1
|
Mondal S, Purohit A, Hazra A, Das S, Chakrabarti M, Khan MR, Lopez-Nicora H, Chakraborti D, Mukherjee A. Intraspecific variability of rice root knot nematodes across diverse agroecosystems for sustainable management. Sci Rep 2024; 14:30032. [PMID: 39627244 PMCID: PMC11614863 DOI: 10.1038/s41598-024-73980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/23/2024] [Indexed: 12/06/2024] Open
Abstract
In the rice agroecosystems of Southeast Asia, rice root knot nematode (Meloidogyne graminicola) significantly impairs yield, representing a major species within the 'graminis-group' known for its morphological similarities with other root knot nematodes (RKNs). This study delves into the variations in reproductive potential, morphology, morphometrics, and genetic diversity among thirty RKN populations in rice across three distinct agroecological zones in Jharkhand, India. Despite notable differences in reproductive potential among the populations, morphological and morphometric correlations to reproductive potential were inconclusive. However, male and juvenile morphometrics were crucial for identifying intraspecific variability. Genetic analysis utilizing five molecular markers (ITS, 18 S rRNA, D2-D3 of 28 S, COX-I, and COX-II) affirmed the populations as M. graminicola, with ITS marker revealing significant intraspecific variability. Phylogenetic analysis underscored the close relationship between M. oryzae and M. graminicola, distinct from other mitotic RKN species. Low genetic distance and nucleotide diversity, coupled with high haplotype diversity, negative Tajima's D, and Fu's Fs of haplotype network analysis, suggested that all M. graminicola populations are expanding. These findings highlight the urgent need for comprehensive management strategies against M. graminicola, providing valuable insights for growers, extension officials, and plant breeders to develop targeted management approaches and resistance breeding programs.
Collapse
Affiliation(s)
- Sandip Mondal
- Indian Statistical Institute, Giridih, Jharkhand, 815301, India
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Arnab Purohit
- Indian Statistical Institute, Giridih, Jharkhand, 815301, India
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Genetics, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Anjan Hazra
- Department of Genetics, University of Calcutta, Kolkata, West Bengal, 700019, India
- Department of Botany, Victoria Institution (College), 78-B, A.P.C. Road, Kolkata, West-Bengal, 700009, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, 700054, India
| | - Manohar Chakrabarti
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Matiyar Rahaman Khan
- Division of Nematology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Horacio Lopez-Nicora
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Dipankar Chakraborti
- Department of Genetics, University of Calcutta, Kolkata, West Bengal, 700019, India
| | | |
Collapse
|
2
|
Faria JMS, Rusinque L, Inácio ML. Nematicidal Activity of Volatiles against the Rice Root-Knot Nematode and Environmental Safety in Comparison to Traditional Nematicides. PLANTS (BASEL, SWITZERLAND) 2024; 13:2046. [PMID: 39124164 PMCID: PMC11314546 DOI: 10.3390/plants13152046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
The rice root-knot nematode (RRKN), Meloidogyne graminicola Golden and Birchfield 1965, is a dangerous crop pest that affects rice production on a global scale. The largest rice-producing countries struggle with the impacts of RRKN infestation, namely, underdeveloped plants and a reduction in rice grain that can reach up to 70% of crop yield. In addition, the shift to strategies of sustainable pest management is leading to a withdrawal of some of the most effective pesticides, given the dangers they pose to the environment and human health. Volatile metabolites produced by plants can offer safer alternatives. The present study characterized the nematicidal activity of volatile phytochemicals against the RRKN and compared the most active with commercial nematicides concerning their safety to the environment and human health. Rice plants were used to grow large numbers of RRKNs for direct-contact bioassays. Mortality induced by the volatiles was followed for four days on RRKN second-stage juveniles. Of the 18 volatiles tested, carvacrol, eugenol, geraniol, and methyl salicylate showed the highest mortalities (100%) and were compared to traditional nematicides using (eco)toxicological parameters reported on freely available databases. While methyl salicylate had a faster activity, carvacrol had more lasting effects. When compared to synthetic nematicides, these volatile phytochemicals were reported to have higher thresholds of toxicity and beneficial ecotoxicological parameters. Ultimately, finding safer alternatives to traditional pesticides can lower the use of damaging chemicals in farming and leverage the transition to agricultural practices with a lower impact on biodiversity.
