health Sciences (ICS), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66077-830, PA, Brazil; (D.S.S.); (M.B.M.L.); (R.d.S.D.); (M.A.S.F.); (A.C.M.d.O.)
| | | | | |
Collapse
|
8
|
Drozd M, Ritter JM, Samuelson JP, Parker M, Wang L, Sander SJ, Yoshicedo J, Wright L, Odani J, Shrader T, Lee E, Lockhart SR, Ghai RR, Terio KA. Mortality associated with SARS-CoV-2 in nondomestic felids. Vet Pathol 2024. [DOI: https:/doi.org/10.1177/03009858231225500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Between September and November 2021, 5 snow leopards ( Panthera uncia) and 1 lion ( Panthera leo) were naturally infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) and developed progressive respiratory disease that resulted in death. Severe acute respiratory syndrome coronavirus 2 sequencing identified the delta variant in all cases sequenced, which was the predominant human variant at that time. The time between initial clinical signs and death ranged from 3 to 45 days. Gross lesions in all 6 cats included nasal turbinate hyperemia with purulent discharge and marked pulmonary edema. Ulcerative tracheitis and bronchitis were noted in 4 cases. Histologically, there was necrotizing and ulcerative rhinotracheitis and bronchitis with fibrinocellular exudates and fibrinosuppurative to pyogranulomatous bronchopneumonia. The 4 cats that survived longer than 8 days had fungal abscesses. Concurrent bacteria were noted in 4 cases, including those with more acute disease courses. Severe acute respiratory syndrome coronavirus 2 was detected by in situ hybridization using probes against SARS-CoV-2 spike and nucleocapsid genes and by immunohistochemistry. Viral nucleic acid and protein were variably localized to mucosal and glandular epithelial cells, pneumocytes, macrophages, and fibrinocellular debris. Based on established criteria, SARS-CoV-2 was considered a contributing cause of death in all 6 cats. While mild clinical infections are more common, these findings suggest that some SARS-CoV-2 variants may cause more severe disease and that snow leopards may be more severely affected than other felids.
Collapse
Affiliation(s)
- Mary Drozd
- University of Nebraska–Lincoln, Lincoln, NE
| | | | | | | | - Leyi Wang
- University of Illinois Urbana-Champaign, Urbana, IL
| | | | | | - Louden Wright
- Great Plain Zoo, Sioux Falls, SD
- Nashville Zoo at Grassmere, Nashville, TN
| | - Jenee Odani
- University of Hawai‘i at Mānoa, Honolulu, HI
| | | | - Elizabeth Lee
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Ria R. Ghai
- Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
9
|
Nilsson MG, Santana Cordeiro MDC, Gonçalves ACA, Dos Santos Conzentino M, Huergo LF, Vicentini F, Reis JBL, Biondo AW, Kmetiuk LB, da Silva AV. High seroprevalence for SARS-CoV-2 infection in dogs: Age as risk factor for infection in shelter and foster home animals. Prev Vet Med 2024; 222:106094. [PMID: 38103433 DOI: 10.1016/j.prevetmed.2023.106094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
SARS-CoV-2 has caused 775 outbreaks in 29 animal species across 36 countries, including dogs, cats, ferrets, minks, non-human primates, white-tailed deer, and lions. Although transmission from owners to dogs has been extensively described, no study to date has also compared sheltered, foster home and owner dogs and associated risk factors. This study aimed to identify SARS-CoV-2 infection and anti-SARS-CoV-2 antibodies from sheltered, fostered, and owned dogs, associated with environmental and management risk factors. Serum samples and swabs were collected from each dog, and an epidemiological questionnaire was completed by the shelter manager, foster care, and owner. A total of 111 dogs, including 222 oropharyngeal and rectal swabs, tested negative by RT-qPCR. Overall, 18/89 (20.22%) dogs presented IgG antibodies against the N protein of SARS-CoV-2 by magnetic ELISA, while none showed a reaction to the Spike protein. SARS-CoV-2 antibodies showed an age-related association, with 4.16 chance of positivity in adult dogs when compared with young ones. High population density among dogs and humans, coupled with repeated COVID-19 exposure, emerged as potential risk factors in canine virus epidemiology. Dogs exhibited higher seropositivity rates in these contexts. Thus, we propose expanded seroepidemiological and molecular studies across species and scenarios, including shelter dogs.
