1
|
Samuel Russell PP, Rickard MM, Pogorelov TV, Gruebele M. Enzymes in a human cytoplasm model organize into submetabolon complexes. Proc Natl Acad Sci U S A 2025; 122:e2414206122. [PMID: 39874290 PMCID: PMC11804712 DOI: 10.1073/pnas.2414206122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Enzyme-enzyme interactions are fundamental to the function of cells. Their atomistic mechanisms remain elusive mainly due to limitations of in-cell measurements. We address this challenge by atomistically modeling, for a total of ≈80 μs, a slice of the human cell cytoplasm that includes three successive enzymes along the glycolytic pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and phosphoglycerate mutase (PGM). We tested the model for nonspecific protein stickiness, an artifact of current atomistic force fields in crowded environments. The simulations reveal that the human enzymes co-organize in-cell into transient submetabolon complexes, consistent with previous experimental results. Our data both reiterate known specificity between GAPDH and PGK and reveal extensive direct interactions between GAPDH and PGM. Our simulations further reveal, through force field benchmarking, the critical role of protein solvation in facilitating these enzyme-enzyme interactions. Transient interenzyme interactions with μs lifetime occur repeatedly in our simulations via specific sticky protein surface patches, with interactions often mediated by charged patch residues. Some of the residues that interact frequently with one another lie in or near the active site of the enzymes. We show that some of these patches correspond to a general mode to interact with several partners for promiscuous enzymes like GAPDH. We further show that the non-native yeast PGK is stickier than human PGK in our human cytoplasm model, supporting the idea of evolutionary pressure to reduce sticking. Our cytoplasm modeling paves the way toward capturing the atomistic dynamics of an entire enzymatic pathway in-cell.
Collapse
Affiliation(s)
- Premila P. Samuel Russell
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, Saint Louis University, Saint Louis, MO63103
| | - Meredith M. Rickard
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Taras V. Pogorelov
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Martin Gruebele
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
2
|
Jaitak A, Kumari K, Kounder S, Monga V. Carbonic anhydrases: Moiety appended derivatives, medicinal and pharmacological implications. Bioorg Med Chem 2024; 114:117933. [PMID: 39378610 DOI: 10.1016/j.bmc.2024.117933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
In the realm of enzymology, Carbonic anhydrase (CA) emerges as a pivotal protagonist orchestrating the rapid conversion of carbon dioxide and water into bicarbonate ions and hydrogen ions, respectively. Carbonic anhydrase inhibitors (CAIs) are the class of drugs that target various isoforms of the enzyme, and these inhibitors play a crucial role in the treatment and management of multiple diseases such as cancer, glaucoma, high altitude sickness, rheumatoid arthritis, obesity, epilepsy, and sleep apnea. Several structural classes of CAIs developed till date possess unique architects of the pharmacophoric requirements around the central core moiety for the selective targeting of various isoforms of the CA. Recent advancements in drug design and development, along with technologies that aid in structure determination, have led to the development of several isoform-selective inhibitors of CA enzymes. However, their clinical development was hampered by the lack of desired therapeutic efficacy, isoform selectivity and safety profile. This review covers the most recent approaches used by different researchers concerned with the development of isoform-selective carbonic anhydrase inhibitors belonging to distinct structural classes like sulphonamides, carbazoles, selenols, coumarin, organotelluride, topiramate, thiophene, triazole, uracil-modified benzylic amines, and thiourea etc. In addition, their structure-activity relationships, biological evaluation, and in silico studies inlcuding the forthcoming avenues of advancements have been discussed. This review serves as a valuable resource for developing potent and efficacious CAIs with remarkable therapeutic implications; offering insights into their potency, specificity, and potential clinical applications.
Collapse
Affiliation(s)
- Aashish Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Khushi Kumari
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Sanjay Kounder
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India.
| |
Collapse
|
3
|
Omini J, Dele-Osibanjo T, Kim H, Zhang J, Obata T. Is the TCA cycle malate dehydrogenase-citrate synthase metabolon an illusion? Essays Biochem 2024; 68:99-106. [PMID: 38958532 PMCID: PMC11461322 DOI: 10.1042/ebc20230084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
This review discusses the intriguing yet controversial concept of metabolons, focusing on the malate dehydrogenase-citrate synthase (MDH-CISY) metabolon as a model. Metabolons are multienzyme complexes composed of enzymes that catalyze sequential reactions in metabolic pathways. Metabolons have been proposed to enhance metabolic pathway efficiency by facilitating substrate channeling. However, there is skepticism about the presence of metabolons and their functionality in physiological conditions in vivo. We address the skepticism by reviewing compelling evidence supporting the existence of the MDH-CISY metabolon and highlighting its potential functions in cellular metabolism. The electrostatic interaction between MDH and CISY and the intermediate oxaloacetate, channeled within the metabolon, has been demonstrated using various experimental techniques, including protein-protein interaction assays, isotope dilution studies, and enzyme coupling assays. Regardless of the wealth of in vitro evidence, further validation is required to elucidate the functionality of MDH-CISY metabolons in living systems using advanced structural and spatial analysis techniques.
Collapse
Affiliation(s)
- Joy Omini
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Taiwo Dele-Osibanjo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Heejeong Kim
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Jing Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Toshihiro Obata
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| |
Collapse
|
4
|
Lin P, Zhang S, Komatsubara F, Konishi H, Nakata E, Morii T. Artificial Compartments Encapsulating Enzymatic Reactions: Towards the Construction of Artificial Organelles. Chempluschem 2024:e202400483. [PMID: 39351818 DOI: 10.1002/cplu.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Cells have used compartmentalization to implement complex biological processes involving thousands of enzyme cascade reactions. Enzymes are spatially organized into the cellular compartments to carry out specific and efficient reactions in a spatiotemporally controlled manner. These compartments are divided into membrane-bound and membraneless organelles. Mimicking such cellular compartment systems has been a challenge for years. A variety of artificial scaffolds, including liposomes, polymersomes, proteins, nucleic acids, or hybrid materials have been used to construct artificial membrane-bound or membraneless compartments. These artificial compartments may have great potential for applications in biosynthesis, drug delivery, diagnosis and therapeutics, among others. This review first summarizes the typical examples of cellular compartments. In particular, the recent studies on cellular membraneless organelles (biomolecular condensates) are reviewed. We then summarize the recent advances in the construction of artificial compartments using engineered platforms. Finally, we provide our insights into the construction of biomimetic systems and the applications of these systems. This review article provides a timely summary of the relevant perspectives for the future development of artificial compartments, the building blocks for the construction of artificial organelles or cells.
Collapse
Affiliation(s)
- Peng Lin
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Shiwei Zhang
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Futa Komatsubara
- Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Konishi
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
- Department of Health and Nutrition, Kyoto Koka Women's University, Ukyo-ku, Kyoto, 615-0882, Japan
| |
Collapse
|
5
|
Yu J, Ramirez LM, Lin Q, Burz DS, Shekhtman A. Ribosome External Electric Field Regulates Metabolic Enzyme Activity: The RAMBO Effect. J Phys Chem B 2024; 128:7002-7021. [PMID: 39012038 DOI: 10.1021/acs.jpcb.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Ribosomes bind to many metabolic enzymes and change their activity. A general mechanism for ribosome-mediated amplification of metabolic enzyme activity, RAMBO, was formulated and elucidated for the glycolytic enzyme triosephosphate isomerase, TPI. The RAMBO effect results from a ribosome-dependent electric field-substrate dipole interaction energy that can increase or decrease the ground state of the reactant and product to regulate catalytic rates. NMR spectroscopy was used to determine the interaction surface of TPI binding to ribosomes and to measure the corresponding kinetic rates in the absence and presence of intact ribosome particles. Chemical cross-linking and mass spectrometry revealed potential ribosomal protein binding partners of TPI. Structural results and related changes in TPI energetics and activity show that the interaction between TPI and ribosomal protein L11 mediate the RAMBO effect.