Collapse
Affiliation(s)
- Jorge M. S. Faria
- INIAV, I.P., National Institute for Agrarian and Veterinary Research, Quinta do Marquês, 2780-159 Oeiras, Portugal; (L.R.); (M.L.I.)
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Leidy Rusinque
- INIAV, I.P., National Institute for Agrarian and Veterinary Research, Quinta do Marquês, 2780-159 Oeiras, Portugal; (L.R.); (M.L.I.)
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- Centre for Functional Ecology (CEF), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria L. Inácio
- INIAV, I.P., National Institute for Agrarian and Veterinary Research, Quinta do Marquês, 2780-159 Oeiras, Portugal; (L.R.); (M.L.I.)
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
3
|
Xiao L, Gheysen G, Yang M, Xiao X, Xu L, Guo X, Yang L, Liu W, He Y, Peng D, Peng H, Ma K, Long H, Wang G, Xiao Y. Brown planthopper infestation on rice reduces plant susceptibility to Meloidogyne graminicola by reducing root sugar allocation. THE NEW PHYTOLOGIST 2024; 242:262-277. [PMID: 38332248 DOI: 10.1111/nph.19570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Plants are simultaneously attacked by different pests that rely on sugars uptake from plants. An understanding of the role of plant sugar allocation in these multipartite interactions is limited. Here, we characterized the expression patterns of sucrose transporter genes and evaluated the impact of targeted transporter gene mutants and brown planthopper (BPH) phloem-feeding and oviposition on root sugar allocation and BPH-reduced rice susceptibility to Meloidogyne graminicola. We found that the sugar transporter genes OsSUT1 and OsSUT2 are induced at BPH oviposition sites. OsSUT2 mutants showed a higher resistance to gravid BPH than to nymph BPH, and this was correlated with callose deposition, as reflected in a different effect on M. graminicola infection. BPH phloem-feeding caused inhibition of callose deposition that was counteracted by BPH oviposition. Meanwhile, this pivotal role of sugar allocation in BPH-reduced rice susceptibility to M. graminicola was validated on rice cultivar RHT harbouring BPH resistance genes Bph3 and Bph17. In conclusion, we demonstrated that rice susceptibility to M. graminicola is regulated by BPH phloem-feeding and oviposition on rice through differences in plant sugar allocation.
Collapse
Affiliation(s)
- Liying Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, Ghent, 9000, Belgium
| | - Mingwei Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lihe Xu
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoli Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijie Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yueping He
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Kangsheng Ma
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haibo Long
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Gaofeng Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yannong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Juárez ID, Dou T, Biswas S, Septiningsih EM, Kurouski D. Diagnosing arsenic-mediated biochemical responses in rice cultivars using Raman spectroscopy. FRONTIERS IN PLANT SCIENCE 2024; 15:1371748. [PMID: 38590750 PMCID: PMC10999542 DOI: 10.3389/fpls.2024.1371748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
Rice (Oryza sativa) is the primary crop for nearly half of the world's population. Groundwater in many rice-growing parts of the world often has elevated levels of arsenite and arsenate. At the same time, rice can accumulate up to 20 times more arsenic compared to other staple crops. This places an enormous amount of people at risk of chronic arsenic poisoning. In this study, we investigated whether Raman spectroscopy (RS) could be used to diagnose arsenic toxicity in rice based on biochemical changes that were induced by arsenic accumulation. We modeled arsenite and arsenate stresses in four different rice cultivars grown in hydroponics over a nine-day window. Our results demonstrate that Raman spectra acquired from rice leaves, coupled with partial least squares-discriminant analysis, enabled accurate detection and identification of arsenic stress with approximately 89% accuracy. We also performed high-performance liquid chromatography (HPLC)-analysis of rice leaves to identify the key molecular analytes sensed by RS in confirming arsenic poisoning. We found that RS primarily detected a decrease in the concentration of lutein and an increase in the concentration of vanillic and ferulic acids due to the accumulation of arsenite and arsenate in rice. This showed that these molecules are detectable indicators of biochemical response to arsenic accumulation. Finally, a cross-correlation of RS with HPLC and ICP-MS demonstrated RS's potential for a label-free, non-invasive, and non-destructive quantification of arsenic accumulation in rice.
