1
|
Ahsan R, Khan MM, Mishra A, Noor G, Ahmad U. Plumbagin as a potential therapeutic agent for scopolamine-induced Alzheimer's disease: Mechanistic insights into GSK-3β inhibition. Brain Res 2025:149650. [PMID: 40250748 DOI: 10.1016/j.brainres.2025.149650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/05/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND The study aimed to evaluate Plumbagin's neuroprotective potential against scopolamine-induced Alzheimer's disease, proposing that its effects may involve GSK-3β inhibition, a key factor in tau hyperphosphorylation, to promote neuroprotection in Wistar rats. METHODS Alzheimer's was induced in male Wistar rats. After acclimatization, the rats were subjected to daily intraperitoneal treatment with scopolamine (0.7 mg/kg) and oral administration of Plumbagin (10 mg/kg) for 13 days. The cognitive function of treated rats was evaluated using the Morris water maze test, along with assessments of locomotor activity, acetylcholinesterase activity (AChE), protein levels, antioxidant parameters, cytokines and Brain-Derived Neurotrophic Factor (BDNF) and brain histopathology (hippocampus). RESULTS The Plumbagin (10 mg/kg, oral) as given orally significantly improved neurobehavioral alterations compared to Alzheimer's induced group. Scopolamine impaired cognitive function and increased locomotor activity (#P < 0.05). Treatments improved Morris water maze performance, reducing Escape latency time and increasing Time spent in the target quadrant (*P < 0.05). Biochemically, treatments significantly improved BDNF (*P < 0.05), decreased AChE activity, oxidative stress, reduced Interleukin-6 and Tumor Necrosis Factor Alpha (*P < 0.05) and reversed Scopolamine induced hippocampal neuronal loss (##P < 0.01). Plumbagin showed significant (*P < 0.05) neuroprotective effects, improving cognitive function, reducing AChE activity, Malondialdehyde, oxidative stress, and neuroinflammatory markers exceeding individual treatments in the scopolamine-induced Alzheimer's disease model. These improvements suggest a possible mechanism through the inhibition of GSK-3β, which may contribute to the observed neuroprotective effects. CONCLUSION This study suggests that Plumbagin's neuroprotective effects in scopolamine-induced Alzheimer's disease may involve GSK-3β inhibition. Plumbagin shows significant therapeutic potential for Alzheimer's treatment, warranting further investigation of its mechanism.
Collapse
Affiliation(s)
- Rabiya Ahsan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, 226022 Lucknow, India
| | - Mohd Muazzam Khan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, 226022 Lucknow, India.
| | - Anuradha Mishra
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow Campus, AmityUniversity, Uttar Pradesh, Sector 125, Noida 201313, India
| | - Gazala Noor
- Department of Pharmacology, Faculty of Pharmacy, Integral University, 226022 Lucknow, India
| | - Usama Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
2
|
Adnan M, Siddiqui AJ, Bardakci F, Surti M, Badraoui R, Patel M. Mechanistic Insights into the Neuroprotective Potential of Aegle marmelos (L.) Correa Fruits against Aβ-Induced Cell Toxicity in Human Neuroblastoma SH-SY5Y Cells. Pharmaceuticals (Basel) 2025; 18:489. [PMID: 40283926 PMCID: PMC12030591 DOI: 10.3390/ph18040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Amyloid-β (Aβ) plaque accumulation, oxidative stress, and cholinergic dysfunction are hallmarks of Alzheimer's disease (AD), a neurodegenerative disability that progresses over time, ultimately resulting in the loss of neurons. The side effects and limitations of current synthetic drugs have shifted attention toward natural alternatives. This study investigates the ethanolic extract of Aegle marmelos (L.) Corrêa fruits for their antioxidant, AChE-inhibitory, and anti-amyloidogenic properties, as well as their neuroprotective effects against amyloid beta-peptide (Aβ1-42). Methods: Phytochemical constituents were identified through HR-LCMS analysis and their antioxidant (DPPH, FRAP) and neuroprotective activities (AChE inhibition, ThT binding, MTT assay, ROS reduction, MMP restoration, and AD-related gene expression via qRT-PCR) were assessed using SHSY-5Y neuroblastoma cells. Results: The extract revealed the existence of flavonoids, phenols, and other bioactive substances. In vitro assays demonstrated strong antioxidant and AChE-inhibitory activities, while the ThT binding assay showed protection against amyloid-β aggregation. The extract exhibited no cytotoxicity in SHSY-5Y cells, even at a concentration of 500 μg/mL, whereas Aβ1-42 at 20 μM induced significant cytotoxicity. Co-treatment with Aβ1-42 (10 μM and 20 μM) and the extract improved cell viability (˃50%) and reduced ROS levels. Additionally, the extract restored mitochondrial membrane potential in Aβ1-42 treated cells, highlighting its role in preserving mitochondrial function. Conclusions: These findings suggest that A. marmelos fruits serve as a powerful source of natural antioxidants, AChE inhibitors, and anti-amyloidogenic agents, positioning them as a compelling option for AD treatment.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.)
- King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.)
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.)
| | - Malvi Surti
- Research and Development Cell (RDC), Parul University, Waghodia, Vadodara 391760, Gujarat, India
- Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Waghodia, Vadodara 391760, Gujarat, India
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.)
| | - Mitesh Patel
- Research and Development Cell (RDC), Parul University, Waghodia, Vadodara 391760, Gujarat, India
- Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Waghodia, Vadodara 391760, Gujarat, India
| |
Collapse
|
3
|
Cornea M, Vintilă BI, Bucuța M, Ștef L, Anghel CE, Grama AM, Lomnasan A, Stetiu AA, Boicean A, Sava M, Paziuc LC, Manea MC, Tîbîrnă A, Băcilă CI. Efficacy of Transcranial Direct Current Stimulation and Photobiomodulation in Improving Cognitive Abilities for Alzheimer's Disease: A Systematic Review. J Clin Med 2025; 14:1766. [PMID: 40095881 PMCID: PMC11900501 DOI: 10.3390/jcm14051766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Due to the increasing global prevalence of Alzheimer's dementia (AD), neuromodulation techniques such as transcranial direct current stimulation (tDCS) and photobiomodulation (PBM) are considered potential complementary therapies. Objective: We assessed the efficacy and safety of tDCS and PBM and their potential to enhance cognitive functions in individuals with AD. Methods: This review primarily examined studies designed to evaluate the efficacy, followed by an assessment of the safety of tDCS and PBM for people with AD. The databases searched were PubMed, Scopus, and Web of Science Core Collection, resulting in 17 published randomized and controlled trials. References were screened over 5 years (2020-2024). The research design used PRISMA guidelines. Results: Fourteen studies were considered for tDCS, and the current literature supports efficacy and safety at an amperage of 2 mA, with electrodes placed on the dorsolateral prefrontal cortex (DLPFC). Three studies were included for PBM. The heterogeneity of these study measures made them unsuitable for combined efficacy analysis, and they did not provide a safety evaluation. Conclusions: Despite differences in efficacy assessments, tDCS and PBM improved cognitive abilities. There is an urgent need to standardize metrics for evaluating efficacy and safety, particularly for PBM. Future research is encouraged.
Collapse
Affiliation(s)
- Monica Cornea
- “Dr. Gheorghe Preda” Clinical Psychiatry Hospital of Sibiu, 550082 Sibiu, Romania; (M.C.); (C.E.A.); (A.M.G.); (A.L.); (C.-I.B.)
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (L.Ș.); (A.A.S.); (A.B.); (M.S.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania
- Neuroscience Scientific Research Collective, 550082 Sibiu, Romania
| | - Mihaela Bucuța
- Faculty of Social Sciences and Humanities, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Laura Ștef
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (L.Ș.); (A.A.S.); (A.B.); (M.S.)
| | - Claudia Elena Anghel
- “Dr. Gheorghe Preda” Clinical Psychiatry Hospital of Sibiu, 550082 Sibiu, Romania; (M.C.); (C.E.A.); (A.M.G.); (A.L.); (C.-I.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (L.Ș.); (A.A.S.); (A.B.); (M.S.)
- Neuroscience Scientific Research Collective, 550082 Sibiu, Romania
| | - Andreea Maria Grama
- “Dr. Gheorghe Preda” Clinical Psychiatry Hospital of Sibiu, 550082 Sibiu, Romania; (M.C.); (C.E.A.); (A.M.G.); (A.L.); (C.-I.B.)
| | - Andrei Lomnasan
- “Dr. Gheorghe Preda” Clinical Psychiatry Hospital of Sibiu, 550082 Sibiu, Romania; (M.C.); (C.E.A.); (A.M.G.); (A.L.); (C.-I.B.)
| | - Andreea Angela Stetiu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (L.Ș.); (A.A.S.); (A.B.); (M.S.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania
| | - Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (L.Ș.); (A.A.S.); (A.B.); (M.S.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (L.Ș.); (A.A.S.); (A.B.); (M.S.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania
| | - Lucian Constantin Paziuc
- Campulung Moldovenesc Psychiatric Hospital, Trandafirilor Street 2, 725100 Câmpulung Moldovenesc, Romania;
| | - Mihnea Costin Manea
- “Prof. Dr. Alexandru Obregia” Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.C.M.); (A.T.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Bvd, 050474 Bucharest, Romania
| | - Andrian Tîbîrnă
- “Prof. Dr. Alexandru Obregia” Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.C.M.); (A.T.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Bvd, 050474 Bucharest, Romania
| | - Ciprian-Ionuț Băcilă
- “Dr. Gheorghe Preda” Clinical Psychiatry Hospital of Sibiu, 550082 Sibiu, Romania; (M.C.); (C.E.A.); (A.M.G.); (A.L.); (C.-I.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (L.Ș.); (A.A.S.); (A.B.); (M.S.)
- Neuroscience Scientific Research Collective, 550082 Sibiu, Romania
| |
Collapse
|
4
|
Bhattacharya RS, Singh R, Panghal A, Thakur A, Singh L, Verma RK, Singh C, Goyal M, Kumar J. Multi-Targeting Phytochemicals for Alzheimer's Disease. Phytother Res 2025; 39:1453-1483. [PMID: 39815655 DOI: 10.1002/ptr.8435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/23/2024] [Accepted: 12/28/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative illness in which β-amyloid (Aβ) and tau protein accumulate in neurons in the form of tangles. The pathophysiological pathway of AD consists of Aβ-amyloid peptides, tau proteins, and oxidative stress in neurons and increased neuro-inflammatory response. Food and Drug Administration in the United States has authorized various drugs for the effective treatment of AD, which include galantamine, rivastigmine, donepezil, memantine, sodium oligomannate, lecanemab, and aducanumab. The major disadvantage of these drugs is that they only provide "symptomatic" relief. They are most effective in the early stages or for mild to moderate cases of the disease, but are not suitable for long-term use. Besides conventional therapies, phytochemicals have the potential to stop the progression of AD. According to research, the use of potential phytochemicals against AD has gained attention due to their potent anti-inflammatory, antioxidant, anti-hyperphosphorylation of the tau protein, metal chelation, and anti-amyloid properties. This study seeks to provide an up-to-date compilation of the most current and promising breakthroughs in AD therapy using phytochemicals. It could be concluded that phytochemicals light serve as an effective therapy for AD. However, more mechanistic investigations are needed to determine the clinical implications of phytochemicals in AD treatment.