Collapse
Affiliation(s)
- Mariana Guimarães Nilsson
- Graduate College of Animal Science in the Tropics, Federal University of Bahia (UFBA), 40170-110 Salvador, Bahia, Brazil.
| | | | | | | | | | - Fernando Vicentini
- Health Sciences Center, Federal University of the Recôncavo of Bahia (UFRB), 44430-622 Santo Antônio de Jesus, Bahia, Brazil
| | - Jeiza Botelho Leal Reis
- Health Sciences Center, Federal University of the Recôncavo of Bahia (UFRB), 44430-622 Santo Antônio de Jesus, Bahia, Brazil
| | - Alexander Welker Biondo
- Graduate College of Cellular and Molecular Biology, Federal University of Paraná (UFPR), 81531-970 Curitiba, Paraná, Brazil
| | - Louise Bach Kmetiuk
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná 81310-020, Brazil
| | - Aristeu Vieira da Silva
- Zoonosis and Public Health Research Group, Earth and Environmental Science Modelling Graduate, State University of Feira de Santana (UEFS), 44036-900 Feira de Santana, Bahia, Brazil.
| |
Collapse
|
10
|
Yamayoshi S, Ito M, Iwatsuki-Horimoto K, Yasuhara A, Okuda M, Hamabata T, Murakami J, Duong C, Yamamoto T, Kuroda Y, Maeda K, Kawaoka Y. Seroprevalence of SARS-CoV-2 antibodies in dogs and cats during the early and mid-pandemic periods in Japan. One Health 2023; 17:100588. [PMID: 37359748 PMCID: PMC10279464 DOI: 10.1016/j.onehlt.2023.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to circulate in humans since its emergence in 2019. While infection in humans continues, numerous spillover events to at least 32 animal species, including companion and zoo animals, have been reported. Since dogs and cats are highly susceptible to SARS-CoV-2 and have direct contact with their owners and other household members, it is important to know the prevalence of SARS-CoV-2 in dogs and cats. Here, we established an ELISA to detect serum antibodies against the receptor-binding domain and the ectodomain of the SARS-CoV-2 spike and nucleocapsid proteins. Using this ELISA, we assessed seroprevalence in 488 dog serum samples and 355 cat serum samples that were collected during the early pandemic period (between May and June of 2020) and 312 dog serum samples and 251 cat serum samples that were collected during the mid-pandemic period (between October 2021 and January 2022). We found that two dog serum samples (0.41%) collected in 2020, one cat serum sample (0.28%) collected in 2020, and four cat serum samples (1.6%) collected in 2021 were positive for antibodies against SARS-CoV-2. No dog serum samples collected in 2021 were positive for these antibodies. We conclude that the seroprevalence of SARS-CoV-2 antibodies in dogs and cats in Japan is low, suggesting that these animals are not a major SARS-CoV-2 reservoir.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Japan
- Research Center for Global Viral Infections, National Center for Global Health and Medicine Research Institute, Japan
| | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | | | - Atsuhiro Yasuhara
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Moe Okuda
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Taiki Hamabata
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Jurika Murakami
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Calvin Duong
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Tsukasa Yamamoto
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
- Research Center for Global Viral Infections, National Center for Global Health and Medicine Research Institute, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, USA
| |
Collapse
|
11
|
Cossaboom CM, Wendling NM, Lewis NM, Rettler H, Harvey RR, Amman BR, Towner JS, Spengler JR, Erickson R, Burnett C, Young EL, Oakeson K, Carpenter A, Kainulainen MH, Chatterjee P, Flint M, Uehara A, Li Y, Zhang J, Kelleher A, Lynch B, Retchless AC, Tong S, Ahmad A, Bunkley P, Godino C, Herzegh O, Drobeniuc J, Rooney J, Taylor D, Barton Behravesh C. One Health Investigation of SARS-CoV-2 in People and Animals on Multiple Mink Farms in Utah. Viruses 2022; 15:96. [PMID: 36680136 PMCID: PMC9864593 DOI: 10.3390/v15010096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
From July−November 2020, mink (Neogale vison) on 12 Utah farms experienced an increase in mortality rates due to confirmed SARS-CoV-2 infection. We conducted epidemiologic investigations on six farms to identify the source of virus introduction, track cross-species transmission, and assess viral evolution. Interviews were conducted and specimens were collected from persons living or working on participating farms and from multiple animal species. Swabs and sera were tested by SARS-CoV-2 real-time reverse transcription polymerase chain reaction (rRT-PCR) and serological assays, respectively. Whole genome sequencing was attempted for specimens with cycle threshold values <30. Evidence of SARS-CoV-2 infection was detected by rRT-PCR or serology in ≥1 person, farmed mink, dog, and/or feral cat on each farm. Sequence analysis showed high similarity between mink and human sequences on corresponding farms. On farms sampled at multiple time points, mink tested rRT-PCR positive up to 16 weeks post-onset of increased mortality. Workers likely introduced SARS-CoV-2 to mink, and mink transmitted SARS-CoV-2 to other animal species; mink-to-human transmission was not identified. Our findings provide critical evidence to support interventions to prevent and manage SARS-CoV-2 in people and animals on mink farms and emphasizes the importance of a One Health approach to address emerging zoonoses.