Collapse
Affiliation(s)
- Isaac D. Juárez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, United States
| | - Tianyi Dou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Sudip Biswas
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Shan C, Zhang L, Chen L, Li S, Zhang Y, Ye L, Lin Y, Kuang W, Shi X, Ma J, Adnan M, Sun X, Cui R. Interaction of negative regulator OsWD40-193 with OseEF1A1 inhibits Oryza sativa resistance to Hirschmanniella mucronata infection. Int J Biol Macromol 2023; 248:125841. [PMID: 37479204 DOI: 10.1016/j.ijbiomac.2023.125841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Rice is a crucial food crop worldwide, but it is highly susceptible to Hirschmanniella mucronata, a migratory parasitic nematode. No rice variety has been identified that could resist H. mucronata infection. Therefore, it is very important to study the interaction between rice and H. mucronata to breed resistant rice varieties. Here, we demonstrated that protein OsWD40-193 interacted with the extension factor OseEF1A1 and both were negative regulators inhibiting rice resistance to H. mucronata infection. Overexpression of either OsWD40-193 or OseEF1A1 led to enhance susceptibility to H. mucronata, whereas the absence of OsWD40-193 or OseEF1A1 led to resistance. Further transcriptomic analysis showed that OseEF1A1 deletion altered the expression of genes association with salicylic acid, jasmonic acid and abolic acid signaling pathways and increased the accumulation of secondary metabolites to enhance resistance in rice. Our study showed that H. mucronata infection affected the expression of negative regulators in rice and inhibited rice resistance, which was conducive to the infection of nematode. Together, our data showed that H. mucronata affected the expression of negative regulators to facilitate its infection and provided potential target genes to engineering resistance germplasm via gene editing of the negative regulators.
Collapse
Affiliation(s)
- Chonglei Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Lanlan Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Songyan Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
6
|
Arun A, Shanthi A, Raveendran M, Seenivasan N, Pushpam R, Shandeep G. An Insight into Occurrence, Biology, and Pathogenesis of Rice Root-Knot Nematode Meloidogyne graminicola. BIOLOGY 2023; 12:987. [PMID: 37508416 PMCID: PMC10376547 DOI: 10.3390/biology12070987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 07/30/2023]
Abstract
Rice (Oryza sativa L.) is one of the most widely grown crops in the world, and is a staple food for more than half of the global total population. Root-knot nematodes (RKNs), Meloidogyne spp., and especially M. graminicola, seem to be significant rice pests, which makes them the most economically important plant-parasitic nematode in this crop. RKNs develop a feeding site in galls by causing host cells to differentiate into hypertrophied, multinucleate, metabolically active cells known as giant cells. This grazing framework gives the nematode a constant food source, permitting it to develop into a fecund female and complete its life cycle inside the host root. M. graminicola effector proteins involved in nematode parasitism, including pioneer genes, were functionally characterized in earlier studies. Molecular modelling and docking studies were performed on Meloidogyne graminicola protein targets, such as β-1,4-endoglucanase, pectate lyase, phospholipase B-like protein, and G protein-coupled receptor kinase, to understand the binding affinity of Beta-D-Galacturonic Acid, 2,6,10,15,19,23-hexamethyltetracosane, (2S)-2-amino-3-phenylpropanoic acid, and 4-O-Beta-D-Galactopyranosyl-Alpha-D-Glucopyranose against ligand molecules of rice. This study discovered important molecular aspects of plant-nematode interaction and candidate effector proteins that were regulated by M. graminicola-infected rice plants. To the best of our knowledge, this is the first study to describe M. graminicola's molecular adaptation to host parasitism.
Collapse
Affiliation(s)
- Arunachalam Arun
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Annaiyan Shanthi
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Muthurajan Raveendran
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | | | - Ramamoorthy Pushpam
- Department of Rice, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Ganeshan Shandeep
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| |
Collapse
|
7
|
Chavan SN, Tumpa FH, Khokon MAR, Kyndt T. Potential of Exogenous Treatment with Dehydroascorbate to Control Root-knot Nematode Infection in Rice. RICE (NEW YORK, N.Y.) 2023; 16:29. [PMID: 37380881 DOI: 10.1186/s12284-023-00644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Induced resistance (IR) is a unique physiological state characterized by reduced plant susceptibility to (a)biotic stress. Our previous studies showed that exogenous foliar application of dehydroascorbate (DHA), the oxidized form of ascorbic acid, induces systemic resistance against root-knot nematode Meloidogyne graminicola in rice. In the present study, the potential of DHA in protecting rice plants against M. graminicola was evaluated in lab, pot, and field studies. In an experiment where the interval between foliar treatment and inoculation was varied, 20 mM DHA was found to protect rice plants from M. graminicola for at least 14 days. Pot and field studies confirmed that 10 or 20 mM DHA are highly effective in reducing gall formation and led to a significant increase in rice seed yield. A half dose of DHA (10 mM) combined with another IR-stimulus - piperonylic acid (PA) 300 µM - was at par with DHA 20 mM, leading to reductions in gall formation of more than 80%. In in vitro bioassays, DHA was found to be highly nematicidal to the second-stage juveniles of M. graminicola, with more than 90% mortality within 3 h of exposure to 10 or 20 mM concentrations. While seed treatment had no effect, root drenching or root dipping was also effective in reducing rice susceptibility to M. graminicola, next to foliar treatment. As a dual-action compound with extended protection and ease of application, DHA has great potential for effective nematode management in rice.