Collapse
Affiliation(s)
- Jianchao Yu
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Lisa M Ramirez
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Qishan Lin
- RNA Epitranscriptomics & Proteomics Resource, University at Albany, State University of New York, Albany, New York 12222, United States
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
6
|
Tsutsumi R, Ueberheide B, Liang FX, Neel BG, Sakai R, Saito Y. Endocytic vesicles act as vehicles for glucose uptake in response to growth factor stimulation. Nat Commun 2024; 15:2843. [PMID: 38565573 PMCID: PMC10987504 DOI: 10.1038/s41467-024-46971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.
Collapse
Affiliation(s)
- Ryouhei Tsutsumi
- Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan.
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan.
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA.
| | - Beatrix Ueberheide
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
- Proteomics Laboratory, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
- Department of Neurology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Feng-Xia Liang
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
- Microscopy Laboratory, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Benjamin G Neel
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Ryuichi Sakai
- Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| |
Collapse
|
7
|
Bednarek A, Satala D, Zawrotniak M, Nobbs AH, Rapala-Kozik M, Kozik A. Glyceraldehyde 3-Phosphate Dehydrogenase on the Surface of Candida albicans and Nakaseomyces glabratus Cells-A Moonlighting Protein That Binds Human Vitronectin and Plasminogen and Can Adsorb to Pathogenic Fungal Cells via Major Adhesins Als3 and Epa6. Int J Mol Sci 2024; 25:1013. [PMID: 38256088 PMCID: PMC10815899 DOI: 10.3390/ijms25021013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Candida albicans and other closely related pathogenic yeast-like fungi carry on their surface numerous loosely adsorbed "moonlighting proteins"-proteins that play evolutionarily conserved intracellular functions but also appear on the cell surface and exhibit additional functions, e.g., contributing to attachment to host tissues. In the current work, we characterized this "moonlighting" role for glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) of C. albicans and Nakaseomyces glabratus. GAPDH was directly visualized on the cell surface of both species and shown to play a significant part in the total capacity of fungal cells to bind two selected human host proteins-vitronectin and plasminogen. Using purified proteins, both host proteins were found to tightly interact with GAPDH, with dissociation constants in an order of 10-8 M, as determined by bio-layer interferometry and surface plasmon resonance measurements. It was also shown that exogenous GAPDH tightly adheres to the surface of candidal cells, suggesting that the cell surface location of this moonlighting protein may partly result from the readsorption of its soluble form, which may be present at an infection site (e.g., due to release from dying fungal cells). The major dedicated adhesins, covalently bound to the cell wall-agglutinin-like sequence protein 3 (Als3) and epithelial adhesin 6 (Epa6)-were suggested to serve as the docking platforms for GAPDH in C. albicans and N. glabratus, respectively.
Collapse
Affiliation(s)
- Aneta Bednarek
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland;
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Angela H. Nobbs
- Bristol Dental School Research Laboratories, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK;
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland;
| |
Collapse
|
8
|
Campos M, Albrecht LV. Hitting the Sweet Spot: How Glucose Metabolism Is Orchestrated in Space and Time by Phosphofructokinase-1. Cancers (Basel) 2023; 16:16. [PMID: 38201444 PMCID: PMC10778546 DOI: 10.3390/cancers16010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Glycolysis is the central metabolic pathway across all kingdoms of life. Intensive research efforts have been devoted to understanding the tightly orchestrated processes of converting glucose into energy in health and disease. Our review highlights the advances in knowledge of how metabolic and gene networks are integrated through the precise spatiotemporal compartmentalization of rate-limiting enzymes. We provide an overview of technically innovative approaches that have been applied to study phosphofructokinase-1 (PFK1), which represents the fate-determining step of oxidative glucose metabolism. Specifically, we discuss fast-acting chemical biology and optogenetic tools that have delineated new links between metabolite fluxes and transcriptional reprogramming, which operate together to enact tissue-specific processes. Finally, we discuss how recent paradigm-shifting insights into the fundamental basis of glycolytic regulatory control have shed light on the mechanisms of tumorigenesis and could provide insight into new therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Melissa Campos
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697, USA;
| | - Lauren V. Albrecht
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697, USA;
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Sivadas A, McDonald EF, Shuster SO, Davis CM, Plate L. Site-specific crosslinking reveals Phosphofructokinase-L inhibition drives self-assembly and attenuation of protein interactions. Adv Biol Regul 2023; 90:100987. [PMID: 37806136 PMCID: PMC11108229 DOI: 10.1016/j.jbior.2023.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Phosphofructokinase is the central enzyme in glycolysis and constitutes a highly regulated step. The liver isoform (PFKL) compartmentalizes during activation and inhibition in vitro and in vivo, respectively. Compartmentalized PFKL is hypothesized to modulate metabolic flux consistent with its central role as the rate limiting step in glycolysis. PFKL tetramers self-assemble at two interfaces in the monomer (interface 1 and 2), yet how these interfaces contribute to PFKL compartmentalization and drive protein interactions remains unclear. Here, we used site-specific incorporation of noncanonical photocrosslinking amino acids to identify PFKL interactors at interface 1, 2, and the active site. Tandem mass tag-based quantitative interactomics reveals interface 2 as a hotspot for PFKL interactions, particularly with cytoskeletal, glycolytic, and carbohydrate derivative metabolic proteins. Furthermore, PFKL compartmentalization into puncta was observed in human cells using citrate inhibition. Puncta formation attenuated crosslinked protein-protein interactions with the cytoskeleton at interface 2. This result suggests that PFKL compartmentalization sequesters interface 2, but not interface 1, and may modulate associated protein assemblies with the cytoskeleton.
Collapse
Affiliation(s)
- Athira Sivadas
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Caitlin M Davis
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Lee DH, Choi I, Park SJ, Kim S, Choi MS, Lee HS, Pai HS. Three consecutive cytosolic glycolysis enzymes modulate autophagic flux. PLANT PHYSIOLOGY 2023; 193:1797-1815. [PMID: 37539947 PMCID: PMC10602606 DOI: 10.1093/plphys/kiad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 08/05/2023]
Abstract
Autophagy serves as an important recycling route for the growth and survival of eukaryotic organisms in nutrient-deficient conditions. Since starvation induces massive changes in the metabolic flux that are coordinated by key metabolic enzymes, specific processing steps of autophagy may be linked with metabolic flux-monitoring enzymes. We attempted to identify carbon metabolic genes that modulate autophagy using VIGS screening of 45 glycolysis- and Calvin-Benson cycle-related genes in Arabidopsis (Arabidopsis thaliana). Here, we report that three consecutive triose-phosphate-processing enzymes involved in cytosolic glycolysis, triose-phosphate-isomerase (TPI), glyceraldehyde-3-phosphate dehydrogenase (GAPC), and phosphoglycerate kinase (PGK), designated TGP, negatively regulate autophagy. Depletion of TGP enzymes causes spontaneous autophagy induction and increases AUTOPHAGY-RELATED 1 (ATG1) kinase activity. TGP enzymes interact with ATG101, a regulatory component of the ATG1 kinase complex. Spontaneous autophagy induction and abnormal growth under insufficient sugar in TGP mutants are suppressed by crossing with the atg101 mutant. Considering that triose-phosphates are photosynthates transported to the cytosol from active chloroplasts, the TGP enzymes would be strategically positioned to monitor the flow of photosynthetic sugars and modulate autophagy accordingly. Collectively, these results suggest that TGP enzymes negatively control autophagy acting upstream of the ATG1 complex, which is critical for seedling development.
Collapse
Affiliation(s)
- Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Seung Jun Park
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Sumin Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Min-Soo Choi
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ho-Seok Lee
- Department of Biology, Kyung Hee University, Seoul 02447, Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
11
|
Sivadas A, McDonald EF, Shuster SO, Davis CM, Plate L. Site-Specific Crosslinking Reveals Phosphofructokinase-L Inhibition Drives Self-Assembly and Attenuation of Protein Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558525. [PMID: 37781627 PMCID: PMC10541129 DOI: 10.1101/2023.09.19.558525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phosphofructokinase is the central enzyme in glycolysis and constitutes a highly regulated step. The liver isoform (PFKL) compartmentalizes during activation and inhibition in vitro and in vivo respectively. Compartmentalized PFKL is hypothesized to modulate metabolic flux consistent with its central role as the rate limiting step in glycolysis. PFKL tetramers self-assemble at two interfaces in the monomer (interface 1 and 2), yet how these interfaces contribute to PFKL compartmentalization and drive protein interactions remains unclear. Here, we used site-specific incorporation of noncanonical photocrosslinking amino acids to identify PFKL interactors at interface 1, 2, and the active site. Tandem mass tag-based quantitative interactomics reveals interface 2 as a hotspot for PFKL interactions, particularly with cytoskeletal, glycolytic, and carbohydrate derivative metabolic proteins. Furthermore, PFKL compartmentalization into puncta was observed in human cells using citrate inhibition. Puncta formation attenuated crosslinked protein-protein interactions with the cytoskeleton at interface 2. This result suggests that PFKL compartmentalization sequesters interface 2, but not interface 1, and may modulate associated protein assemblies with the cytoskeleton.