Collapse
Affiliation(s)
- Radha Shree Bhattacharya
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Punjab, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, Himachal Pradesh, India
| | - Lachhman Singh
- Faculty of Pharmacy, Government Pharmacy College, Seraj, V.P.O. Bagsaid, Mandi, Himachal Pradesh, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| |
Collapse
|
5
|
Hussein AM, Abouelnaga AF, Obydah W, Saad S, Abass M, Yehia A, Ibrahim EM, Ahmed AT, Abulseoud OA. Lateral hypothalamic area high-frequency deep brain stimulation rescues memory decline in aged rat: behavioral, molecular, and electrophysiological study. Pflugers Arch 2025; 477:371-391. [PMID: 39836224 PMCID: PMC11825635 DOI: 10.1007/s00424-024-03059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
To examine the effect of DBS of the lateral hypothalamic area (LHA) on age-related memory changes, neuronal firing from CA1, oxidative stress, and the expression of Hsp70, BDNF, and synaptophysin. 72 male rats were randomly allocated into 6 equal groups: a) normal young group (8 W), b) sham young group, c) DBS young group, d) normal old group (24 months), e) sham old group and f) DBS old group. Memory tests (passive avoidance and Y maze), oxidative stress markers (MDA, catalase, and GSH) and expression of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin were measured by the end of the experiment. Also, in vivo recording of the neuronal firing of the CA1 region in the hippocampus was done. Old rats show significant decline in memories, antioxidant genes (Nrf2 and HO-1), antioxidants (GSH and catalase), Hsp70, BDNF, and synaptophysin with significant increase in MDA in hippocampus (p < 0.05) and DBS for LHA caused a significant improvement in memories in old rats, with significant rise in fast gamma and theta waves in CA1 region in old rats (p < 0.05). This was associated with a significant increase in antioxidants (GSH and CAT), antioxidant genes (Nrf2, HO-1), Hsp70, BDNF, and synaptophysin with significant reduction in MDA in hippocampus (p < 0.05). DBS for LHA ameliorates the age-induced memory decline. This might be due to increase in fast gamma in CA1, attenuation of oxidative stress, upregulation of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin in the hippocampus.
Collapse
Affiliation(s)
- Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt.
| | - Ahmed F Abouelnaga
- Department of Animal Behavior and Management, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Walaa Obydah
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
| | - Somaya Saad
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa Yehia
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, USA
| | - Eman M Ibrahim
- Department of Anatomic Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed T Ahmed
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
6
|
Sanchis I, Aimaretti F, Lupotti M, Rietmann A, Dias J, Brazzolotto X, Spinelli R, Siano ÁS. Specific Rosetta-based protein-peptide prediction protocol allows the design of novel cholinesterase inhibitor peptides. Bioorg Chem 2025; 156:108202. [PMID: 39862740 DOI: 10.1016/j.bioorg.2025.108202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The search for novel cholinesterase inhibitors is essential for advancing treatments for neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we employed the Rosetta pepspec module, originally developed for designing peptides targeting protein-protein interactions, to design de novo peptides targeting the peripheral aromatic site (PAS) of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). A total of nine peptides were designed for human AChE (hAChE), T. californica AChE (TcAChE), and human BChE (hBChE). These peptides were synthesized using Fmoc-SPPS and tested in vitro using Ellman's reaction to evaluate their inhibitory potency. Peptide 11tA, designed for TcAChE, exhibited potent inhibition of hAChE (IC50 = 1.21 ± 0.25 µM) and demonstrated strong antioxidant activity against DPPH radicals and lipid peroxidation, making it a promising multitherapeutic candidate for AD. Peptide 11hB, designed for hBChE, showed the highest inhibitory activity against hBChE, with a Ki of 12.69 ± 1.27 µM, making it the most potent natural amino acid peptide reported against hBChE. The computational protocol effectively distinguished the specific characteristics of each enzyme target. Toxicity assessments, including hemolysis tests and A. salina lethality assays, revealed no toxic effects at low concentrations, further supporting the potential of these peptides for peptide-based drug development in AD. This study underscores the growing potential of peptides as alternatives to small-molecule drugs. It demonstrates that computational protocols for protein-protein interactions can be successfully adapted to design high-affinity peptide inhibitors.
Collapse
Affiliation(s)
- Ivan Sanchis
- Laboratorio de Peptidos Bioactivos, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina; National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz 2290, Ciudad de Buenos Aires, Argentina
| | - Florencia Aimaretti
- Laboratorio de Peptidos Bioactivos, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina; National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz 2290, Ciudad de Buenos Aires, Argentina
| | - Matias Lupotti
- Laboratorio de Peptidos Bioactivos, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Alvaro Rietmann
- Laboratorio de Peptidos Bioactivos, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina; National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz 2290, Ciudad de Buenos Aires, Argentina
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées (IRBA), 1 Place du Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées (IRBA), 1 Place du Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Roque Spinelli
- Laboratorio de Peptidos Bioactivos, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina; National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz 2290, Ciudad de Buenos Aires, Argentina
| | - Álvaro S Siano
- Laboratorio de Peptidos Bioactivos, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina; National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz 2290, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
7
|
Naik RA, Mir MN, Malik IA, Bhardwaj R, Alshabrmi FM, Mahmoud MA, Alhomrani M, Alamri AS, Alsanie WF, Hjazi A, Ghatak T, Poeggeler B, Singh MP, Ts G, Singh SK. The Potential Mechanism and the Role of Antioxidants in Mitigating Oxidative Stress in Alzheimer's Disease. FRONT BIOSCI-LANDMRK 2025; 30:25551. [PMID: 40018917 DOI: 10.31083/fbl25551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 03/01/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and a significant contributor to health issues and mortality among older individuals. This condition involves a progressive deterioration in cognitive function and the onset of dementia. Recent advancements suggest that the development of AD is more intricate than its underlying brain abnormalities alone. In addition, Alzheimer's disease, metabolic syndrome, and oxidative stress are all intricately linked to one another. Increased concentrations of circulating lipids and disturbances in glucose homeostasis contribute to the intensification of lipid oxidation, leading to a gradual depletion of the body's antioxidant defenses. This heightened oxidative metabolism adversely impacts cell integrity, resulting in neuronal damage. Pathways commonly acknowledged as contributors to AD pathogenesis include alterations in synaptic plasticity, disorganization of neurons, and cell death. Abnormal metabolism of some membrane proteins is thought to cause the creation of amyloid (Aβ) oligomers, which are extremely hazardous to neurotransmission pathways, especially those involving acetylcholine. The interaction between Aβ oligomers and these neurotransmitter systems is thought to induce cellular dysfunction, an imbalance in neurotransmitter signaling, and, ultimately, the manifestation of neurological symptoms. Antioxidants have a significant impact on human health since they may improve the aging process by combating free radicals. Neurodegenerative diseases are currently incurable; however, they may be effectively managed. An appealing alternative is the utilization of natural antioxidants, such as polyphenols, through diet or dietary supplements, which offer numerous advantages. Within this framework, we have extensively examined the importance of oxidative stress in the advancement of Alzheimer's disease, as well as the potential influence of antioxidants in mitigating its effects.
Collapse
Affiliation(s)
- Rayees Ahmad Naik
- Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya Sagar, 470003 Sagar, Madhya Pradesh, India
| | - Mehak Naseer Mir
- NIMS Institute of Allied Medical Science, National Institute of Medical Sciences (NIMS), 303121 Jaipur, Rajasthan, India
| | - Ishfaq Ahmad Malik
- Department of Zoology, Bar. Ramrao Deshmukh Arts, Smt. Indiraji Kapadia Commerce & Nya. Krishnarao Deshmukh Science College, 444701 Amravati, Maharashtra, India
| | - Rima Bhardwaj
- Department of Chemistry Poona College, Savitribai Phule Pune University, 411007 Pune, Maharashtra, India
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Mahmoud Abdulrahman Mahmoud
- Department of Family & Community Medicine, College of Medicine, Imam Muhammad Ibn Saud Islamic University, 13313 Riyadh, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, 21944 Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, 21944 Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, 21944 Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, 21944 Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, 21944 Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, 21944 Taif, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942 Al-Kharj, Saudi Arabia
| | - Tanmoy Ghatak
- Department of Emergency Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, 226014 Lucknow, Uttar Pradesh, India
| | - Burkhard Poeggeler
- Department of Physiology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology Georg August University Göttingen, Göttingen and Goettingen Research Campus, D-38524 Sassenburg, Germany
| | - Mahendra P Singh
- Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, 273009 Gorakhpur, Uttar Pradesh, India
| | - Gopenath Ts
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, 570015 Mysuru, Karnataka, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, 226001 Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Jawad M, Uthirapathy S, Altalbawy FMA, Oghenemaro EF, Rizaev J, Lal M, Eldesoqui M, Sharma N, Pramanik A, Al-Hamairy AK. Examining the role of antioxidant supplementation in mitigating oxidative stress markers in Alzheimer's disease: a comprehensive review. Inflammopharmacology 2025; 33:573-592. [PMID: 39699843 DOI: 10.1007/s10787-024-01622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024]
Abstract
Alzheimer's disease is a devastating neurodegenerative disorder that affects millions of people worldwide. One of the key pathological features of Alzheimer's disease is oxidative stress, which is characterized by an imbalance between the production of reactive oxygen species and the body's ability to neutralize them with antioxidants. In recent years, there has been growing interest in the potential role of antioxidant supplementation in mitigating oxidative stress markers in Alzheimer's disease. This review paper aims to provide a comprehensive overview of the current research on antioxidant supplementation in Alzheimer's disease and its effects on oxidative stress markers. The paper will examine the underlying mechanisms of oxidative stress in Alzheimer's disease, the potential benefits of antioxidant supplementation, and the challenges and limitations of using antioxidants as a therapeutic strategy.
Collapse
Affiliation(s)
- Mahmood Jawad
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Subasini Uthirapathy
- Pharmacology Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, PMB 1, Abraka, Delta State, Nigeria
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Madan Lal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ahmed Khudhair Al-Hamairy
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, Iraq
| |
Collapse
|
9
|
Wang X, Zhang S, Li Y, Zhang Y. The regulation of miRNAs using curcumin and other polyphenols during the prevention and treatment of Alzheimer's disease. Hum Mol Genet 2025; 34:117-127. [PMID: 39561994 DOI: 10.1093/hmg/ddae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD), a prevalent neurodegenerative disorder, predominantly affects individuals over the age of 65 and poses significant challenges in terms of effective management and treatment. The disease's pathogenesis involves complex molecular pathways including misfolded proteins accumulation, neuroinflammation, and synaptic dysfunction. Recent insights have highlighted the role of microRNAs (miRNAs) as critical regulators within these pathways, where they influence gene expression and contribute to the pathophysiological landscape of AD. Notably, emerging research has demonstrated that polyphenols, including curcumin, might modulate miRNA activity, thus offering a novel approach to mitigate AD symptoms and progression. This review explores the potential mechanisms through which polyphenols regulate miRNA expression and activity, specifically focusing on autophagy enhancement and inflammation reduction in the context of AD. We provide a detailed examination of key studies linking miRNA dysregulation to AD pathogenesis and discuss how polyphenols might correct these aberrations. The findings presented here underscore the therapeutic potential of polyphenols in AD treatment via miRNA modulation, pointing to new directions in disease management strategies and highlighting the need for targeted research into miRNA-based interventions.
Collapse
Affiliation(s)
- XiYun Wang
- Department of Neurology, Tiantai People's Hospital of Zhejiang Province, Tiantai Branch of Zhejiang Provincial People's Hospital, Hangzhou Medical College, Taizhou, Zhejiang, China
| | - Sale Zhang
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi 710125, China
| | - Ying Li
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi 710125, China
| | - Yu Zhang
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi 710125, China
| |
Collapse
|
10
|
Song D, Zhang J, Hu X, Liu X. Progress in the treatment of Alzheimer's disease based on nanosized traditional Chinese medicines. J Mater Chem B 2025; 13:1548-1572. [PMID: 39711283 DOI: 10.1039/d4tb02062f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Traditional Chinese medicine (TCM) has been employed for centuries in treating and managing Alzheimer's disease (AD). However, their effective delivery to target sites can be a major challenge. This is due to their poor water solubility, low bioavailability, and potential toxicity. Furthermore, the blood-brain barrier (BBB) is a major obstacle to effective TCM delivery, significantly reducing efficacy. Advancements in nanotechnology and its applications in TCM (nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain area. This review summarizes the recent advances in nanocarrier-based delivery systems for different types of active constituents of TCM for AD, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones. Besides, the main challenges and opportunities for the future development of these advanced TCM nanocarriers are emphasized. In conclusion, this review provides valuable insights and guidance for utilizing nanocarriers to shape future TCM drug delivery.