Collapse
Affiliation(s)
- Caitlin M. Cossaboom
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Natalie M. Wendling
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Nathaniel M. Lewis
- Utah Department of Health and Human Services, Salt Lake City, UT 84116, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Hannah Rettler
- Utah Department of Health and Human Services, Salt Lake City, UT 84116, USA
| | - Robert R. Harvey
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Brian R. Amman
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jonathan S. Towner
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jessica R. Spengler
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Robert Erickson
- Utah Department of Agriculture and Food, Salt Lake City, UT 84129, USA
| | - Cindy Burnett
- Utah Department of Health and Human Services, Salt Lake City, UT 84116, USA
| | - Erin L. Young
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, UT 84129, USA
| | - Kelly Oakeson
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, UT 84129, USA
| | - Ann Carpenter
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Markus H. Kainulainen
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Payel Chatterjee
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Mike Flint
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Anna Uehara
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Yan Li
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jing Zhang
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Anna Kelleher
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Brian Lynch
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Adam C. Retchless
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Suxiang Tong
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Ausaf Ahmad
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Paige Bunkley
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Claire Godino
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Owen Herzegh
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jan Drobeniuc
- CDC National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jane Rooney
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Fort Collins, CO 80526, USA
| | - Dean Taylor
- Utah Department of Agriculture and Food, Salt Lake City, UT 84129, USA
| | - Casey Barton Behravesh
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
12
|
Pappas G, Vokou D, Sainis I, Halley JM. SARS-CoV-2 as a Zooanthroponotic Infection: Spillbacks, Secondary Spillovers, and Their Importance. Microorganisms 2022; 10:2166. [PMID: 36363758 PMCID: PMC9696655 DOI: 10.3390/microorganisms10112166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 10/06/2023] Open
Abstract
In the midst of a persistent pandemic of a probable zoonotic origin, one needs to constantly evaluate the interplay of SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus-2) with animal populations. Animals can get infected from humans, and certain species, including mink and white-tailed deer, exhibit considerable animal-to-animal transmission resulting in potential endemicity, mutation pressure, and possible secondary spillover to humans. We attempt a comprehensive review of the available data on animal species infected by SARS-CoV-2, as presented in the scientific literature and official reports of relevant organizations. We further evaluate the lessons humans should learn from mink outbreaks, white-tailed deer endemicity, zoo outbreaks, the threat for certain species conservation, the possible implication of rodents in the evolution of novel variants such as Omicron, and the potential role of pets as animal reservoirs of the virus. Finally, we outline the need for a broader approach to the pandemic and epidemics, in general, incorporating the principles of One Health and Planetary Health.
Collapse
Affiliation(s)
- Georgios Pappas
- Institute of Continuing Medical Education of Ioannina, 45333 Ioannina, Greece
| | - Despoina Vokou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Sainis
- Medical School, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - John M. Halley
- Laboratory of Ecology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
13
|
Bienzle D, Rousseau J, Marom D, MacNicol J, Jacobson L, Sparling S, Prystajecky N, Fraser E, Weese JS. Risk Factors for SARS-CoV-2 Infection and Illness in Cats and Dogs1. Emerg Infect Dis 2022; 28:1154-1162. [PMID: 35608925 PMCID: PMC9155877 DOI: 10.3201/eid2806.220423] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We tested swab specimens from pets in households in Ontario, Canada, with human COVID-19 cases by quantitative PCR for SARS-CoV-2 and surveyed pet owners for risk factors associated with infection and seropositivity. We tested serum samples for spike protein IgG and IgM in household pets and also in animals from shelters and low-cost neuter clinics. Among household pets, 2% (1/49) of swab specimens from dogs and 7.7% (5/65) from cats were PCR positive, but 41% of dog serum samples and 52% of cat serum samples were positive for SARS-CoV-2 IgG or IgM. The likelihood of SARS-CoV-2 seropositivity in pet samples was higher for cats but not dogs that slept on owners’ beds and for dogs and cats that contracted a new illness. Seropositivity in neuter-clinic samples was 16% (35/221); in shelter samples, 9.3% (7/75). Our findings indicate a high likelihood for pets in households of humans with COVID-19 to seroconvert and become ill.
Collapse
|