Collapse
Affiliation(s)
- Athira Sivadas
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | | | | | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
Zhang Y, Chen M, Liu T, Qin K, Fernie AR. Investigating the dynamics of protein-protein interactions in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:965-983. [PMID: 36919339 DOI: 10.1111/tpj.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 05/27/2023]
Abstract
Both stable and transient protein interactions play an important role in the complex assemblies required for the proper functioning of living cells. Several methods have been developed to monitor protein-protein interactions in plants. However, the detection of dynamic protein complexes is very challenging, with few technologies available for this purpose. Here, we developed a new platform using the plant UBIQUITIN promoter to drive transgene expression and thereby to detect protein interactions in planta. Typically, to decide which side of the protein to link the tags, the subcellular localization of the protein fused either N-terminal or C-terminal mCitrine was firstly confirmed by using eight different specific mCherry markers. Following stable or transient protein expression in plants, the protein interaction network was detected by affinity purification mass spectrometry. These interactions were subsequently confirmed by bimolecular fluorescence complementation (BiFC), bioluminescence resonance energy transfer and co-immunoprecipitation assays. The dynamics of these interactions were monitored by Förster resonance energy transfer (FRET) and split-nano luciferase, whilst the ternary protein complex association was monitored by BiFC-FRET. Using the canonical glycolytic metabolon as an example, the interaction between these enzymes was characterized under conditions that mimic physiologically relevant energy statuses.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Moxian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tieyuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Kezhen Qin
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
13
|
Ho T, Potapenko E, Davis DB, Merrins MJ. A plasma membrane-associated glycolytic metabolon is functionally coupled to K ATP channels in pancreatic α and β cells from humans and mice. Cell Rep 2023; 42:112394. [PMID: 37058408 PMCID: PMC10513404 DOI: 10.1016/j.celrep.2023.112394] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/25/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
The ATP-sensitive K+ (KATP) channel is a key regulator of hormone secretion from pancreatic islet endocrine cells. Using direct measurements of KATP channel activity in pancreatic β cells and the lesser-studied α cells, from both humans and mice, we provide evidence that a glycolytic metabolon locally controls KATP channels on the plasma membrane. The two ATP-consuming enzymes of upper glycolysis, glucokinase and phosphofructokinase, generate ADP that activates KATP. Substrate channeling of fructose 1,6-bisphosphate through the enzymes of lower glycolysis fuels pyruvate kinase, which directly consumes the ADP made by phosphofructokinase to raise ATP/ADP and close the channel. We further show the presence of a plasma membrane-associated NAD+/NADH cycle whereby lactate dehydrogenase is functionally coupled to glyceraldehyde-3-phosphate dehydrogenase. These studies provide direct electrophysiological evidence of a KATP-controlling glycolytic signaling complex and demonstrate its relevance to islet glucose sensing and excitability.
Collapse
Affiliation(s)
- Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
14
|
Is the fundamental pathology in Duchenne's muscular dystrophy caused by a failure of glycogenolysis–glycolysis in costameres? J Genet 2023. [DOI: 10.1007/s12041-022-01410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
16
|
Dynamic modulation of enzyme activity by synthetic CRISPR–Cas6 endonucleases. Nat Chem Biol 2022; 18:492-500. [DOI: 10.1038/s41589-022-01005-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
|
17
|
Arsenic Trioxide Cooperate Cryptotanshinone Exerts Antitumor Effect by Medicating Macrophage Polarization through Glycolysis. J Immunol Res 2022; 2022:2619781. [PMID: 35178457 PMCID: PMC8846972 DOI: 10.1155/2022/2619781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an often-fatal malignant tumor with high lethality. Despite advances and significant efficacy in monotherapy, cancer therapy continues to pose several challenges. Novel combination regimens are an emerging strategy for anti-HCC and have demonstrated to be effective. Here, we propose a potential combination for HCC treatment named arsenic trioxide cooperate cryptotanshinone (ACCS). A remarkable synergistic therapeutic effect has been achieved compared with drugs alone in both in vivo and in vitro experiments. Mechanism study indicated that ACCS exerts its therapeutic actions by regulating macrophage-related immunity and glycolysis. ACCS potentiates the polarization of M1 macrophages and elevates the proportion of M1/M2 to remodel tumor immunity. Further molecular mechanism study revealed that ACCS intensifies the glucose utilization and glycolysis in the macrophage by increasing the phosphorylation of AMPK to activating the AMPK singling pathway. In conclusion, ACCS is a highly potential combination regimen for HCC treatment. The therapeutic potential of ACCS as a candidate option for anticancer drugs in restoring the balance of immunity and metabolism deserves further investigation.
Collapse
|
18
|
Miura N. Condensate Formation by Metabolic Enzymes in Saccharomyces cerevisiae. Microorganisms 2022; 10:232. [PMID: 35208686 PMCID: PMC8876316 DOI: 10.3390/microorganisms10020232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
Condensate formation by a group of metabolic enzymes in the cell is an efficient way of regulating cell metabolism through the formation of "membrane-less organelles." Because of the use of green fluorescent protein (GFP) for investigating protein localization, various enzymes were found to form condensates or filaments in living Saccharomyces cerevisiae, mammalian cells, and in other organisms, thereby regulating cell metabolism in the certain status of the cells. Among different environmental stresses, hypoxia triggers the spatial reorganization of many proteins, including more than 20 metabolic enzymes, to form numerous condensates, including "Glycolytic body (G-body)" and "Purinosome." These individual condensates are collectively named "Metabolic Enzymes Transiently Assembling (META) body". This review overviews condensate or filament formation by metabolic enzymes in S. cerevisiae, focusing on the META body, and recent reports in elucidating regulatory machinery of META body formation.
Collapse
Affiliation(s)
- Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
19
|
Abstract
Hypoxia inhibits the tricarboxylic acid (TCA) cycle and leaves glycolysis as the primary metabolic pathway responsible for converting glucose into usable energy. However, the mechanisms that compensate for this loss in energy production due to TCA cycle inactivation remain poorly understood. Glycolysis enzymes are typically diffuse and soluble in the cytoplasm under normoxic conditions. In contrast, recent studies have revealed dynamic compartmentalization of glycolysis enzymes in response to hypoxic stress in yeast, C. elegans and mammalian cells. These messenger ribonucleoprotein (mRNP) structures, termed glycolytic (G) bodies in yeast, lack membrane enclosure and display properties of phase-separated biomolecular condensates. Disruption of condensate formation correlates with defects such as impaired synaptic function in C. elegans neurons and decreased glucose flux in yeast. Concentrating glycolysis enzymes into condensates may lead to their functioning as 'metabolons' that enhance rates of glucose utilization for increased energy production. Besides condensates, glycolysis enzymes functionally associate in other organisms and specific tissues through protein-protein interactions and membrane association. However, as discussed in this Review, the functional consequences of coalescing glycolytic machinery are only just beginning to be revealed. Through ongoing studies, we anticipate the physiological importance of metabolic regulation mediated by the compartmentalization of glycolysis enzymes will continue to emerge.