Collapse
Affiliation(s)
- Dan Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Xiaoyan Liu
- West China Hospital of Sichuan University, 610041, China
| |
Collapse
|
11
|
White AL, Talkington GM, Ouvrier B, Ismael S, Solch-Ottaiano RJ, Bix G. Reactive Oxygen Species, a Potential Therapeutic Target for Vascular Dementia. Biomolecules 2024; 15:6. [PMID: 39858401 PMCID: PMC11761268 DOI: 10.3390/biom15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Vascular dementia (VaD) is a progressive neurodegenerative condition prevalent among elderly adults marked by cognitive decline resulting from injured and/or improperly functioning cerebrovasculature with resultant disruptions in cerebral blood flow. Currently, VaD has no specific therapeutics and the exact pathobiology is still being investigated. VaD has been shown to develop when reactive oxygen species (ROS) form from damaged targets at different levels of organization-mitochondria, endothelial cells, or cerebrovasculature. In this review, we highlight how specific ROS molecules may be important in the development of VaD and how they can be targeted as a potential therapeutic for VaD.
Collapse
Affiliation(s)
- Amanda Louise White
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Grant M. Talkington
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Blake Ouvrier
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Saifudeen Ismael
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rebecca J. Solch-Ottaiano
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Bix
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70122, USA
| |
Collapse
|
12
|
Ngah WZW, Ahmad HF, Ankasha SJ, Makpol S, Tooyama I. Dietary Strategies to Mitigate Alzheimer's Disease: Insights into Antioxidant Vitamin Intake and Supplementation with Microbiota-Gut-Brain Axis Cross-Talk. Antioxidants (Basel) 2024; 13:1504. [PMID: 39765832 PMCID: PMC11673287 DOI: 10.3390/antiox13121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease (AD), which is characterized by deterioration in cognitive function and neuronal death, is the most prevalent age-related progressive neurodegenerative disease. Clinical and experimental research has revealed that gut microbiota dysbiosis may be present in AD patients. The changed gut microbiota affects brain function and behavior through several mechanisms, including tau phosphorylation and increased amyloid deposits, neuroinflammation, metabolic abnormalities, and persistent oxidative stress. The lack of effective treatments to halt or reverse the progression of this disease has prompted a search for non-pharmaceutical tools. Modulation of the gut microbiota may be a promising strategy in this regard. This review aims to determine whether specific dietary interventions, particularly antioxidant vitamins, either obtained from the diet or as supplements, may support the formation of beneficial microbiota in order to prevent AD development by contributing to the systemic reduction of chronic inflammation or by acting locally in the gut. Understanding their roles would be beneficial as it may have the potential to be used as a future therapy option for AD patients.
Collapse
Affiliation(s)
- Wan Zurinah Wan Ngah
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Hajar Fauzan Ahmad
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Pahang, Malaysia;
| | - Sheril June Ankasha
- Unisza Science and Medicine Foundation Centre, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia;
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ikuo Tooyama
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| |
Collapse
|
13
|
Apiraksattayakul S, Pingaew R, Prachayasittikul V, Ruankham W, Tantimongcolwat T, Prachayasittikul V, Prachayasittikul S, Phopin K. Neuroprotective Potential of Aminonaphthoquinone Derivatives Against Amyloid Beta-Induced Neuronal Cell Death Through Modulation of SIRT1 and BACE1. Neurochem Res 2024; 50:50. [PMID: 39644364 PMCID: PMC11625074 DOI: 10.1007/s11064-024-04281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 12/09/2024]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of tau protein tangles and amyloid-β (Aβ) plaques in the central nervous system (CNS), leading to progressive neurodegeneration. Hence, the discovery of disease-modifying agents capable of delaying the progression is essential for effective management. Aminonaphthoquinone (ANQ) is an attractive pharmacophore with various biological effects. This study explores the neuroprotective potentials of ANQ derivatives (1-18) using in vitro models of AD pathology (i.e., Aβ42-induced SH-SY5Y cells). Findings demonstrated that all compounds mitigated Aβ42-induced cellular damage by preserving cell viability and morphology. Among all, four compounds (10, 12, 16, and 18) showed potent antioxidant activities as well as abilities to minimize AD-related damages (i.e. decreasing intracellular reactive oxygen species (ROS) production, preserving mitochondrial membrane potential (MMP), protecting membrane damage, and modulating beta-secretase 1 (BACE1) activity) with comparable protective effects to the well-known neuroprotectant, resveratrol (RSV). A molecular docking study indicated these compounds could suitably bind to sirtuin 1 (SIRT1) protein with preferable affinity. Key amino acid residues and key functional groups essential for binding interactions were revealed. Target prediction identified a list of possible AD-related targets of these compounds offering insights into their mechanisms of action and suggesting their multifunctional potentials. Additionally, in silico predictions revealed that these candidates showed favorable drug-like properties. Overall, this study highlighted the therapeutic potential of ANQ derivatives in AD treatment, emphasizing the need for further experimental validation and comprehensive investigations to fully realize their therapeutic benefits.
Collapse
Affiliation(s)
- Setthawut Apiraksattayakul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| | - Veda Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Waralee Ruankham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kamonrat Phopin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
14
|
Dhurandhar Y, Tomar S, Das A, Singh AP, Prajapati JL, Bodakhe SH, Namdeo KP. Unlocking the Potential of Oxymatrine: A Comprehensive Review of Its Neuroprotective Mechanisms and Therapeutic Prospects in Neurological Disorders. ACS Chem Neurosci 2024; 15:4245-4257. [PMID: 39539195 DOI: 10.1021/acschemneuro.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Sophora flavescens, the source of oxymatrine, is gaining popularity due to its potential in neuroprotection and treatment of various neurological conditions like epilepsy, depression, Parkinson's, Alzheimer's and multiple sclerosis. Its natural occurrence and promising preliminary research highlight its ability to reduce nerve cell damage and inflammation, attributed to its antiapoptotic, antioxidant and anti-inflammatory properties. However, challenges like solubility, potential adverse effects and limited bioavailability hinder its full therapeutic utilization. Current strategies, including formulation optimization and innovative drug delivery systems, aim to enhance its efficacy and safety. Despite its potential, further research is necessary to overcome these obstacles and maximize its clinical effectiveness. Conclusively, oxymatrine demonstrates distinct neuroprotective properties, offering unique advantages over other agents currently being studied or used in clinical practice for neurological disorders. nevertheless, additional study is necessary to surmount current obstacles and maximize its effectiveness for clinical settings. This study provides a comprehensive overview of oxymatrine's neuroprotective mechanisms and therapeutic potential while emphasizing the need for continued investigation and development for practical clinical application.
Collapse
Affiliation(s)
- Yogita Dhurandhar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Shubham Tomar
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - As Pee Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Jeevan Lal Prajapati
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Kamta P Namdeo
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
15
|
Petkova-Kirova P, Anastassova N, Minchev B, Uzunova D, Grigorova V, Tsvetanova E, Georgieva A, Alexandrova A, Stefanova M, Yancheva D, Kalfin R, Tancheva L. Behavioral and Biochemical Effects of an Arylhydrazone Derivative of 5-Methoxyindole-2-Carboxylic Acid in a Scopolamine-Induced Model of Alzheimer's Type Dementia in Rats. Molecules 2024; 29:5711. [PMID: 39683869 DOI: 10.3390/molecules29235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) has long proven to be a complex neurodegenerative disorder, with cholinergic dysfunction, oxidative stress, and neuroinflammation being just a few of its pathological features. The complexity of the disease requires a multitargeted treatment covering its many aspects. In the present investigation, an arylhydrazone derivative of 5-methoxyindole-2-carboxylic acid (5MeO), with in vitro strong antioxidant, neuroprotective and monoamine oxidase B-inhibiting effects, was studied in a scopolamine-induced Alzheimer-type dementia in rats. Using behavioral and biochemical methods, we evaluated the effects of 5MeO on learning and memory, and elucidated the mechanisms of these effects. Our experiments demonstrated that 5MeO had a beneficial effect on different types of memory as assessed by the step-through and the Barnes maze tasks. It efficiently restored the decreased by scopolamine brain-derived neurotrophic factor and acetylcholine levels and normalized the increased by scopolamine acetylcholine esterase activity in hippocampus. Most effective 5MeO was in counteracting the induced by scopolamine oxidative stress by decreasing the increased by scopolamine levels of lipid peroxidation and by increasing the reduced by scopolamine catalase activity. Blood biochemical analyses demonstrated a favorable safety profile of 5MeO, prompting further pharmacological studies suggesting 5MeO as a safe and efficient candidate in a multitargeted treatment of AD.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Valya Grigorova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Physiology and Biochemistry, National Sports Academy, Acad. S. Mladenov Str. 21, 1700 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health, Healthcare and Sport, South-West University, Ivan Mihailov 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| |
Collapse
|
16
|
Singh R, Panghal A, Jadhav K, Thakur A, Verma RK, Singh C, Goyal M, Kumar J, Namdeo AG. Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer's Disease. Mol Neurobiol 2024; 61:10916-10940. [PMID: 38809370 DOI: 10.1007/s12035-024-04256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Changes in the transition metal homeostasis in the brain are closely linked with Alzheimer's disease (AD), including intraneuronal iron accumulation and extracellular copper and zinc pooling in the amyloid plague. The brain copper, zinc, and iron surplus are commonly acknowledged characteristics of AD, despite disagreements among some. This has led to the theory that oxidative stress resulting from abnormal homeostasis of these transition metals may be a causative explanation behind AD. In the nervous system, the interaction of metals with proteins appears to be an essential variable in the development or suppression of neurodegeneration. Chelation treatment may be an option for treating neurodegeneration induced by transition metal ion dyshomeostasis. Some clinicians even recommend using chelating agents as an adjunct therapy for AD. The current review also looks at the therapeutic strategies that have been attempted, primarily with metal-chelating drugs. Metal buildup in the nervous system, as reported in the AD, could be the result of compensatory mechanisms designed to improve metal availability for physiological functions.
Collapse
Affiliation(s)
- Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institutes of Nano Science and Technology (INST), Sector 81. Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Krishna Jadhav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, ICFAI University, Baddi, Distt. Solan, Himachal Pradesh, 174103, India
| | - Rahul Kumar Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Charan Singh
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India.
| | - Ajay G Namdeo
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| |
Collapse
|
17
|
Guo Y, Cai C, Zhang B, Tan B, Tang Q, Lei Z, Qi X, Chen J, Zheng X, Zi D, Li S, Tan J. Targeting USP11 regulation by a novel lithium-organic coordination compound improves neuropathologies and cognitive functions in Alzheimer transgenic mice. EMBO Mol Med 2024; 16:2856-2881. [PMID: 39394468 PMCID: PMC11555261 DOI: 10.1038/s44321-024-00146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024] Open
Abstract
Alzheimer's Disease (AD), as the most common neurodegenerative disease worldwide, severely impairs patients' cognitive functions. Although its exact etiology remains unclear, the abnormal aggregations of misfolded β-amyloid peptide and tau protein are considered pivotal in its pathological progression. Recent studies identify ubiquitin-specific protease 11 (USP11) as the key regulator of tau deubiquitination, exacerbating tau aggregation and AD pathology. Thereby, inhibiting USP11 function, via either blocking USP11 activity or lowering USP11 protein level, may serve as an effective therapeutic strategy against AD. Our research introduces IsoLiPro, a unique lithium isobutyrate-L-proline coordination compound, effectively lowers USP11 protein level and enhances tau ubiquitination in vitro. Additionally, long-term oral administration of IsoLiPro dramatically reduces total and phosphorylated tau levels in AD transgenic mice. Moreover, IsoLiPro also significantly lessens β-amyloid deposition and synaptic damage, improving cognitive functions in these animal models. These results indicate that IsoLiPro, as a novel small-molecule USP11 inhibitor, can effectively alleviate AD-like pathologies and improve cognitive functions, offering promise as a potential multi-targeting therapeutic agent against AD.