Collapse
Affiliation(s)
- Satish Namdeo Chavan
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86 N1, Ghent, 9000, Belgium
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - Farzana Haque Tumpa
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86 N1, Ghent, 9000, Belgium
| | - Md Atiqur Rahman Khokon
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86 N1, Ghent, 9000, Belgium.
| |
Collapse
|
8
|
Campos MD, Félix MDR. Advances in Plant-Pathogen Interaction: New Challenges for Sustainable Disease Management. BIOLOGY 2023; 12:biology12020203. [PMID: 36829483 PMCID: PMC9953138 DOI: 10.3390/biology12020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Plant pathogens cause huge losses and have been an important constraint to a worldwide increase in crop production and productivity [...].
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- Correspondence:
| | - Maria do Rosário Félix
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
9
|
Ye S, Yan R, Li X, Lin Y, Yang Z, Ma Y, Ding Z. Biocontrol potential of Pseudomonas rhodesiae GC-7 against the root-knot nematode Meloidogyne graminicola through both antagonistic effects and induced plant resistance. Front Microbiol 2022; 13:1025727. [PMID: 36386722 PMCID: PMC9651087 DOI: 10.3389/fmicb.2022.1025727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) cause serious damage to agricultural production worldwide. Currently, because of a lack of effective and environmental-friendly chemical nematicides, the use of microbial nematicides has been proposed as an eco-friendly management strategy to control PPNs. A nematicidal bacterium GC-7 was originally isolated from the rice rhizosphere, and was identified as Pseudomonas rhodesiae. Treatment with the fermentation supernatant of GC-7 in vitro showed a highly lethal effect on second-stage juveniles of Meloidogyne graminicola, with the mortality rate increasing to 95.82% at 24 h and egg hatching significantly inhibited, with a hatch inhibition rate of 60.65% at 96 h. The bacterium significantly reduced the level of damage caused by M. graminicola infestations to rice (Oryza sativa) in greenhouse and field experiments. Under greenhouse conditions, the GC-7 culture efficiently reduced the gall index and nematode population in rice roots and soils, as well as inhibited nematode development compared to the control. Under field conditions, application of the GC-7 consistently showed a high biocontrol efficacy against M. graminicola (with a control efficiency of 58.85%) and promoted plant growth. In addition, the inoculation of GC-7 in M. graminicola-infested rice plant fields significantly suppressed final nematode populations in soil under natural conditions. Furthermore, activities of plant defense-related enzymes, peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase were remarkably increased in plant roots treated with GC-7 compared with roots that were challenge to M. graminicola. Moreover, quantitative real-time PCR analysis showed that GC-7 significantly enhanced the expression of defense genes (PR1a, WRKY45, JaMYB, AOS2, ERF1, and ACS1) related to salicylic acid, jasmonic acid, and ethylene signaling pathways in rice roots after inoculation with GC-7 at different levels. The results indicated that GC-7 could be an effective biological component in the integrated management of M. graminicola infecting rice.