Collapse
Affiliation(s)
- Gregory G Fuller
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
20
|
Zhang Y, Fernie AR. Stable and Temporary Enzyme Complexes and Metabolons Involved in Energy and Redox Metabolism. Antioxid Redox Signal 2021; 35:788-807. [PMID: 32368925 DOI: 10.1089/ars.2019.7981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Alongside well-characterized permanent multimeric enzymes and multienzyme complexes, relatively unstable transient enzyme-enzyme assemblies, including metabolons, provide an important mechanism for the regulation of energy and redox metabolism. Critical Issues: Despite the fact that enzyme-enzyme assemblies have been proposed for many decades and experimentally analyzed for at least 40 years, there are very few pathways for which unequivocal evidence for the presence of metabolite channeling, the most frequently evoked reason for their formation, has been provided. Further, in contrast to the stronger, permanent interactions for which a deep understanding of the subunit interface exists, the mechanism(s) underlying transient enzyme-enzyme interactions remain poorly studied. Recent Advances: The widespread adoption of proteomic and cell biological approaches to characterize protein-protein interaction is defining an ever-increasing number of enzyme-enzyme assemblies as well as enzyme-protein interactions that likely identify factors which stabilize such complexes. Moreover, the use of microfluidic technologies provided compelling support of a role for substrate-specific chemotaxis in complex assemblies. Future Directions: Embracing current and developing technologies should render the delineation of metabolons from other enzyme-enzyme complexes more facile. In parallel, attempts to confirm that the findings reported in microfluidic systems are, indeed, representative of the cellular situation will be critical to understanding the physiological circumstances requiring and evoking dynamic changes in the levels of the various transient enzyme-enzyme assemblies of the cell. Antioxid. Redox Signal. 35, 788-807.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
21
|
Aledo JC. The Role of Methionine Residues in the Regulation of Liquid-Liquid Phase Separation. Biomolecules 2021; 11:biom11081248. [PMID: 34439914 PMCID: PMC8394241 DOI: 10.3390/biom11081248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Membraneless organelles are non-stoichiometric supramolecular structures in the micron scale. These structures can be quickly assembled/disassembled in a regulated fashion in response to specific stimuli. Membraneless organelles contribute to the spatiotemporal compartmentalization of the cell, and they are involved in diverse cellular processes often, but not exclusively, related to RNA metabolism. Liquid-liquid phase separation, a reversible event involving demixing into two distinct liquid phases, provides a physical framework to gain insights concerning the molecular forces underlying the process and how they can be tuned according to the cellular needs. Proteins able to undergo phase separation usually present a modular architecture, which favors a multivalency-driven demixing. We discuss the role of low complexity regions in establishing networks of intra- and intermolecular interactions that collectively control the phase regime. Post-translational modifications of the residues present in these domains provide a convenient strategy to reshape the residue-residue interaction networks that determine the dynamics of phase separation. Focus will be placed on those proteins with low complexity domains exhibiting a biased composition towards the amino acid methionine and the prominent role that reversible methionine sulfoxidation plays in the assembly/disassembly of biomolecular condensates.
Collapse
Affiliation(s)
- Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
22
|
Khalilov RA, Jafarova AM, Abdullaev VR, Abakarova SA. Influence of Temperature on the Functional Characteristics of the Key Enyzme of Energy Metabolism in the Skeletal Muscles of Small Ground Squirrels (Sphermophilu spygmaeus Pall.) of Steppe Ecosystems. ARID ECOSYSTEMS 2021. [DOI: 10.1134/s2079096121020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Jang S, Xuan Z, Lagoy RC, Jawerth LM, Gonzalez IJ, Singh M, Prashad S, Kim HS, Patel A, Albrecht DR, Hyman AA, Colón-Ramos DA. Phosphofructokinase relocalizes into subcellular compartments with liquid-like properties in vivo. Biophys J 2021; 120:1170-1186. [PMID: 32853565 PMCID: PMC8059094 DOI: 10.1016/j.bpj.2020.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Although much is known about the biochemical regulation of glycolytic enzymes, less is understood about how they are organized inside cells. We systematically examine the dynamic subcellular localization of glycolytic protein phosphofructokinase-1/PFK-1.1 in Caenorhabditis elegans. We determine that endogenous PFK-1.1 localizes to subcellular compartments in vivo. In neurons, PFK-1.1 forms phase-separated condensates near synapses in response to energy stress from transient hypoxia. Restoring animals to normoxic conditions results in cytosolic dispersion of PFK-1.1. PFK-1.1 condensates exhibit liquid-like properties, including spheroid shapes due to surface tension, fluidity due to deformations, and fast internal molecular rearrangements. Heterologous self-association domain cryptochrome 2 promotes formation of PFK-1.1 condensates and recruitment of aldolase/ALDO-1. PFK-1.1 condensates do not correspond to stress granules and might represent novel metabolic subcompartments. Our studies indicate that glycolytic protein PFK-1.1 can dynamically form condensates in vivo.
Collapse
Affiliation(s)
- SoRi Jang
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Zhao Xuan
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Ross C Lagoy
- Department of Biomedical Engineering and Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Louise M Jawerth
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ian J Gonzalez
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Milind Singh
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Shavanie Prashad
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Hee Soo Kim
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Avinash Patel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dirk R Albrecht
- Department of Biomedical Engineering and Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel A Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut; Instituto de Neurobiología, Universidad de Puerto Rico, San Juan, Puerto Rico.
| |
Collapse
|
24
|
Bawa S, Piccirillo R, Geisbrecht ER. TRIM32: A Multifunctional Protein Involved in Muscle Homeostasis, Glucose Metabolism, and Tumorigenesis. Biomolecules 2021; 11:biom11030408. [PMID: 33802079 PMCID: PMC7999776 DOI: 10.3390/biom11030408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022] Open
Abstract
Human tripartite motif family of proteins 32 (TRIM32) is a ubiquitous multifunctional protein that has demonstrated roles in differentiation, muscle physiology and regeneration, and tumor suppression. Mutations in TRIM32 result in two clinically diverse diseases. A mutation in the B-box domain gives rise to Bardet–Biedl syndrome (BBS), a disease whose clinical presentation shares no muscle pathology, while mutations in the NHL (NCL-1, HT2A, LIN-41) repeats of TRIM32 causes limb-girdle muscular dystrophy type 2H (LGMD2H). TRIM32 also functions as a tumor suppressor, but paradoxically is overexpressed in certain types of cancer. Recent evidence supports a role for TRIM32 in glycolytic-mediated cell growth, thus providing a possible mechanism for TRIM32 in the accumulation of cellular biomass during regeneration and tumorigenesis, including in vitro and in vivo approaches, to understand the broad spectrum of TRIM32 functions. A special emphasis is placed on the utility of the Drosophila model, a unique system to study glycolysis and anabolic pathways that contribute to the growth and homeostasis of both normal and tumor tissues.
Collapse
Affiliation(s)
- Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA;
| | - Rosanna Piccirillo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Erika R. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA;
- Correspondence: ; Tel.: +1-(785)-532-3105
| |
Collapse
|
25
|
Karkowska-Kuleta J, Wronowska E, Satala D, Zawrotniak M, Bras G, Kozik A, Nobbs AH, Rapala-Kozik M. Als3-mediated attachment of enolase on the surface of Candida albicans cells regulates their interactions with host proteins. Cell Microbiol 2020; 23:e13297. [PMID: 33237623 DOI: 10.1111/cmi.13297] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
The multifunctional protein enolase has repeatedly been identified on the surface of numerous cell types, including a variety of pathogenic microorganisms. In Candida albicans-one of the most common fungal pathogens in humans-a surface-exposed enolase form has been previously demonstrated to play an important role in candidal pathogenicity. In our current study, the presence of enolase at the fungal cell surface under different growth conditions was examined, and a higher abundance of enolase at the surface of C. albicans hyphal forms compared to yeast-like cells was found. Affinity chromatography and chemical cross-linking indicated a member of the agglutinin-like sequence protein family-Als3-as an important potential partner required for the surface display of enolase. Analysis of Saccharomyces cerevisiae cells overexpressing Als3 with site-specific deletions showed that the Ig-like N-terminal region of Als3 (aa 166-225; aa 218-285; aa 270-305; aa 277-286) and the central repeat domain (aa 434-830) are essential for the interaction of this adhesin with enolase. In addition, binding between enolase and Als3 influenced subsequent docking of host plasma proteins-high molecular mass kininogen and plasminogen-on the candidal cell surface, thus supporting the hypothesis that C. albicans can modulate plasma proteolytic cascades to affect homeostasis within the host and propagate inflammation during infection.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
26
|
Wolfe K, Kamata R, Coutinho K, Inoue T, Sasaki AT. Metabolic Compartmentalization at the Leading Edge of Metastatic Cancer Cells. Front Oncol 2020; 10:554272. [PMID: 33224873 PMCID: PMC7667250 DOI: 10.3389/fonc.2020.554272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
Despite advances in targeted therapeutics and understanding in molecular mechanisms, metastasis remains a substantial obstacle for cancer treatment. Acquired genetic mutations and transcriptional changes can promote the spread of primary tumor cells to distant tissues. Additionally, recent studies have uncovered that metabolic reprogramming of cancer cells is tightly associated with cancer metastasis. However, whether intracellular metabolism is spatially and temporally regulated for cancer cell migration and invasion is understudied. In this review, we highlight the emergence of a concept, termed “membraneless metabolic compartmentalization,” as one of the critical mechanisms that determines the metastatic capacity of cancer cells. In particular, we focus on the compartmentalization of purine nucleotide metabolism (e.g., ATP and GTP) at the leading edge of migrating cancer cells through the uniquely phase-separated microdomains where dynamic exchange of nucleotide metabolic enzymes takes place. We will discuss how future insights may usher in a novel class of therapeutics specifically targeting the metabolic compartmentalization that drives tumor metastasis.