Collapse
Affiliation(s)
- Yi Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chuanbin Cai
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Bingjie Zhang
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China
| | - Bo Tan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Qinmin Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhifeng Lei
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Department of Pharmacy, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaojiang Zheng
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China
| | - Dan Zi
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, 550025, Guizhou, China
| | - Song Li
- First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China.
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China.
- Institute of Translational Medicine; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
18
|
Gastalho CM, Sena AM, López Ó, Fernández-Bolaños JG, García-Sosa AT, Pereira F, Antunes CM, Costa AR, Burke AJ, Carreiro EP. Assessing the Potential of 1,2,3-Triazole-Dihydropyrimidinone Hybrids Against Cholinesterases: In Silico, In Vitro, and In Vivo Studies. Int J Mol Sci 2024; 25:11153. [PMID: 39456935 PMCID: PMC11508620 DOI: 10.3390/ijms252011153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Combining the pharmacological properties of the 1,2,3-triazole and dihydropyrimidinone classes of compounds, two small families of mono- and di(1,2,3-triazole)-dihydropyrimidinone hybrids, A and B, were previously synthesized. The main objective of this work was to investigate the potential anti-Alzheimer effects of these hybrids. The inhibitory activities of cholinesterases (AChE and BuChE), antioxidant activity, and the inhibitory mechanism through in silico (molecular docking) and in solution (STD-NMR) experiments were evaluated. The 1,2,3-triazole-dihydropyrimidinone hybrids (A and B) showed moderate in vitro inhibitory activity on eqBuChE (IC50 values between 1 and 58.4 μM). The best inhibitor was the hybrid B4, featuring two 1,2,3-triazole cores, which exhibited stronger inhibition than galantamine, with an IC50 of 1 ± 0.1 μM for eqBuChE, through a mixed inhibition mechanism. Among the hybrids A, the most promising inhibitor was A1, exhibiting an IC50 of 12 ± 2 µM, similar to that of galantamine. Molecular docking and STD-NMR experiments revealed the key binding interactions of these promising inhibitors with BuChE. Hybrids A and B did not display Artemia salina toxicity below 100 μM.
Collapse
Affiliation(s)
- Carlos M. Gastalho
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Ana M. Sena
- Department of Chemistry and Biochemistry, School of Sciences and Technologies, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal;
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (Ó.L.); (J.G.F.-B.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (Ó.L.); (J.G.F.-B.)
| | | | - Florbela Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Célia M. Antunes
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Ana R. Costa
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Anthony J. Burke
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
- Faculty Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Departamento de Química, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Center for Neurosciences and Cellular Biology (CNC), Polo I, Universidade de Coimbra Rua Larga Faculdade de Medicina, Polo I, 1ºandar, 3004-504 Coimbra, Portugal
| | - Elisabete P. Carreiro
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
| |
Collapse
|
19
|
Mahnashi MH, Ayaz M, Ghufran M, Almazni IA, Alqahtani O, Alyami BA, Alqahtani YS, Khan HA, Sadiq A, Waqas M. Phytochemicals-based β-amyloid cleaving enzyme-1 and MAO-B inhibitors for the treatment of Alzheimer's disease: molecular simulations-based predictions. J Biomol Struct Dyn 2024; 42:8359-8371. [PMID: 37815007 DOI: 10.1080/07391102.2023.2265494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/01/2023] [Indexed: 10/11/2023]
Abstract
Alzheimer's disease (AD) is among the highly prevalent neurodegenerative disorder of the aging brain and is allied with cognitive and behavioral abnormalities. Unfortunately, there is very limited drug discovery for the effective management of AD, and the clinically approved drugs have limited efficacy. Consequently, there is an immediate demand for the development of new compounds that have the ability to act as multitarget-directed ligands (MTDLs). As major pathological targets of the disease, the current study aimed to investigate lead natural bioactive compounds including apigenin, epigallocatechin-3-gallate, berberine, curcumin, genistein, luteolin, quercetin, resveratrol for their inhibitory potentials against β-amyloid cleaving enzyme-1 (BACE1) and monoamine oxidase-B (MAO-B) enzymes. The study compounds were docked against the target enzymes (MAO-B and BACE1) using MOE software and subsequent molecular dynamics simulations (MDS) studies. The molecular docking analysis revealed that these phytochemicals (MTDLs) showed good interactions with the target enzymes as compared to the reference inhibitors. Among these eight phytocompounds, the epigallocatechin-3-gallate compound was an active inhibitor against both drug targets, with the highest docking scores and good interactions with the active residues of the enzymes. Furthermore, the docking result of the active one inhibitor in complex with the target enzymes (epigallocatechin-3-gallate/BACE1, epigallocatechin-3-gallate/MAO-B, reference/BACE1 and reference/MAO-B) were further validated by MDS. According to the findings of our study, epigallocatechin-3-gallate has the potential to be a candidate for use in the treatment of neurological illnesses like AD. This compound has MTDL potential and may be exploited to create new compounds with disease-modifying features.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Mehreen Ghufran
- Department of Pathology, Medical Teaching Institution, Bacha Khan Medical College (BKMC), Mardan, Pakistan
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Omaish Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Haider Ali Khan
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdul Sadiq
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Dhodial, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
20
|
Gladen-Kolarsky N, Monestime O, Bollen M, Choi J, Yang L, Magaña AA, Maier CS, Soumyanath A, Gray NE. Withania somnifera (Ashwagandha) Improves Spatial Memory, Anxiety and Depressive-like Behavior in the 5xFAD Mouse Model of Alzheimer's Disease. Antioxidants (Basel) 2024; 13:1164. [PMID: 39456417 PMCID: PMC11504317 DOI: 10.3390/antiox13101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Withania somnifera (WS), also known as ashwagandha, is a popular botanical supplement used to treat various conditions including memory loss, anxiety and depression. Previous studies from our group showed an aqueous extract of WS root (WSAq) enhances cognition and alleviates markers for depression in Drosophila. Here, we sought to confirm these effects in the 5xFAD mouse model of β-amyloid (Aβ) accumulation. Six- to seven-month-old male and female 5xFAD mice were treated with WSAq in their drinking water at 0 mg/mL, 0.5 mg/mL or 2.5 mg/mL for four weeks. In the fourth week of treatment, spatial memory, anxiety and depressive-like symptoms were evaluated. At the conclusion of behavioral testing, brain tissue was harvested, immunohistochemistry was performed, and the cortical expression of antioxidant response genes was evaluated. Both concentrations of WSAq improved spatial memory and reduced depressive and anxiety-related behavior. These improvements were accompanied by a reduction in Aβ plaque burden in the hippocampus and cortex and an attenuation of activation of microglia and astrocytes. Antioxidant response genes were upregulated in the cortex of WSAq-treated mice. Oral WSAq treatment could be beneficial as a therapeutic option in AD for improving disease pathology and behavioral symptoms. Future studies focused on dose optimization of WSAq administration and further assessment of the mechanisms by which WSAq elicits its beneficial effects will help inform the clinical potential of this promising botanical therapy.
Collapse
Affiliation(s)
- Noah Gladen-Kolarsky
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Olivia Monestime
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Melissa Bollen
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
| | - Jaewoo Choi
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Liping Yang
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Armando Alcazar Magaña
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
- Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Claudia S. Maier
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
| | - Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
| |
Collapse
|
21
|
Zhao P, Wang Z, Liao S, Liao Y, Hu S, Qin J, Zhang D, Yan X. Components in SLPE Alleviate AD Model Nematodes by Up-Regulating Gene gst-5. Int J Mol Sci 2024; 25:10188. [PMID: 39337674 PMCID: PMC11432538 DOI: 10.3390/ijms251810188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Salvia leucantha is a perennial herb of the genus Salvia in the family Labiatae, which has a wide range of biological activities, mainly including inhibition of acetylcholinesterase, antibacterial, and anti-inflammatory activity. To explore the protective effects and mechanism of action of S. leucantha on Alzheimer's disease (AD), the anti-AD activity of SLE (extracts of S. leucantha) was determined by using a transgenic Caenorhabditis elegans (C. elegans) model (CL4176). Analyses included paralysis assay, phenotypic experiments, transcriptome sequencing, RNA interference (RNAi), heat shock assays, and gas chromatography-mass spectrometry (GC-MS). SLPE (S. leucantha petroleum ether extract) could significantly delay CL4176 paralysis and extend the longevity of C. elegans N2 without harmful effects. A total of 927 genes were significantly changed by SLPE treatment in C. elegans, mainly involving longevity regulatory pathways-nematodes, drug metabolism-cytochrome P450, and glutathione metabolic pathways. RNAi showed that SLPE exerted its anti-AD activity through up-regulation of the gene gst-5; the most abundant compound in SLPE analyzed by GC-MS was 2,4-Di-tert-butylphenol (2,4-DTBP), and the compound delayed nematode paralysis. The present study suggests that active components in S. leucantha may serve as new-type anti-AD candidates and provide some insights into their biological functions.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Zifu Wang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Shimei Liao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Yangxin Liao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Shijun Hu
- Key Laboratory of Biodiversity Conservationin Southwest China (State Forestry Administration), Southwest Forestry University, Kunming 650224, China;
| | - Jianchun Qin
- College of Plant Science, Jilin University, Xi’an Road No. 5333, Changchun 130062, China;
| | - Donghua Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Xiaohui Yan
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| |
Collapse
|
22
|
Ma Z, Zhang Z, Lv X, Zhang H, Lu K, Su G, Huang B, Chen H. Dual sensitivity-enhanced microring resonance-based integrated microfluidic biosensor for Aβ 42 detection. Talanta 2024; 275:126111. [PMID: 38657362 DOI: 10.1016/j.talanta.2024.126111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
Sensitive, accurate, and straightforward biosensors are pivotal in the battle against Alzheimer's disease, particularly in light of the escalating patient population. These biosensors enable early adjunctive diagnosis, thereby facilitating prompt intervention, alleviating socioeconomic burdens, and preserving individual well-being. In this study, we introduce the development of a highly sensitive add-drop dual-microring resonant microfluidic sensing chip boasting a sensitivity of 188.11 nm/RIU, marking a significant 20.7% enhancement over single microring systems. Leveraging ultra-thin Parylene C for streamlined antibody immobilization and non-destructive removal, this platform facilitates the precise quantification of the Alzheimer's disease biomarker Aβ42. Employing an immune sensing strategy that amplifies and captures antigen signals using Au-labeled antibodies, we achieve an exceptional limit of detection of 9.02 pg/mL. The designed microring-based microfluidic biosensor chip exhibits outstanding specificity and sensitivity for Aβ42 in serum samples, offering a promising avenue for the early adjunctive diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhengtai Ma
- Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China; College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Zan Zhang
- School of Electronic and Control Engineering, Chang'an University, Xi'an, China
| | - Xiaoqing Lv
- Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China; College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing, China
| | - Kaiwei Lu
- Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China; College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Guoshuai Su
- Suzhou Institute of Microelectronics and Optoelectronics Integration, Suzhou, China; Suzhou Jiwei Photoelectric Co., Ltd, Suzhou, China
| | - Beiju Huang
- Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China; College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Hongda Chen
- Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China; College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
24
|
Ali J, Choe K, Park JS, Park HY, Kang H, Park TJ, Kim MO. The Interplay of Protein Aggregation, Genetics, and Oxidative Stress in Alzheimer's Disease: Role for Natural Antioxidants and Immunotherapeutics. Antioxidants (Basel) 2024; 13:862. [PMID: 39061930 PMCID: PMC11274292 DOI: 10.3390/antiox13070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that comprises amyloid-beta protein (Aβ) as a main component of neuritic plaques. Its deposition is considered a trigger for AD pathogenesis, progression, and the clinical symptoms of cognitive impairment. Some distinct pathological features of AD include phosphorylation of tau protein, oxidative stress, and mitochondrial dysfunction. These pathological consequences tend to produce reactive oxygen species (ROS), resulting in the dysregulation of various signaling pathways of neuroinflammation and neurodegeneration. The relationship between the Aβ cascade and oxidative stress in AD pathogenesis is like a "chicken and egg" story, with the etiology of the disease regarding these two factors remaining a question of "which comes first." However, in this review, we have tried our best to clarify the interconnection between these two mechanisms and to show the precise cause-and-effect relationship. Based on the above hallmarks of AD, several therapeutic strategies using natural antioxidants, monoclonal antibodies, and vaccines are employed as anti-Aβ therapy to decrease ROS, Aβ burden, chronic neuroinflammation, and synaptic failure. These natural antioxidants and immunotherapeutics have demonstrated significant neuroprotective effects and symptomatic relief in various in vitro and in vivo models, as well as in clinical trials for AD. However, none of them have received final approval to enter the drug market for mitigating AD. In this review, we extensively elaborate on the pitfalls, assurances, and important crosstalk between oxidative stress and Aβ concerning current anti-Aβ therapy. Additionally, we discuss future strategies for the development of more Aβ-targeted approaches and the optimization of AD treatment and mitigation.