Collapse
Affiliation(s)
- Shan Ye
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, China
| | - Rui Yan
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinwen Li
- Agriculture and Rural Department of Hunan Province, Plant Protection and Inspection Station, Changsha, Hunan, China
| | - Yufeng Lin
- Agriculture and Rural Department of Hunan Province, Plant Protection and Inspection Station, Changsha, Hunan, China
| | - Zhuhong Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, China
| | - Yihang Ma
- Department of Chemical Metrology and Reference Materials, Hunan Institute of Metrology and Test, Changsha, Hunan, China
| | - Zhong Ding
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, China
- *Correspondence: Zhong Ding,
| |
Collapse
|
10
|
Fanelli E, Gaffuri F, Troccoli A, Sacchi S, De Luca F. New occurrence of Meloidogyne graminicola (Nematoda: Meloidogyninae) from rice fields in Italy: Variability and phylogenetic relationships. Ecol Evol 2022; 12:e9326. [PMID: 36188499 PMCID: PMC9486484 DOI: 10.1002/ece3.9326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
Since the first detection of Meloidogyne graminicola in Piedmont, North Italy, in 2016, further inspections for the presence of the rice root-knot nematode were carried out in rice fields of neighboring regions, in accordance with the Italian NPPO (National Plant Protection Organization) to support the official phytosanitary measures, to enable the early detection of the rice pest, and to prevent its spread within the national territory. In 2018, surveys of rice fields in Lombardy region revealed a new occurrence of M. graminicola. In the present study, we confirmed the identification of the rice nematode in Lombardy using the ribosomal ITS region and the mitochondrial COI and COII genes. The sequences and phylogenetic analyses revealed that Lombardy M. graminicola population grouped in all trees in the main cluster containing Meloidogyne species belonging to graminis group, but always in a different subgroup compared to the Piedmont population of M. graminicola. These results clearly suggest that the two Italian populations have been recently and independently introduced and confirm that the geographic origin is not the main factor leading to M. graminicola population variability.
Collapse
Affiliation(s)
- Elena Fanelli
- Istituto per la Protezione Sostenibile delle Piante, BariConsiglio Nazionale delle RicercheBariItaly
| | - Francesca Gaffuri
- Laboratorio Fitosanitario Regione Lombardia presso Fondazione MinoprioVertemate con MinoprioItaly
| | - Alberto Troccoli
- Istituto per la Protezione Sostenibile delle Piante, BariConsiglio Nazionale delle RicercheBariItaly
| | - Stefano Sacchi
- Laboratorio Fitosanitario Regione Lombardia presso Fondazione MinoprioVertemate con MinoprioItaly
| | - Francesca De Luca
- Istituto per la Protezione Sostenibile delle Piante, BariConsiglio Nazionale delle RicercheBariItaly
| |
Collapse
|
11
|
De Kesel J, Degroote E, Nkurunziza R, Singh RR, Demeestere K, De Kock K, Anggraini R, Matthys J, Wambacq E, Haesaert G, Debode J, Kyndt T. Cucurbitaceae COld Peeling Extracts (CCOPEs) Protect Plants From Root-Knot Nematode Infections Through Induced Resistance and Nematicidal Effects. FRONTIERS IN PLANT SCIENCE 2022; 12:785699. [PMID: 35154177 PMCID: PMC8826469 DOI: 10.3389/fpls.2021.785699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
With nematicides progressively being banned due to their environmental impact, an urgent need for novel and sustainable control strategies has arisen. Stimulation of plant immunity, a phenomenon referred to as "induced resistance" (IR), is a promising option. In this study, Cucurbitaceae COld Peeling Extracts (CCOPEs) were shown to protect rice (Oryza sativa) and tomato (Solanum lycopersicum) against the root-knot nematodes Meloidogyne graminicola and Meloidogyne incognita, respectively. Focusing on CCOPE derived from peels of melon (Cucumis melo var. cantalupensis; mCOPE), we unveiled that this extract combines an IR-triggering capacity with direct nematicidal effects. Under lab conditions, the observed resistance was comparable to the protection obtained by commercially available IR stimuli or nematicides. Via mRNA sequencing and confirmatory biochemical assays, it was proven that mCOPE-IR in rice is associated with systemic effects on ethylene accumulation, reactive oxygen species (ROS) metabolism and cell wall-related modifications. While no negative trade-offs were detected with respect to plant growth or plant susceptibility to necrotrophic pests or pathogens, additional infection experiments indicated that mCOPE may have a predominant activity toward biotrophs. In summary, the presented data illustrate a propitious potential for these extracts, which can be derived from agro-industrial waste streams.
Collapse
Affiliation(s)
- Jonas De Kesel
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eva Degroote
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Radisras Nkurunziza
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard Raj Singh
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Karen De Kock
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Riska Anggraini
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jasper Matthys
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eva Wambacq
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jane Debode
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|