Collapse
Affiliation(s)
- Kara Wolfe
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati College of Medicine, OH, United States
| | - Ryo Kamata
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Kester Coutinho
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati College of Medicine, OH, United States.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, United States
| |
Collapse
|
27
|
Host and Bacterial Glycolysis during Chlamydia trachomatis Infection. Infect Immun 2020; 88:IAI.00545-20. [PMID: 32900818 DOI: 10.1128/iai.00545-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis is the leading cause of noncongenital blindness and causative agent of the most common sexually transmitted infection of bacterial origin. With a reduced genome, C. trachomatis is dependent on its host for survival, in part due to a need for the host cell to compensate for incomplete bacterial metabolic pathways. However, relatively little is known regarding how C. trachomatis is able to hijack host cell metabolism. In this study, we show that two host glycolytic enzymes, aldolase A and pyruvate kinase, as well as lactate dehydrogenase, are enriched at the C. trachomatis inclusion membrane during infection. Inclusion localization was not species specific, since a similar phenotype was observed with C. muridarum Time course experiments showed that the number of positive inclusions increased throughout the developmental cycle. In addition, these host enzymes colocalized to the same inclusion, and their localization did not appear to be dependent on sustained bacterial protein synthesis or on intact host actin, vesicular trafficking, or microtubules. Depletion of the host glycolytic enzyme aldolase A resulted in decreased inclusion size and infectious progeny production, indicating a role for host glycolysis in bacterial growth. Finally, quantitative PCR analysis showed that expression of C. trachomatis glycolytic enzymes inversely correlated with host enzyme localization at the inclusion. We discuss potential mechanisms leading to inclusion localization of host glycolytic enzymes and how it could benefit the bacteria. Altogether, our findings provide further insight into the intricate relationship between host and bacterial metabolism during Chlamydia infection.
Collapse
|
28
|
Bora S, Adole PS, Motupalli N, Pandit VR, Vinod KV. Association between carbonyl stress markers and the risk of acute coronary syndrome in patients with type 2 diabetes mellitus-A pilot study. Diabetes Metab Syndr 2020; 14:1751-1755. [PMID: 32932181 DOI: 10.1016/j.dsx.2020.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS Carbonyl stress is one of the mechanisms responsible for diabetes and its complications. The study was planned to examine the relationship between carbonyl stress markers and the risk of acute coronary syndrome (ACS) in patients with type 2 diabetes mellitus (T2DM). METHODS Forty T2DM patients with ACS and forty T2DM patients without ACS participated in this cross-sectional pilot study. Routine biochemical investigations, creatine kinase-total (CK-T), and creatine kinase-MB (CK-MB) levels were estimated. Serum carbonyl stress markers were analysed by enzyme-linked immunosorbent assay. Binary logistics regression was done to determine the predictive value of carbonyl stress markers for ACS. RESULTS Fasting plasma glucose, serum total methylglyoxal (MG), methylglyoxal derived hydroimidazolones-1 (MG-H1), and Nε-carboxymethyl-lysine (CML) levels were significantly higher in T2DM patients with ACS than in those without ACS. Serum glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glyoxalase-1 (GLO1) levels were significantly lower in T2DM patients with ACS than in those without ACS. Fasting plasma glucose level was significantly positively correlated with serum MG (r = 0.441, P < 0.001), CML (r = 0.649, P < 0.001), MG-H1 (r = 0.725, P < 0.001), and negatively correlated with serum GAPDH (r = - 0.268, P = 0.012) and GLO1 (r = - 0.634, P = 0.016). Receiver operating characteristic curve analysis showed that serum GAPDH and GLO1 could predict the risk of ACS in T2DM patients. CONCLUSION These findings revealed that high carbonyl stress due to lower levels of GAPDH and GLO1 may predispose patients with T2DM for more risk of ACS.
Collapse
Affiliation(s)
- Sushmita Bora
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605 006, India
| | - Prashant S Adole
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605 006, India.
| | - Nissy Motupalli
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605 006, India
| | - Vinay R Pandit
- Department of Emergency Medicine and Trauma, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605 006, India
| | - Kolar V Vinod
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605 006, India
| |
Collapse
|
29
|
TAB1 regulates glycolysis and activation of macrophages in diabetic nephropathy. Inflamm Res 2020; 69:1215-1234. [PMID: 33044562 PMCID: PMC7658079 DOI: 10.1007/s00011-020-01411-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/09/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Objective and design Macrophages exhibit strong phenotypic plasticity and can mediate renal inflammation by polarizing into an M1 phenotype. They play a pivotal role in diabetic nephropathy (DN). Here, we have investigated the regulatory role of transforming growth factor β-activated kinase 1-binding protein 1 (TAB1) in glycolysis and activation of macrophages during DN. Methods TAB1 was inhibited using siRNA in high glucose (HG)-stimulated bone marrow-derived macrophages (BMMs) and lentiviral vector-mediated TAB1 knockdown was used in streptozotocin (STZ)-induced diabetic mice. Western blotting, flow cytometry, qRT-PCR, ELISA, PAS staining and immunohistochemical staining were used for assessment of TAB1/nuclear factor-κB (NF-κB)/hypoxia-inducible factor-1α (HIF-1α), iNOS, glycolysis, inflammation and the clinical and pathological manifestations of diabetic nephropathy. Results We found that TAB1/NF-κB/HIF-1α, iNOS and glycolysis were up-regulated in BMMs under HG conditions, leading to release of further inflammatory factors, Downregulation of TAB1 could inhibit glycolysis/polarization of macrophages and inflammation in vivo and in vitro. Furthermore, albuminuria, the tubulointerstitial damage index and glomerular mesangial expansion index of STZ-induced diabetic nephropathy mice were decreased by TAB1 knockdown. Conclusions Our results suggest that the TAB1/NF-κB/HIF-1α signaling pathway regulates glycolysis and activation of macrophages in DN. Electronic supplementary material The online version of this article (10.1007/s00011-020-01411-4) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Prentice EJ, Hicks J, Ballerstedt H, Blank LM, Liáng LNL, Schipper LA, Arcus VL. The Inflection Point Hypothesis: The Relationship between the Temperature Dependence of Enzyme-Catalyzed Reaction Rates and Microbial Growth Rates. Biochemistry 2020; 59:3562-3569. [PMID: 32902250 DOI: 10.1021/acs.biochem.0c00530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The temperature dependence of biological rates at different scales (from individual enzymes to isolated organisms to ecosystem processes such as soil respiration and photosynthesis) is the subject of much historical and contemporary research. The precise relationship between the temperature dependence of enzyme rates and those at larger scales is not well understood. We have developed macromolecular rate theory (MMRT) to describe the temperature dependence of biological processes at all scales. Here we formalize the scaling relationship by investigating MMRT both at the molecular scale (constituent enzymes) and for growth of the parent organism. We demonstrate that the inflection point (Tinf) for the temperature dependence of individual metabolic enzymes coincides with the optimal growth temperature for the parent organism, and we rationalize this concordance in terms of the necessity for linearly correlated rates for metabolic enzymes over fluctuating environmental temperatures to maintain homeostasis. Indeed, Tinf is likely to be under strong selection pressure to maintain coordinated rates across environmental temperature ranges. At temperatures at which rates become uncorrelated, we postulate a regulatory catastrophe and organism growth rates precipitously decline at temperatures where this occurs. We show that the curvature in the plots of the natural log of the rate versus temperature for individual enzymes determines the curvature for the metabolic process overall and the curvature for the temperature dependence of the growth of the organism. We have called this "the inflection point hypothesis", and this hypothesis suggests many avenues for future investigation, including avenues for engineering the thermal tolerance of organisms.