Collapse
Affiliation(s)
- Jawad Ali
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands;
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), 6202 AZ Maastricht, The Netherlands
| | - Heeyoung Kang
- Department of Neurology, Gyeongsang National University Hospital & College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea;
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, UK
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
25
|
Shademan B, Yousefi H, Nourazarian A. Methylglyoxal Affects the Expression of miR-125b, miR-107, and Oxidative Stress Pathway-associated Genes in the SH-SY5Y Cell Line. Adv Pharm Bull 2024; 14:419-425. [PMID: 39206401 PMCID: PMC11347743 DOI: 10.34172/apb.2024.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Alzhеimеr's disеasе (AD) is thе most prеvalеnt form of dеmеntia globally. Rеsеarch links thе incrеasе of rеactivе oxidativе spеciеs (ROS) to thе pathogеnеsis of AD; thus, this study invеstigatеd thе impact of mеthylglyoxal (MGO) on thе еxprеssion of miR-125b, miR-107, and gеnеs involvеd in oxidativе strеss signaling in SH-SY5Y cеlls. Methods Thе MTT assay assеssеd MGO's еffеcts on SH-SY5Y viability. miR-125b and miR-107 еxprеssion was analyzеd via rеal-timе PCR. Additionally, thе Human Oxidativе Strеss Pathway Plus RT2 Profilеr PCR array quantifiеd oxidativе pathway gеnе еxprеssion. Results MGO concеntrations undеr 700μM did not significantly rеducе SH-SY5Y viability. MiR-125b and miR-107 еxprеssion in SH-SY5Y cеlls incrеasеd and dеcrеasеd rеspеctivеly (P<0.05). Cеlls trеatеd with 700μM MGO еxhibitеd incrеasеd CCS, CYBB, PRDX3, SPINK1, CYGB, DHCR24 and BAG2 еxprеssion (P<0.05). Thosе trеatеd with 1400μM MGO showеd incrеasеd CCS, CYBB, PRDX3, SPINK1, DUSP1, EPHX2, EPX, FOXM1, and GPX3 еxprеssion (P<0.05). Conclusion MGO altеrs oxidativе strеss pathway gеnе, miR-125b, and miR-107 еxprеssion in SH-SY5Y cеlls. Targеting MGO or miR-125b and miR-107 may providе novеl AD thеrapеutic stratеgiеs or improvе sеvеrе symptoms. Furthеr rеsеarch should еlucidatе thе prеcisе mеchanisms.
Collapse
Affiliation(s)
- Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
26
|
Abdelbaset S, Ayoub IM, Mohamed OG, Tripathi A, Eldahshan OA, El-Kersh DM. Metabolic profiling of Vitex Pubescens Vahl bark via UPLC-ESI-QTOF/MS/MS analysis and evaluation of its antioxidant and acetylcholinesterase inhibitory activities. BMC Complement Med Ther 2024; 24:232. [PMID: 38877470 PMCID: PMC11177471 DOI: 10.1186/s12906-024-04520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative age-related disease that primarily affects the elderly population leading to progressive memory impairments and neural deficits. It is counted as a major cause of geriatric dependency and disability. The pathogenesis of Alzheimer's disease incidence is complex and involves various hypotheses, including the cholinergic hypothesis, deposition of β-amyloid plaques, neuroinflammation, oxidative stress, and apoptosis. Conventional treatments such as donepezil aim to delay the symptoms but do not affect the progression of the disease and may cause serious side effects like hepatoxicity. The use of natural candidates for Alzheimer's disease treatment has drawn the attention of many researchers as it offers a multitargeted approach. METHODS This current study investigates the metabolic profiles of total defatted methanolic extract of Vitex pubescens bark and its polar fractions, viz. ethyl acetate and n-butanol, using ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight tandem mass spectrometry(UPLC-ESI-QTOF/MS/MS) technique as well as evaluate the antioxidant using free radical scavenging assays, viz. DPPH and ABTS assays and in-vitro acetylcholinesterase inhibitory activities using Ellman's microplate assay. RESULTS Metabolic profiling revealed a total of 71, 43, and 55 metabolites tentatively identified in the defatted methanolic extract, ethyl acetate, and n-butanol fractions, respectively. Phenolic acids were the most abundant class, viz. benzoic acids, and acyl quinic acid derivatives followed by flavonoids exemplified mainly by luteolin-C-glycosides and apigenin-C-glycosides. Quantification of the total phenolic and flavonoid contents in the total defatted methanolic extract confirmed its enrichment with phenolics and flavonoids equivalent to 138.61 ± 9.39 µg gallic acid/mg extract and 119.63 ± 4.62 µg rutin/mg extract, respectively. Moreover, the total defatted methanolic extract exhibited promising antioxidant activity confirmed through DPPH and ABTS assays with a 50% inhibitory concentration (IC50) value equivalent to 52.79 ± 2.16 µg/mL and 10.02 ± µg/mL, respectively. The inhibitory activity of acetylcholine esterase (AchE) was assessed using in-vitro Ellman's colorimetric assay, the total defatted methanolic extract, ethyl acetate, and n-butanol fractions exhibited IC50 values of 52.9, 15.1 and 108.8 µg/mL that they proved the significant inhibition of AchE activity. CONCLUSION The results obtained herein unraveled the potential use of the total methanolic extract of Vitex pubescens bark and its polar fractions as natural candidates for controlling Alzheimer's disease progression.
Collapse
Affiliation(s)
- Safa Abdelbaset
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Iriny M Ayoub
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Omayma A Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
- Drug Research and Development Group (DRD-G), The British University in Egypt (BUE), Cairo, 11837, Egypt
| |
Collapse
|
27
|
Shamim T, Asif HM, Abida Ejaz S, Hussain Z, Wani TA, Sumreen L, Abdullah M, Ahmed Z, Iqbal J, Kim SJ, Shah MK. Investigations of Limeum Indicum Plant for Diabetes Mellitus and Alzheimer's Disease Dual Therapy: Phytochemical, GC-MS Chemical Profiling, Enzyme Inhibition, Molecular Docking and In-Vivo Studies. Chem Biodivers 2024; 21:e202301858. [PMID: 38608202 DOI: 10.1002/cbdv.202301858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Limeum indicum has been widely utilized in traditional medicine but no experimental work has been done on this herb. The primary objective of this study was to conduct a phytochemical analysis and assess the multifunctional capabilities of aforementioned plant in dual therapy for Alzheimer's disease (AD) and Type 2 diabetes (T2D). The phytochemical screening of ethanol, methanol extract, and their derived fractions of Limeum indicum was conducted using GC-MS, HPLC, UV-analysis and FTIR. The antioxidant capacity was evaluated by DPPH method. The inhibitory potential of the extracts/fractions against α-, β-glucosidase acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoaminine oxidases (MAO-A & B) was evaluated. Results revealed that acetonitrile fraction has highest inhibitory potential against α-glucosidase (IC50=68.47±0.05 μg/mL), methanol extract against β-glucosidase (IC50=91.12±0.07 μg/mL), ethyl acetate fraction against AChE (IC50=59.0±0.02 μg/mL), ethanol extract against BChE (28.41±0.01 μg/mL), n-hexane fraction against MAO-A (IC50=150.5±0.31 μg/mL) and methanol extract for MAO-B (IC50=75.95±0.13 μg/mL). The docking analysis of extracts\fractions suggested the best binding scores within the active pocket of the respective enzymes. During the in-vivo investigation, ethanol extract produced hypoglycemic effect (134.52±2.79 and 119.38±1.40 mg/dl) after 21 days treatment at dose level of 250 and 500 mg/Kg. Histopathological findings further supported the in-vivo studies.
Collapse
Affiliation(s)
- Tahira Shamim
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Hafiz Muhammad Asif
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Zahid Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O.Box 2452, 11451, Riyadh, Saudi Arabia
| | - Laila Sumreen
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Zubair Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Song Ja Kim
- College of Natural Sciences, Department of Biological Sciences, Kongju National University, 32588, Gongju, South Korea
| | - Muhammad Kamal Shah
- Faculty of Veterinary and Animal Sciences, Gomal University, 29220, Dera Ismail Khan, Pakistan
| |
Collapse
|
28
|
Wang Y, Huang Y, Ma A, You J, Miao J, Li J. Natural Antioxidants: An Effective Strategy for the Treatment of Alzheimer's Disease at the Early Stage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11854-11870. [PMID: 38743017 DOI: 10.1021/acs.jafc.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The critical role of oxidative stress in Alzheimer's disease (AD) has been recognized by researchers recently, and natural antioxidants have been demonstrated to have anti-AD activity in animal models, such as Ginkgo biloba extract, soy isoflavones, lycopene, and so on. This paper summarized these natural antioxidants and points out that natural antioxidants always have multiple advantages which are help to deal with AD, such as clearing free radicals, regulating signal transduction, protecting mitochondrial function, and synaptic plasticity. Based on the available data, we have created a relatively complete pathway map of reactive oxygen species (ROS) and AD-related targets and concluded that oxidative stress caused by ROS is the core of AD pathogenesis. In the prospect, we introduced the concept of a combined therapeutic strategy, termed "Antioxidant-Promoting Synaptic Remodeling," highlighting the integration of antioxidant interventions with synaptic remodeling approaches as a novel avenue for therapeutic exploration.
Collapse
Affiliation(s)
- Yifeng Wang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Yan Huang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Aixia Ma
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jiahe You
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jing Miao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jinyao Li
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| |
Collapse
|
29
|
Vicente-Zurdo D, Gómez-Mejía E, Rosales-Conrado N, León-González ME. A Comprehensive Analytical Review of Polyphenols: Evaluating Neuroprotection in Alzheimer's Disease. Int J Mol Sci 2024; 25:5906. [PMID: 38892094 PMCID: PMC11173253 DOI: 10.3390/ijms25115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's Disease (AD), a prevalent neurodegenerative disorder, is the primary cause of dementia. Despite significant advancements in neuroscience, a definitive cure or treatment for this debilitating disease remains elusive. A notable characteristic of AD is oxidative stress, which has been identified as a potential therapeutic target. Polyphenols, secondary metabolites of plant origin, have attracted attention due to their potent antioxidant properties. Epidemiological studies suggest a correlation between the consumption of polyphenol-rich foods and the prevention of chronic diseases, including neurodegenerative disorders, which underscores the potential of polyphenols as a therapeutic strategy in AD management. Hence, this comprehensive review focuses on the diverse roles of polyphenols in AD, with a particular emphasis on neuroprotective potential. Scopus, ScienceDirect, and Google Scholar were used as leading databases for study selection, from 2018 to late March 2024. Analytical chemistry serves as a crucial tool for characterizing polyphenols, with a nuanced exploration of their extraction methods from various sources, often employing chemometric techniques for a holistic interpretation of the advances in this field. Moreover, this review examines current in vitro and in vivo research, aiming to enhance the understanding of polyphenols' role in AD, and providing valuable insights for forthcoming approaches in this context.
Collapse
Affiliation(s)
- David Vicente-Zurdo
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Montepríncipe Urbanization, 28660 Boadilla del Monte, Spain
| | - Esther Gómez-Mejía
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
| | - Noelia Rosales-Conrado
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
| | - María Eugenia León-González
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
| |
Collapse
|
30
|
Neacșu SM, Mititelu M, Ozon EA, Musuc AM, Iuga IDM, Manolescu BN, Petrescu S, Pandele Cusu J, Rusu A, Surdu VA, Oprea E, Lupuliasa D, Popescu IA. Comprehensive Analysis of Novel Synergistic Antioxidant Formulations: Insights into Pharmacotechnical, Physical, Chemical, and Antioxidant Properties. Pharmaceuticals (Basel) 2024; 17:690. [PMID: 38931357 PMCID: PMC11206646 DOI: 10.3390/ph17060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Oxidative stress plays a pivotal role in the pathogenesis of various diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and diabetes, highlighting the pressing need for effective antioxidant interventions. (2) Methods: In this study, we aimed to develop and characterise two novel antioxidant formulations, F3 and F4, as therapeutic interventions for oxidative stress-related conditions. (3) Results: The physicochemical characterisation, preformulation analysis, formulation, preparation of filling powders for capsules, capsule content evaluation, and antioxidant activity assessment of the two novel antioxidant formulations were assessed. These formulations comprise a combination of well-established antioxidants like quercetin, biotin, coenzyme Q10, and resveratrol. Through comprehensive testing, the formulations' antioxidant efficacy, stability, and potential synergistic interactions were evaluated. (4) Conclusions: The findings underscore the promising potential of these formulations as therapeutic interventions for oxidative stress-related disorders and highlight the significance of antioxidant interventions in mitigating their progression.
Collapse
Affiliation(s)
- Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Izabela Dana Maria Iuga
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Bogdan Nicolae Manolescu
- “C. Nenitescu” Department of Organic Chemistry, Faculty of Applied Chemistry and Science of Materials, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Simona Petrescu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Jeanina Pandele Cusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Adriana Rusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Eliza Oprea
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1–3 Portocalilor Way, 060101 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Ioana Andreea Popescu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| |
Collapse
|
31
|
Jallow AW, Nguyen DPQ, Sanotra MR, Hsu CH, Lin YF, Lin YF. A comprehensive bibliometric analysis of global research on the role of acrolein in Alzheimer's disease pathogenesis: involvement of amyloid-beta. Front Aging Neurosci 2024; 16:1378260. [PMID: 38784445 PMCID: PMC11111988 DOI: 10.3389/fnagi.2024.1378260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive and behavioral decline. Acrolein, an environmental pollutant and endogenous compound, is implicated in AD development. This research employs bibliometric analysis to assess current trends and key areas concerning acrolein-AD interaction. Methods The Web of Science was used to extensively review literature on acrolein and AD. Relevant data were systematically gathered and analyzed using VOSviewer, CiteSpace, and an online bibliometric tool. Results We identified 120 English publications in this specialized field across 19 journals. The Journal of Alzheimer's Disease was the most prominent. The primary contributors, both in terms of scientific output and influence, were the USA, the University of Kentucky, and Ramassamy C, representing countries/regions, institutions, and authors, respectively. In this field, the primary focus was on thoroughly studying acrolein, its roles, and its mechanisms in AD utilizing both in vivo and in vitro approaches. A significant portion of the research was based on proteomics, revealing complex molecular processes. The main focuses in the field were "oxidative stress," "lipid peroxidation," "amyloid-beta," and "cognitive impairment." Anticipated future research trajectories focus on the involvement of the internalization pathway, covering key areas such as synaptic dysfunction, metabolism, mechanisms, associations, neuroinflammation, inhibitors, tau phosphorylation, acrolein toxicity, brain infarction, antioxidants, chemistry, drug delivery, and dementia. Our analysis also supported our previous hypothesis that acrolein can interact with amyloid-beta to form a protein adduct leading to AD-like pathology and altering natural immune responses. Conclusion This study provides a broad and all-encompassing view of the topic, offering valuable insights and guidance to fellow researchers. These emerging directions underscore the continuous exploration of the complexities associated with AD. The analyses and findings aim to enhance our understanding of the intricate relationship between acrolein and AD for future research.
Collapse
Affiliation(s)
- Amadou Wurry Jallow
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
| | - Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
- Institute of Biomedicine, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
- Department of Medical Genetics, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | | | - Chun-Hsien Hsu
- Department of Family Medicine, Heping Fuyou Branch, Taipei City Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan
| | - Yi-Fang Lin
- Department of Laboratory Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Meng Q, Chen C, Zhu M, Huang Y. Dietary factors and Alzheimer's disease risk: a Mendelian randomization study. Eur J Med Res 2024; 29:261. [PMID: 38698427 PMCID: PMC11067192 DOI: 10.1186/s40001-024-01821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Prior observational research has investigated the association between dietary patterns and Alzheimer's disease (AD) risk. Nevertheless, due to constraints in past observational studies, establishing a causal link between dietary habits and AD remains challenging. METHODS Methodology involved the utilization of extensive cohorts sourced from publicly accessible genome-wide association study (GWAS) datasets of European descent for conducting Mendelian randomization (MR) analyses. The principal analytical technique utilized was the inverse-variance weighted (IVW) method. RESULTS The MR analysis conducted in this study found no statistically significant causal association between 20 dietary habits and the risk of AD (All p > 0.05). These results were consistent across various MR methods employed, including MR-Egger, weighted median, simple mode, and weighted mode approaches. Moreover, there was no evidence of horizontal pleiotropy detected (All p > 0.05). CONCLUSION In this MR analysis, our finding did not provide evidence to support the causal genetic relationships between dietary habits and AD risk.
Collapse
Affiliation(s)
- Qi Meng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 7 Weiwu Street, Zhengzhou, 450000, China.
| | - Chen Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 7 Weiwu Street, Zhengzhou, 450000, China
| | - Mingfang Zhu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 7 Weiwu Street, Zhengzhou, 450000, China
| | - Yue Huang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 7 Weiwu Street, Zhengzhou, 450000, China
| |
Collapse
|
33
|
Vaaland Holmgard IC, González-Bakker A, Poeta E, Puerta A, Fernandes MX, Monti B, Fernández-Bolaños JG, Padrón JM, López Ó, Lindbäck E. Coumarin-azasugar-benzyl conjugates as non-neurotoxic dual inhibitors of butyrylcholinesterase and cancer cell growth. Org Biomol Chem 2024; 22:3425-3438. [PMID: 38590227 DOI: 10.1039/d4ob00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We have applied the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to prepare a library of ten coumarin-azasugar-benzyl conjugates and two phthalimide-azasugar-benzyl conjugates with potential anti-Alzheimer and anti-cancer properties. The compounds were evaluated as cholinesterase inhibitors, demonstrating a general preference, of up to 676-fold, for the inhibition of butyrylcholinesterase (BuChE) over acetylcholinesterase (AChE). Nine of the compounds behaved as stronger BuChE inhibitors than galantamine, one of the few drugs in clinical use against Alzheimer's disease. The most potent BuChE inhibitor (IC50 = 74 nM) was found to exhibit dual activities, as it also showed high activity (GI50 = 5.6 ± 1.1 μM) for inhibiting the growth of WiDr (colon cancer cells). In vitro studies on this dual-activity compound on Cerebellar Granule Neurons (CGNs) demonstrated that it displays no neurotoxicity.
Collapse
Affiliation(s)
- I Caroline Vaaland Holmgard
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, La Laguna, E-38206, Spain
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, La Laguna, E-38206, Spain
| | - Miguel X Fernandes
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, La Laguna, E-38206, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Emil Lindbäck
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
34
|
Albadrani HM, Chauhan P, Ashique S, Babu MA, Iqbal D, Almutary AG, Abomughaid MM, Kamal M, Paiva-Santos AC, Alsaweed M, Hamed M, Sachdeva P, Dewanjee S, Jha SK, Ojha S, Slama P, Jha NK. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer's disease. Biomed Pharmacother 2024; 174:116376. [PMID: 38508080 DOI: 10.1016/j.biopha.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aβ biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.
Collapse
Affiliation(s)
- Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana 124001, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India.; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.
| |
Collapse
|
35
|
Cuciniello R, Luongo D, Maurano F, Crispi S, Bergamo P. Dietary conjugated linoleic acid downregulates the AlCl 3-induced hyperactivation of compensatory and maladaptive signalling in the mouse brain cortex. Free Radic Biol Med 2024; 213:102-112. [PMID: 38218550 DOI: 10.1016/j.freeradbiomed.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Oxidative stress, hyperactivation of compensatory mechanisms (unfolded protein response, UPR; nuclear factor erythroid 2-related factor 2, Nrf2) and the stimulation of maladaptive response (inflammation/apoptosis) are interconnected pathogenic processes occurring during Alzheimer's disease (AD) progression. The neuroprotective ability of dietary Conjugated linoleic acid (CLAmix) in a mouse model of AlCl3-induced AD was recently described but, the effects of AlCl3 or CLAmix intake on these pathogenic processes are still unknown. The effects of dietary AlCl3 or CLAmix - alone and in combination - were examined in the brain cortex of twenty-eight BalbC mice divided into 4 groups (n = 7 each). The neurotoxic effects of AlCl3 were investigated in animals treated for 5 weeks with 100 mg/kg/day (AL). CLAmix supplementation (600 mg/kg bw/day) for 7 weeks (CLA) was aimed at evaluating its modulatory effects on the Nrf2 pathway while its co-treatment with AlCl3 during the last 5 weeks of CLAmix intake (CLA + AL) was used to investigate its neuroprotective ability. Untreated mice were used as controls. In the CLA group, the NADPH oxidase (NOX) activation in the brain cortex was accompanied by the modulation of the Nrf2 pathway. By contrast, in the AL mice, the significant upregulation of oxidative stress markers, compensatory pathways (UPR/Nrf2), proinflammatory cytokines (IL-6, TNFα) and the proapoptotic protein Bax levels were found as compared with control. Notably, in CLA + AL mice, the marked decrease of oxidative stress, UPR/Nrf2 markers and proinflammatory cytokines levels were associated with the significant increase of the antiapoptotic protein Bcl2. The involvement of NOX in the adaptive response elicited by CLAmix along with its protective effects against the onset of several pathogenic processes triggered by AlCl3, broadens the knowledge of the mechanism underlying the pleiotropic activity of Nrf2 activators and sheds new light on their potential therapeutic use against neurodegenerative disorders.
Collapse
Affiliation(s)
- R Cuciniello
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), Naples, 80100, Italy; IRCCS Neuromed, Pozzilli, 86077, Isernia, Italy
| | - D Luongo
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, 83100, Italy
| | - F Maurano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, 83100, Italy
| | - S Crispi
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), Naples, 80100, Italy
| | - P Bergamo
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), Naples, 80100, Italy.
| |
Collapse
|
36
|
Borda MG, Samuelsson J, Cederholm T, Baldera JP, Pérez-Zepeda MU, Barreto GE, Zettergren A, Kern S, Rydén L, Gonzalez-Lara M, Salazar-Londoño S, Duque G, Skoog I, Aarsland D. Nutrient Intake and Its Association with Appendicular Total Lean Mass and Muscle Function and Strength in Older Adults: A Population-Based Study. Nutrients 2024; 16:568. [PMID: 38398892 PMCID: PMC10892025 DOI: 10.3390/nu16040568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Treatment options for sarcopenia are currently limited, and primarily rely on two main therapeutic approaches: resistance-based physical activity and dietary interventions. However, details about specific nutrients in the diet or supplementation are unclear. We aim to investigate the relationship between nutrient intake and lean mass, function, and strength. Data were derived from the Gothenburg H70 birth cohort study in Sweden, including 719,70-year-olds born in 1944 (54.1% females). For independent variables, the diet history method (face-to-face interviews) was used to estimate habitual food intake during the preceding three months. Dependent variables were gait speed (muscle performance), hand grip strength (muscle strength), and the appendicular lean soft tissue index (ALSTI). Linear regression analyses were performed to analyze the relationship between the dependent variables and each of the covariates. Several nutrients were positively associated with ALSTI, such as polyunsaturated fatty acids (DHA, EPA), selenium, zinc, riboflavin, niacin equivalent, vitamin B12, vitamin D, iron, and protein. After correction for multiple comparisons, there were no remaining correlations with handgrip and gait speed. Findings of positive correlations for some nutrients with lean mass suggest a role for these nutrients in maintaining muscle volume. These results can be used to inform clinical trials to expand the preventive strategies and treatment options for individuals at risk of muscle loss and sarcopenia.