Collapse
Affiliation(s)
- Erica J Prentice
- School of Science - Te Aka Ma̅tuatua, University of Waikato, Hamilton 3216, New Zealand
| | - Joanna Hicks
- School of Science - Te Aka Ma̅tuatua, University of Waikato, Hamilton 3216, New Zealand
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany
| | - Liyı N L Liáng
- Manaaki Whenua-Landcare Research, Private Bag 11052, Palmerston North 4442, New Zealand
| | - Louis A Schipper
- School of Science - Te Aka Ma̅tuatua, University of Waikato, Hamilton 3216, New Zealand
| | - Vickery L Arcus
- School of Science - Te Aka Ma̅tuatua, University of Waikato, Hamilton 3216, New Zealand
| |
Collapse
|
31
|
Abstract
Enzymology is concerned with the study of enzyme structure, function, regulation and kinetics. It is an interdisciplinary subject that can be treated as an exclusive sphere of exhaustive inquiry within mathematical, physico-chemical and biological sciences. Hence, teaching of enzymology, in general, and enzyme kinetics, in particular, should be undertaken in an interdisciplinary manner for a holistic appreciation of this subject. Further, analogous examples from everyday life should form an integral component of the teaching for an intuitive grasp of the subject matter. Furthermore, simulation-based appreciation of enzyme kinetics should be preferred over simplifying assumptions and approximations of traditional enzyme kinetics teaching. In this Words of Advice, I outline the domain depth of enzymology across the various disciplines and provide initial ideas on how appropriate analogies can provide firm insights into the subject. Further, I demonstrate how an intuitive feel for the subject can help not only in grasping abstract concepts but also extending it in experimental design and subsequent interpretation. Use of simulations in grasping complex concepts is also advocated given the advantages this medium offers over traditional approaches involving images and molecular models. Furthermore, I discuss the merits of incorporating the historical backdrop of major discoveries in enzymological teaching. We, at AstraZeneca, have experimented with this approach with the desired outcome of generating interest in the subject from people practising diverse disciplines.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
32
|
Zhang Y, Sampathkumar A, Kerber SML, Swart C, Hille C, Seerangan K, Graf A, Sweetlove L, Fernie AR. A moonlighting role for enzymes of glycolysis in the co-localization of mitochondria and chloroplasts. Nat Commun 2020; 11:4509. [PMID: 32908151 PMCID: PMC7481185 DOI: 10.1038/s41467-020-18234-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Glycolysis is one of the primordial pathways of metabolism, playing a pivotal role in energy metabolism and biosynthesis. Glycolytic enzymes are known to form transient multi-enzyme assemblies. Here we examine the wider protein-protein interactions of plant glycolytic enzymes and reveal a moonlighting role for specific glycolytic enzymes in mediating the co-localization of mitochondria and chloroplasts. Knockout mutation of phosphoglycerate mutase or enolase resulted in a significantly reduced association of the two organelles. We provide evidence that phosphoglycerate mutase and enolase form a substrate-channelling metabolon which is part of a larger complex of proteins including pyruvate kinase. These results alongside a range of genetic complementation experiments are discussed in the context of our current understanding of chloroplast-mitochondrial interactions within photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Arun Sampathkumar
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Sandra Mae-Lin Kerber
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Corné Swart
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Carsten Hille
- Department of Physical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam-Golm, Germany
- Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Kumar Seerangan
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Lee Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
33
|
Substrate Channeling via a Transient Protein-Protein Complex: The case of D-Glyceraldehyde-3-Phosphate Dehydrogenase and L-Lactate Dehydrogenase. Sci Rep 2020; 10:10404. [PMID: 32591631 PMCID: PMC7320145 DOI: 10.1038/s41598-020-67079-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Substrate channeling studies have frequently failed to provide conclusive results due to poor understanding of this subtle phenomenon. We analyzed the mechanism of NADH-channeling from D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to L-lactate Dehydrogenase (LDH) using enzymes from different cells. Enzyme kinetics studies showed that LDH activity with free NADH and GAPDH-NADH complex always take place in parallel. The channeling is observed only in assays that mimic cytosolic conditions where free NADH concentration is negligible and the GAPDH-NADH complex is dominant. Molecular dynamics and protein-protein interaction studies showed that LDH and GAPDH can form a leaky channeling complex only at the limiting NADH concentrations. Surface calculations showed that positive electric field between the NAD(H) binding sites on LDH and GAPDH tetramers can merge in the LDH-GAPDH complex. NAD(H)-channeling within the LDH-GAPDH complex can be an extension of NAD(H)-channeling within each tetramer. In the case of a transient LDH-(GAPDH-NADH) complex, the relative contribution from the channeled and the diffusive paths depends on the overlap between the off-rates for the LDH-(GAPDH-NADH) complex and the GAPDH-NADH complex. Molecular evolution or metabolic engineering protocols can exploit substrate channeling for metabolic flux control by fine-tuning substrate-binding affinity for the key enzymes in the competing reaction paths.
Collapse
|
34
|
Bawa S, Brooks DS, Neville KE, Tipping M, Sagar MA, Kollhoff JA, Chawla G, Geisbrecht BV, Tennessen JM, Eliceiri KW, Geisbrecht ER. Drosophila TRIM32 cooperates with glycolytic enzymes to promote cell growth. eLife 2020; 9:52358. [PMID: 32223900 PMCID: PMC7105379 DOI: 10.7554/elife.52358] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cell growth and/or proliferation may require the reprogramming of metabolic pathways, whereby a switch from oxidative to glycolytic metabolism diverts glycolytic intermediates towards anabolic pathways. Herein, we identify a novel role for TRIM32 in the maintenance of glycolytic flux mediated by biochemical interactions with the glycolytic enzymes Aldolase and Phosphoglycerate mutase. Loss of Drosophila TRIM32, encoded by thin (tn), shows reduced levels of glycolytic intermediates and amino acids. This altered metabolic profile correlates with a reduction in the size of glycolytic larval muscle and brain tissue. Consistent with a role for metabolic intermediates in glycolysis-driven biomass production, dietary amino acid supplementation in tn mutants improves muscle mass. Remarkably, TRIM32 is also required for ectopic growth - loss of TRIM32 in a wing disc-associated tumor model reduces glycolytic metabolism and restricts growth. Overall, our results reveal a novel role for TRIM32 for controlling glycolysis in the context of both normal development and tumor growth.
Collapse
Affiliation(s)
- Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - David S Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - Kathryn E Neville
- Department of Biology, Providence College, Providence, United States
| | - Marla Tipping
- Department of Biology, Providence College, Providence, United States
| | - Md Abdul Sagar
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States
| | - Joseph A Kollhoff
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, India.,Department of Biology, Indiana University, Bloomington, United States
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, United States
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| |
Collapse
|
35
|
Khalilov RA, Dzhafarova AM, Khizrieva SI, Abdullaev VR. The Effect of Hypothermia on Some Structural and Functional Characteristics of Lactate Dehydrogenase of the Rat Brain. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Gómez-Escudero J, Clemente C, García-Weber D, Acín-Pérez R, Millán J, Enríquez JA, Bentley K, Carmeliet P, Arroyo AG. PKM2 regulates endothelial cell junction dynamics and angiogenesis via ATP production. Sci Rep 2019; 9:15022. [PMID: 31636306 PMCID: PMC6803685 DOI: 10.1038/s41598-019-50866-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, occurs in pathophysiological contexts such as wound healing, cancer, and chronic inflammatory disease. During sprouting angiogenesis, endothelial tip and stalk cells coordinately remodel their cell-cell junctions to allow collective migration and extension of the sprout while maintaining barrier integrity. All these processes require energy, and the predominant ATP generation route in endothelial cells is glycolysis. However, it remains unclear how ATP reaches the plasma membrane and intercellular junctions. In this study, we demonstrate that the glycolytic enzyme pyruvate kinase 2 (PKM2) is required for sprouting angiogenesis in vitro and in vivo through the regulation of endothelial cell-junction dynamics and collective migration. We show that PKM2-silencing decreases ATP required for proper VE-cadherin internalization/traffic at endothelial cell-cell junctions. Our study provides fresh insight into the role of ATP subcellular compartmentalization in endothelial cells during angiogenesis. Since manipulation of EC glycolysis constitutes a potential therapeutic intervention route, particularly in tumors and chronic inflammatory disease, these findings may help to refine the targeting of endothelial glycolytic activity in disease.
Collapse
Affiliation(s)
- Jesús Gómez-Escudero
- Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Tumour Biology Department, Barts Cancer Institute, John´s Vane Centre, Queen Mary´s University of London. Charterhouse Sq, EC1M 6BQ, London, UK
| | - Cristina Clemente
- Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Centro de Investigaciones Biológicas (CIB-CSIC). Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Diego García-Weber
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Rebeca Acín-Pérez
- Myocardial Pathology Areas, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José A Enríquez
- Myocardial Pathology Areas, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Katie Bentley
- Computational Biology Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cellular Adaptive Behaviour Laboratory, Rudbeck Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Department of Oncology, University of Leuven, B-3000, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongsan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Alicia G Arroyo
- Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain.
- Centro de Investigaciones Biológicas (CIB-CSIC). Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
37
|
e Silva KSF, Lima RM, Baeza LC, Lima PDS, Cordeiro TDM, Charneau S, da Silva RA, Soares CMDA, Pereira M. Interactome of Glyceraldehyde-3-Phosphate Dehydrogenase Points to the Existence of Metabolons in Paracoccidioides lutzii. Front Microbiol 2019; 10:1537. [PMID: 31338083 PMCID: PMC6629890 DOI: 10.3389/fmicb.2019.01537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioides is a dimorphic fungus, the causative agent of paracoccidioidomycosis. The disease is endemic within Latin America and prevalent in Brazil. The treatment is based on azoles, sulfonamides and amphotericin B. The seeking for new treatment approaches is a real necessity for neglected infections. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential glycolytic enzyme, well known for its multitude of functions within cells, therefore categorized as a moonlight protein. To our knowledge, this is the first approach performed on the Paracoccidioides genus regarding the description of PPIs having GAPDH as a target. Here, we show an overview of experimental GAPDH interactome in different phases of Paracoccidioides lutzii and an in silico analysis of 18 proteins partners. GAPDH interacted with 207 proteins in P. lutzii. Several proteins bound to GAPDH in mycelium, transition and yeast phases are common to important pathways such as glycolysis and TCA. We performed a co-immunoprecipitation assay to validate the complex formed by GAPDH with triose phosphate isomerase, enolase, isocitrate lyase and 2-methylcitrate synthase. We found GAPDH participating in complexes with proteins of specific pathways, indicating the existence of a glycolytic and a TCA metabolon in P. lutzii. GAPDH interacted with several proteins that undergoes regulation by nitrosylation. In addition, we modeled the GAPDH 3-D structure, performed molecular dynamics and molecular docking in order to identify the interacting interface between GAPDH and the interacting proteins. Despite the large number of interacting proteins, GAPDH has only four main regions of contact with interacting proteins, reflecting its ancestrality and conservation over evolution.
Collapse
Affiliation(s)
| | - Raisa Melo Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Thuany de Moura Cordeiro
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Sébastien Charneau
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Roosevelt Alves da Silva
- Núcleo Colaborativo de Biossistemas, Instituto de Ciências Exatas, Universidade Federal de Jataí, Goiás, Brazil
| | | | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
38
|
A non-catalytic function of carbonic anhydrase IX contributes to the glycolytic phenotype and pH regulation in human breast cancer cells. Biochem J 2019; 476:1497-1513. [PMID: 31072911 DOI: 10.1042/bcj20190177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
The most aggressive and invasive tumor cells often reside in hypoxic microenvironments and rely heavily on rapid anaerobic glycolysis for energy production. This switch from oxidative phosphorylation to glycolysis, along with up-regulation of the glucose transport system, significantly increases the release of lactic acid from cells into the tumor microenvironment. Excess lactate and proton excretion exacerbate extracellular acidification to which cancer cells, but not normal cells, adapt. We have hypothesized that carbonic anhydrases (CAs) play a role in stabilizing both intracellular and extracellular pH to favor cancer progression and metastasis. Here, we show that proton efflux (acidification) using the glycolytic rate assay is dependent on both extracellular pH (pHe) and CA IX expression. Yet, isoform-selective sulfonamide-based inhibitors of CA IX did not alter proton flux, which suggests that the catalytic activity of CA IX is not necessary for this regulation. Other investigators have suggested the CA IX co-operates with the MCT transport family to excrete protons. To test this possibility, we examined the expression patterns of selected ion transporters and show that members of this family are differentially expressed within the molecular subtypes of breast cancer. The most aggressive form of breast cancer, triple-negative breast cancer, appears to co-ordinately express the monocarboxylate transporter 4 (MCT4) and carbonic anhydrase IX (CA IX). This supports a possible mechanism that utilizes the intramolecular H+ shuttle system in CA IX to facilitate proton efflux through MCT4.
Collapse
|
39
|
Long MJC, Hnedzko D, Kim BK, Aye Y. Breaking the Fourth Wall: Modulating Quaternary Associations for Protein Regulation and Drug Discovery. Chembiochem 2019; 20:1091-1104. [PMID: 30589188 PMCID: PMC6499692 DOI: 10.1002/cbic.201800716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions (PPIs) are an effective means to orchestrate intricate biological processes required to sustain life. Approximately 650 000 PPIs underlie the human interactome; thus underscoring its complexity and the manifold signaling outputs altered in response to changes in specific PPIs. This minireview illustrates the growing arsenal of PPI assemblies and offers insights into how these varied PPI regulatory modalities are relevant to customized drug discovery, with a focus on cancer. First, known and emerging PPIs and PPI-targeted drugs of both natural and synthetic origin are categorized. Building on these discussions, the merits of PPI-guided therapeutics over traditional drug design are discussed. Finally, a compare-and-contrast section for different PPI blockers, with gain-of-function PPI interventions, such as PROTACS, is provided.
Collapse
Affiliation(s)
- Marcus J. C. Long
- 47 Pudding Gate, Bishop Burton, Beverley East Riding of Yorkshire, HU17 8QH, UK
| | - Dziyana Hnedzko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Bo Kyoung Kim
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
| | - Yimon Aye
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- 47 Pudding Gate, Bishop Burton, Beverley East Riding of Yorkshire, HU17 8QH, UK
| |
Collapse
|
40
|
Long MJC, Urul DA, Aye Y. REX technologies for profiling and decoding the electrophile signaling axes mediated by Rosetta Stone proteins. Methods Enzymol 2019; 633:203-230. [PMID: 32046846 PMCID: PMC7027669 DOI: 10.1016/bs.mie.2019.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is now clear that some cysteines on some proteins are highly tuned to react with electrophiles. Based on numerous studies, it is also established that electrophile sensing underpins rewiring of several critical signaling processes. These electrophile-sensing proteins, or privileged first responders (PFRs), are likely critically relevant for drug design. However, identifying PFRs remains a challenging and unsolved problem, despite the development of several high-throughput methods to ID proteins that react with electrophiles. More importantly, we remain unable to rank how different PFRs identified under different conditions relate to one another, in terms of sensing or signaling capacity. Here we evaluate different methods to assay sensing functions of proteins and discuss these methods in the context of developing a "ranking scheme." Based on theoretical and experimental evidence, we propose that T-REX-the only targeted-electrophile delivery tool presently available-is a reliable method to rank PFRs. Finally, we address to what extent electrophile sensing and downstream signaling are correlated. Based on our current data, we observe that such behaviors are indeed correlated. It is our hope that through this manuscript researchers from various arms of the stress signaling fields will focus on developing a quantitative understanding of precision electrophile labeling.