Collapse
Affiliation(s)
- Miguel Germán Borda
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, 4011 Stavanger, Norway; (M.G.B.); (J.P.B.); (D.A.)
- Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Jessica Samuelsson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden; (J.S.); (A.Z.); (S.K.); (L.R.); (I.S.)
| | - Tommy Cederholm
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, 62167 Uppsala, Sweden;
- Theme Inflammation & Aging, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Jonathan Patricio Baldera
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, 4011 Stavanger, Norway; (M.G.B.); (J.P.B.); (D.A.)
- Escuela de Estadística, Universidad Autónoma de Santo Domingo, Santo Domingo 10103, Dominican Republic
| | - Mario Ulises Pérez-Zepeda
- Instituto Nacional de Geriatría, Dirección de Investigación, Mexico City 10200, Mexico;
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 PH61 Limerick, Ireland;
| | - Anna Zettergren
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden; (J.S.); (A.Z.); (S.K.); (L.R.); (I.S.)
| | - Silke Kern
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden; (J.S.); (A.Z.); (S.K.); (L.R.); (I.S.)
- Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, SE-413 45 Mölndal, Sweden
| | - Lina Rydén
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden; (J.S.); (A.Z.); (S.K.); (L.R.); (I.S.)
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, 62167 Uppsala, Sweden;
- Theme Inflammation & Aging, Karolinska University Hospital, 14186 Stockholm, Sweden
| | | | - Salomón Salazar-Londoño
- Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Gustavo Duque
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Ingmar Skoog
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden; (J.S.); (A.Z.); (S.K.); (L.R.); (I.S.)
- Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, SE-413 45 Mölndal, Sweden
| | - Dag Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, 4011 Stavanger, Norway; (M.G.B.); (J.P.B.); (D.A.)
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London SE1 9RT, UK
| |
Collapse
|
37
|
Manzoor S, Gabr MT, Nafie MS, Raza MK, Khan A, Nayeem SM, Arafa RK, Hoda N. Discovery of Quinolinone Hybrids as Dual Inhibitors of Acetylcholinesterase and Aβ Aggregation for Alzheimer's Disease Therapy. ACS Chem Neurosci 2024; 15:539-559. [PMID: 38149821 DOI: 10.1021/acschemneuro.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The development of multitargeted therapeutics has evolved as a promising strategy to identify efficient therapeutics for neurological disorders. We report herein new quinolinone hybrids as dual inhibitors of acetylcholinesterase (AChE) and Aβ aggregation that function as multitargeted ligands for Alzheimer's disease. The quinoline hybrids (AM1-AM16) were screened for their ability to inhibit AChE, BACE1, amyloid fibrillation, α-syn aggregation, and tau aggregation. Among the tested compounds, AM5 and AM10 inhibited AChE activity by more than 80% at single-dose screening and possessed a remarkable ability to inhibit the fibrillation of Aβ42 oligomers at 10 μM. In addition, dose-dependent screening of AM5 and AM10 was performed, giving half-maximal AChE inhibitory concentration (IC50) values of 1.29 ± 0.13 and 1.72 ± 0.18 μM, respectively. In addition, AM5 and AM10 demonstrated concentration-dependent inhibitory profiles for the aggregation of Aβ42 oligomers with estimated IC50 values of 4.93 ± 0.8 and 1.42 ± 0.3 μM, respectively. Moreover, the neuroprotective properties of the lead compounds AM5 and AM10 were determined in SH-SY5Y cells incubated with Aβ oligomers. This work would enable future research efforts aiming at the structural optimization of AM5 and AM10 to develop potent dual inhibitors of AChE and amyloid aggregation. Furthermore, the in vivo assay confirmed the antioxidant activity of compounds AM5 and AM10 through increasing GSH, CAT, and SOD activities that are responsible for scavenging the ROS and restoring its normal level. Blood investigation illustrated the protective activity of the two compounds against lead-induced neurotoxicity through retaining hematological and liver enzymes near normal levels. Finally, immunohistochemistry investigation revealed the inhibitory activity of β-amyloid (Aβ) aggregation.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K
| | - Moustafa T Gabr
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York10021, United States
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah (P.O. Box 27272), United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ashma Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Reem K Arafa
- Drug Design and Discovery Lab, Helmy Institute for Medical Sciences, Zewail City of Science, Technology and Innovation, Giza 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza12578,Egypt
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
38
|
Polis B, Samson AO. Enhancing cognitive function in older adults: dietary approaches and implications. Front Nutr 2024; 11:1286725. [PMID: 38356861 PMCID: PMC10864441 DOI: 10.3389/fnut.2024.1286725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Natural aging encompasses physiological and psychological changes that impact overall health and quality of life. Mitigating these effects requires physical and mental exercise, coupled with proper nutrition. Notably, protein malnutrition emerges as a potential risk factor for senile dementia, with insufficient intake correlating with premature cognitive decline. Adequate protein intake in the elderly positively associates with memory function and lowers cognitive impairment risk. Considering diet as a modifiable risk factor for cognitive decline, extensive research has explored diverse dietary strategies to prevent dementia onset in older adults. However, conclusive results remain limited. This review aims to synthesize recent evidence on effective dietary approaches to enhance cognitive function and prognosis in older individuals. Specifically, the study evaluates complex multicomponent programs, protein-rich diets, and branched-chain amino acid supplementation. By addressing the nexus of nutrition and cognitive health, this review contributes to understanding viable interventions for promoting cognitive well-being in aging populations.
Collapse
Affiliation(s)
- Baruh Polis
- Laboratory of Computational Biology and Drug Discovery, Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | |
Collapse
|
39
|
Ferreira A, Harter A, Afreen S, Kanai K, Batori S, Redei EE. The WMI Rat of Premature Cognitive Aging Presents Intrinsic Vulnerability to Oxidative Stress in Primary Neurons and Astrocytes Compared to Its Nearly Isogenic WLI Control. Int J Mol Sci 2024; 25:1692. [PMID: 38338968 PMCID: PMC10855588 DOI: 10.3390/ijms25031692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The primary neuronal and astrocyte culture described here is from the stress-hyperreactive Wistar Kyoto (WKY) More Immobile (WMI) rat with premature aging-related memory deficit, and its nearly isogenic control, the Less Immobile (WLI) strain. Primary WMI hippocampal neurons and cortical astrocytes are significantly more sensitive to oxidative stress (OS) generated by administration of H2O2 compared to WLI cells as measured by the trypan blue cell viability assay. Intrinsic genetic vulnerability is also suggested by the decreased gene expression in WMI neurons of catalase (Cat), and in WMI cortical astrocytes of insulin-like growth factor 2 (Igf2), synuclein gamma (Sncg) and glutathione peroxidase 2 (Gpx2) compared to WLI. The expressions of several mitochondrial genes are dramatically increased in response to H2O2 treatment in WLI, but not in WMI cortical astrocytes. We propose that the vulnerability of WMI neurons to OS is due to the genetic differences between the WLI and WMI. Furthermore, the upregulation of mitochondrial genes may be a compensatory response to the generation of free radicals by OS in the WLIs, and this mechanism is disturbed in the WMIs. Thus, this pilot study suggests intrinsic vulnerabilities in the WMI hippocampal neurons and cortical astrocytes, and affirm the efficacy of this bimodal in vitro screening system for finding novel drug targets to prevent oxidative damage in illnesses.
Collapse
Affiliation(s)
- Adriana Ferreira
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (A.F.)
| | - Aspen Harter
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Sana Afreen
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (A.F.)
| | - Karoly Kanai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Sandor Batori
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
40
|
Abstract
Maintaining diversity in drug development in research into Alzheimer's disease (AD) is necessary to avoid over-reliance on targeting AD neuropathology. Treatments that reduce or prevent the generation of oxidative stress, frequently cited for its causal role in the aging process and AD, could be useful in at-risk populations or diagnosed AD patients. However, in this review, it is argued that clinical research into antioxidants in AD could provide more useful feedback as to the therapeutic value of the oxidative stress theory of AD. Improving comparability between randomized controlled trials (RCTs) is vital from a waste-reduction and priority-setting point of view for AD clinical research. For as well as attempting to improve meaningful outcomes for patients, RCTs of antioxidants in AD should strive to maximize the extraction of clinically useful information and actionable feedback from trial outcomes. Solutions to maximize information flow from RCTs of antioxidants in AD are offered here in the form of checklist questions to improve ongoing and future trials centered around the following dimensions: adhesion to reporting guidelines like CONSORT, biomarker enrichment, simple tests of treatment, and innovative trial design.
Collapse
Affiliation(s)
- Timothy Daly
- Science Norms Democracy UMR 8011, Sorbonne Université, Paris, France
- Bioethics Program, FLACSO Argentina, Buenos Aires, Argentina
| |
Collapse
|
41
|
Ommati MM, Rezaei H, Socorro RM, Tian W, Zhao J, Rouhani A, Sabouri S, Ghaderi F, Niknahad AM, Najibi A, Mazloomi S, Safipour M, Honarpishefard Z, Wang HW, Niknahad H, Heidari R. Pre/postnatal taurine supplementation improves neurodevelopment and brain function in mice offspring: A persistent developmental study from puberty to maturity. Life Sci 2024; 336:122284. [PMID: 38008208 DOI: 10.1016/j.lfs.2023.122284] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Taurine (TAU) is a sulfur-containing amino acid abundantly found in the human body. Endogenously, TAU is synthesized from cysteine in the liver. However, newborns rely entirely on TAU's dietary supply (milk). There is no investigation on the effect of long-term TAU administration on next-generation neurological development. The current study evaluated the effect of long-term TAU supplementation during the maternal gestational and litter weaning time on several neurological parameters in mice offspring. Moreover, the effects of TAU on mitochondrial function and oxidative stress biomarkers as plausible mechanisms of its action in the whole brain and hippocampus have been evaluated. TAU (0.5 % and 1 % w/v) was dissolved in the drinking water of pregnant mice (Day one of pregnancy), and amino acid supplementation was continued during the weaning time (post-natal day; PND = 21) until litters maturity (PND = 65). It was found that TAU significantly improved cognitive function, memory performance, reflexive motor activity, and emotional behaviors in F1-mice generation. TAU measurement in the brain and hippocampus revealed higher levels of this amino acid. TAU and ATP levels were also significantly higher in the mitochondria isolated from the whole brain and hippocampus. Based on these data, TAU could be suggested as a supplement during pregnancy or in pediatric formula. The effects of TAU on cellular mitochondrial function and energy metabolism might play a fundamental role in the positive effects of this amino acid observed in this investigation.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Retana-Márquez Socorro
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico
| | - Weishun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Ayeh Rouhani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China; College of Animal Science and Veterinary, Shanxi agricultural University, Taigu, Shanxi, China
| | - Fatemeh Ghaderi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mohammad Niknahad
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Chemistry and Biochemistry, Miami University, 244 Hughes Laboratories, 651 E. High Street, Oxford, OH 45056, USA
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moslem Safipour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Honarpishefard
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
42
|
Mazumdar D, Singh S. Diabetic Encephalopathy: Role of Oxidative and Nitrosative Factors in Type 2 Diabetes. Indian J Clin Biochem 2024; 39:3-17. [PMID: 38223005 PMCID: PMC10784252 DOI: 10.1007/s12291-022-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is a set of complex metabolic disorders characterized by chronic hyperglycaemic condition due to defective insulin secretion (Type 1) and action (Type 2), which leads to serious micro and macro-vascular damage, inflammation, oxidative and nitrosative stress and a deranged energy homeostasis due to imbalance in the glucose and lipid metabolism. Moreover, patient with diabetes mellitus often showed the nervous system disorders known as diabetic encephalopathy. The precise pathological mechanism of diabetic encephalopathy by which it effects the central nervous system directly or indirectly causing the cognitive and motor impairment, is not completely understood. However, it has been speculated that like other extracerebellar tissues, oxidative and nitrosative stress may play significant role in the pathogenesis of diabetic encephalopathy. Therefore, the present review aimed to explain the possible association of the oxidative and nitrosative stress caused by the chronic hyperglycaemic condition with the central nervous system complications of the type 2 diabetes mellitus induced diabetic encephalopathy.
Collapse
Affiliation(s)
- Debashree Mazumdar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh 495009 India
| | - Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh 495009 India
| |
Collapse
|
43
|
Atlante A, Valenti D. Mitochondrial Complex I and β-Amyloid Peptide Interplay in Alzheimer's Disease: A Critical Review of New and Old Little Regarded Findings. Int J Mol Sci 2023; 24:15951. [PMID: 37958934 PMCID: PMC10650435 DOI: 10.3390/ijms242115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and the main cause of dementia which is characterized by a progressive cognitive decline that severely interferes with daily activities of personal life. At a pathological level, it is characterized by the accumulation of abnormal protein structures in the brain-β-amyloid (Aβ) plaques and Tau tangles-which interfere with communication between neurons and lead to their dysfunction and death. In recent years, research on AD has highlighted the critical involvement of mitochondria-the primary energy suppliers for our cells-in the onset and progression of the disease, since mitochondrial bioenergetic deficits precede the beginning of the disease and mitochondria are very sensitive to Aβ toxicity. On the other hand, if it is true that the accumulation of Aβ in the mitochondria leads to mitochondrial malfunctions, it is otherwise proven that mitochondrial dysfunction, through the generation of reactive oxygen species, causes an increase in Aβ production, by initiating a vicious cycle: there is therefore a bidirectional relationship between Aβ aggregation and mitochondrial dysfunction. Here, we focus on the latest news-but also on neglected evidence from the past-concerning the interplay between dysfunctional mitochondrial complex I, oxidative stress, and Aβ, in order to understand how their interplay is implicated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | | |
Collapse
|
44
|
Asen ND, Udenigwe CC, Aluko RE. Quantitative Structure-Activity Relationship Modeling of Pea Protein-Derived Acetylcholinesterase and Butyrylcholinesterase Inhibitory Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16323-16330. [PMID: 37856319 DOI: 10.1021/acs.jafc.3c04880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The aim of this work was to determine the structural requirements for peptides that inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities. The data set used consisted of 19 oligopeptides that had been identified through mass spectrometry analysis of enzymatic digests of yellow field pea protein. The structure-function relationship was analyzed by partial least squares regression using the 5z scores. A nine-component model was created from 16 peptides for AChE inhibitory peptides (Q2 = 67.2% and R2 = 0.9974), while three data sets were prepared for BuChE inhibitory peptides to improve the quality of the models (Q2 = 26.7-46.4% and R2 = 0.9577-0.9958). The most active peptides from the PLS models have threonine, leucine, alanine, and valine at the N terminal, asparagine, histidine, proline, and arginine at the second position, with aspartic acid and serine at the third, and arginine at the C terminal.
Collapse
Affiliation(s)
- Nancy D Asen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Chibuike C Udenigwe
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
45
|
Peron G, Moafpoorian R, Faggian M, Realdon N, Zengin G, Zarshenas MM, Dall'Acqua S. Linking traditional medicine to modern phytotherapy: Chemical characterization and assessment of antioxidant and anticholinesterase effects in vitro of a natural Persian remedy for dementia. J Pharm Biomed Anal 2023; 235:115674. [PMID: 37634357 DOI: 10.1016/j.jpba.2023.115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Several natural remedies are used in the Traditional Persian Medicine (TPM) to prevent dementia, but their efficacy is debated. In this work, an improved "Safoof-e-Nesyān" formulation described in the "Qarābādin-e-Azam" pharmacopoeia was developed, and its chemical composition and antioxidant and anti-cholinesterase properties were assessed. The formulation contains a mixture (FM) of Cinnamomum cassia (CC), C. verum (CV), Pistacia lentiscus (PL), Rheum palmatum (RP), Syzygium aromaticum (SA), and Zingiber officinalis (ZO) powdered plants. Its total phenolic content is 110.45 mg GAE/g, while the total flavonoid content is 6.28 mg RE/g. 66 secondary metabolites (mainly tannins, flavonoids, anthraquinones, and gingerols) were identified by UPLC-QToF-MS analysis. FM exerts antioxidant effects by scavenging radicals, and by reducing and chelating metals such as Mb, Cu and Fe. The anticholinesterase activity of one gram of the FM equals that of 3.60 mg of the reference drug galantamine, on both acetyl- and butyryl-cholinesterase. Correlations between specific compounds and bioactivities were highlighted by multivariate analysis of data: lyoniresinol 9'-glucoside strongly correlates with antiradical activities on DPPH and ABTS and reducing activity on Cu, and with anti-AChE effects. Most of the identified flavonoids and the ellagic acid derivatives positively correlate with the reducing activity on Fe and Mb, and with anti-BChE effects. Finally, a tablet formulation of the FM was developed, and its physical properties were preliminarily assessed. Overall, our results indicate that the FM may be a useful natural remedy for dementia, although further safety and efficacy assessments in vivo are required.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Reza Moafpoorian
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Marta Faggian
- Unired Srl, Via Niccolò Tommaseo 69, Padova 35131, Italy
| | - Nicola Realdon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Mohammad M Zarshenas
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
46
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 608] [Impact Index Per Article: 304.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
47
|
Puranik N, Yadav D, Song M. Advancements in the Application of Nanomedicine in Alzheimer's Disease: A Therapeutic Perspective. Int J Mol Sci 2023; 24:14044. [PMID: 37762346 PMCID: PMC10530821 DOI: 10.3390/ijms241814044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects most people worldwide. AD is a complex central nervous system disorder. Several drugs have been designed to cure AD, but with low success rates. Because the blood-brain and blood-cerebrospinal fluid barriers are two barriers that protect the central nervous system, their presence has severely restricted the efficacy of many treatments that have been studied for AD diagnosis and/or therapy. The use of nanoparticles for the diagnosis and treatment of AD is the focus of an established and rapidly developing field of nanomedicine. Recent developments in nanomedicine have made it possible to effectively transport drugs to the brain. However, numerous obstacles remain to the successful use of nanomedicines in clinical settings for AD treatment. Furthermore, given the rapid advancement in nanomedicine therapeutics, better outcomes for patients with AD can be anticipated. This article provides an overview of recent developments in nanomedicine using different types of nanoparticles for the management and treatment of AD.
Collapse
Affiliation(s)
| | | | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (D.Y.)
| |
Collapse
|
48
|
Sousa T, Moreira PI, Cardoso S. Current Advances in Mitochondrial Targeted Interventions in Alzheimer's Disease. Biomedicines 2023; 11:2331. [PMID: 37760774 PMCID: PMC10525414 DOI: 10.3390/biomedicines11092331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder and affects the lives not only of those who are diagnosed but also of their caregivers. Despite the enormous social, economic and political burden, AD remains a disease without an effective treatment and with several failed attempts to modify the disease course. The fact that AD clinical diagnosis is most often performed at a stage at which the underlying pathological events are in an advanced and conceivably irremediable state strongly hampers treatment attempts. This raises the awareness of the need to identify and characterize the early brain changes in AD, in order to identify possible novel therapeutic targets to circumvent AD's cascade of events. One of the most auspicious targets is mitochondria, powerful organelles found in nearly all cells of the body. A vast body of literature has shown that mitochondria from AD patients and model organisms of the disease differ from their non-AD counterparts. In view of this evidence, preserving and/or restoring mitochondria's health and function can represent the primary means to achieve advances to tackle AD. In this review, we will briefly assess and summarize the previous and latest evidence of mitochondria dysfunction in AD. A particular focus will be given to the recent updates and advances in the strategy options aimed to target faulty mitochondria in AD.
Collapse
Affiliation(s)
- Tiago Sousa
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal;
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Susana Cardoso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
49
|
Adedayo BC, Akinniyi ST, Ogunsuyi OB, Oboh G. In the quest for the ideal sweetener: Aspartame exacerbates selected biomarkers in the fruit fly ( Drosophila melanogaster) model of Alzheimer's disease more than sucrose. AGING BRAIN 2023; 4:100090. [PMID: 37559954 PMCID: PMC10407236 DOI: 10.1016/j.nbas.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
This study evaluated the effect of dietary inclusions of aspartame and sucrose on some selected behavioral and biochemical indices linked with Alzheimer's disease in a transgenic fruit fly (Drosophila melanogaster) model expressing human amyloid precursor protein and secretase. Flies were raised on a diet supplemented with sucrose and aspartame for 14 days. Thereafter, the flies were assessed for their survival rate, learning and memory, as well as locomotor performance, 14 days post-treatment. This was followed by homogenising the fly heads, and the homogenates were assayed for acetylcholinesterase and monoamine oxidase activities, as well as levels of lipid peroxidation, reactive oxygen species, and total thiol. The results showed aspartame at all levels of dietary intake and a high proportion of sucrose significantly aggravated the mortality rate, locomotor deficiency, and impaired biomarkers of oxidative stress and antioxidant status in the transgenic flies, while no significant effect was found on acetylcholinesterase activity or memory function. These findings therefore suggest that while low dietary inclusions of sucrose are tolerable under AD-like phenotypes in the flies, high inclusions of sucrose and all proportions of aspartame tested aggravated mortality rate, locomotion and oxidative stress in the flies.
Collapse
Affiliation(s)
- Bukola Christiana Adedayo
- Biochemistry Department, The Federal University of Technology, Akure P.M.B. 704, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure P.M.B. 704, Nigeria
| | - Stephanie Tolulope Akinniyi
- Biochemistry Department, The Federal University of Technology, Akure P.M.B. 704, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure P.M.B. 704, Nigeria
| | - Opeyemi Babatunde Ogunsuyi
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure P.M.B. 704, Nigeria
- Department of Biomedical Technology, The Federal University of Technology, Akure P.M.B. 704, Nigeria
| | - Ganiyu Oboh
- Biochemistry Department, The Federal University of Technology, Akure P.M.B. 704, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure P.M.B. 704, Nigeria
| |
Collapse
|
50
|
Shan M, Bai Y, Fang X, Lan X, Zhang Y, Cao Y, Zhu D, Luo H. American Ginseng for the Treatment of Alzheimer's Disease: A Review. Molecules 2023; 28:5716. [PMID: 37570686 PMCID: PMC10420665 DOI: 10.3390/molecules28155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative condition that is increasingly affecting populations globally. American ginseng (AG) has anti-AD bioactivity, and ginsenosides, as the main active components of AG, have shown strong anti-AD effects in both in vitro and in vivo studies. It has been reported that ginsenosides can inhibit amyloid β-protein (Aβ) production and deposition, tau phosphorylation, apoptosis and cytotoxicity, as well as possess anti-oxidant and anti-inflammatory properties, thus suppressing the progression of AD. In this review, we aim to provide a comprehensive overview of the pathogenesis of AD, the potential anti-AD effects of ginsenosides found in AG, and the underlying molecular mechanisms associated with these effects. Additionally, we will discuss the potential use of AG in the treatment of AD, and how ginsenosides in AG may exert more potent anti-AD effects in vivo may be a direction for further research.
Collapse
Affiliation(s)
- Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunfan Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Biopharmaceutical and Health Food, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|