Collapse
Affiliation(s)
| | - Daniel A Urul
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Yimon Aye
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
41
|
Abstract
Proteins are not designed to be standalone entities and must coordinate their collective action for optimum performance. Nature has developed through evolution the ability to colocalize the functional partners of a cascade enzymatic reaction in order to ensure efficient exchange of intermediates. Inspired by these natural designs, synthetic scaffolds have been created to enhance the overall biological pathway performance. In this chapter, we describe several DNA- and protein-based scaffold approaches to assemble artificial enzyme cascades for a wide range of applications. We highlight the key benefits and drawbacks of these approaches to provide insights on how to choose the appropriate scaffold for different cascade systems.
Collapse
Affiliation(s)
- Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
42
|
Fernie AR, Zhang Y, Sweetlove LJ. Passing the Baton: Substrate Channelling in Respiratory Metabolism. RESEARCH (WASHINGTON, D.C.) 2018; 2018:1539325. [PMID: 31549022 PMCID: PMC6750097 DOI: 10.1155/2018/1539325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022]
Abstract
Despite species-specific differences in the pathways of respiratory metabolism are remarkably conserved across the kingdoms of life with glycolysis, the tricarboxylic acid cycle, and mitochondrial electron transport chain representing the major components of the process in the vast majority of organisms. In addition to being of critical importance in fueling life itself these pathways serve as interesting case studies for substrate channelling with research on this theme having been carried out for over 40 years. Here we provide a cross-kingdom review of the ample evidence for protein-protein interaction and enzyme assemblies within the three component pathways as well as describing the scarcer available evidence for substrate channelling itself.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Lee J. Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
43
|
Bongiorno T, Cancian G, Buhler S, Tibaldi E, Sforza S, Lippe G, Stecchini ML. Identification of target muscle-proteins using Western blotting and high-resolution mass spectrometry as early quality indicators of nutrient supply practices in rainbow trout (Oncorhynchus mykiss). Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3172-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Miyazawa H, Aulehla A. Revisiting the role of metabolism during development. Development 2018; 145:145/19/dev131110. [DOI: 10.1242/dev.131110] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
An emerging view emphasizes that metabolism is highly regulated in both time and space. In addition, it is increasingly being recognized that metabolic pathways are tightly connected to specific biological processes such as cell signaling, proliferation and differentiation. As we obtain a better view of this spatiotemporal regulation of metabolism, and of the molecular mechanisms that connect metabolism and signaling, we can now move from largely correlative to more functional studies. It is, therefore, a particularly promising time to revisit how metabolism can affect multiple aspects of animal development. In this Review, we discuss how metabolism is mechanistically linked to cellular and developmental programs through both its bioenergetic and metabolic signaling functions. We highlight how metabolism is regulated across various spatial and temporal scales, and discuss how this regulation can influence cellular processes such as cell signaling, gene expression, and epigenetic and post-translational modifications during embryonic development.
Collapse
Affiliation(s)
- Hidenobu Miyazawa
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| |
Collapse
|
45
|
Schneider M, Knuesting J, Birkholz O, Heinisch JJ, Scheibe R. Cytosolic GAPDH as a redox-dependent regulator of energy metabolism. BMC PLANT BIOLOGY 2018; 18:184. [PMID: 30189844 PMCID: PMC6127989 DOI: 10.1186/s12870-018-1390-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 08/22/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GapC) displays redox-dependent changes in its subcellular localizations and activity. Apart from its fundamental role in glycolysis, it also exhibits moonlighting properties. Since the exceptional redox-sensitivity of GapC has been suggested to play a crucial role in its various functions, we here studied its redox-dependent subcellular localization and the influence of the redox-state on GapC protein interactions. RESULTS In mesophyll protoplasts from Arabidopsis thaliana, colocalization of GapC with mitochondria was more pronounced under reducing conditions than upon oxidative stress. In accordance, reduced GapC showed an increased affinity to the mitochondrial voltage-dependent anion-selective channel (VDAC) compared to the oxidized one. On the other hand, nuclear localization of GapC was increased under oxidizing conditions. The essential role of the catalytic cysteine for nuclear translocation was shown by using the corresponding cysteine mutants. Furthermore, interaction of GapC with the thioredoxin Trx-h3 as a candidate to revert the redox-modifications, occurred in the nucleus of oxidized protoplasts. In a yeast complementation assay, we could demonstrate that the plant-specific non-phosphorylating glyceraldehyde 3-P dehydrogenase (GapN) can substitute for glucose 6-P dehydrogenase to generate NADPH for re-reduction of the Trx system and ROS defense. CONCLUSIONS The preferred association of reduced, glycolytically active GapC with VDAC suggests a substrate-channeling metabolon at the mitochondrial surface for efficient energy generation. Increased occurrence of oxidized GapC in the nucleus points to a function in signal transduction and gene expression. Furthermore, the interaction of GapC with Trx-h3 in the nucleus indicates reversal of the oxidative cysteine modification after re-establishment of cellular homeostasis. Both, energy metabolism and signal transfer for long-term adjustment and protection from redox-imbalances are mediated by the various functions of GapC. The molecular properties of GapC as a redox-switch are key to its multiple roles in orchestrating energy metabolism.
Collapse
Affiliation(s)
- Markus Schneider
- Division of Plant Physiology, Department of Biology and Chemistry, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Johannes Knuesting
- Division of Plant Physiology, Department of Biology and Chemistry, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Oliver Birkholz
- Division of Biophysics, Department of Biology and Chemistry, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Jürgen J. Heinisch
- Division of Genetics, Department of Biology and Chemistry, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Renate Scheibe
- Division of Plant Physiology, Department of Biology and Chemistry, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| |
Collapse
|
46
|
Mboge MY, Mahon BP, McKenna R, Frost SC. Carbonic Anhydrases: Role in pH Control and Cancer. Metabolites 2018; 8:E19. [PMID: 29495652 PMCID: PMC5876008 DOI: 10.3390/metabo8010019] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
The pH of the tumor microenvironment drives the metastatic phenotype and chemotherapeutic resistance of tumors. Understanding the mechanisms underlying this pH-dependent phenomenon will lead to improved drug delivery and allow the identification of new therapeutic targets. This includes an understanding of the role pH plays in primary tumor cells, and the regulatory factors that permit cancer cells to thrive. Over the last decade, carbonic anhydrases (CAs) have been shown to be important mediators of tumor cell pH by modulating the bicarbonate and proton concentrations for cell survival and proliferation. This has prompted an effort to inhibit specific CA isoforms, as an anti-cancer therapeutic strategy. Of the 12 active CA isoforms, two, CA IX and XII, have been considered anti-cancer targets. However, other CA isoforms also show similar activity and tissue distribution in cancers and have not been considered as therapeutic targets for cancer treatment. In this review, we consider all the CA isoforms and their possible role in tumors and their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Mam Y Mboge
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Brian P Mahon
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Robert McKenna
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Susan C Frost
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| |
Collapse
|
47
|
Gaude E, Schmidt C, Gammage PA, Dugourd A, Blacker T, Chew SP, Saez-Rodriguez J, O'Neill JS, Szabadkai G, Minczuk M, Frezza C. NADH Shuttling Couples Cytosolic Reductive Carboxylation of Glutamine with Glycolysis in Cells with Mitochondrial Dysfunction. Mol Cell 2018; 69:581-593.e7. [PMID: 29452638 PMCID: PMC5823973 DOI: 10.1016/j.molcel.2018.01.034] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/12/2017] [Accepted: 01/25/2018] [Indexed: 11/27/2022]
Abstract
The bioenergetics and molecular determinants of the metabolic response to mitochondrial dysfunction are incompletely understood, in part due to a lack of appropriate isogenic cellular models of primary mitochondrial defects. Here, we capitalize on a recently developed cell model with defined levels of m.8993T>G mutation heteroplasmy, mTUNE, to investigate the metabolic underpinnings of mitochondrial dysfunction. We found that impaired utilization of reduced nicotinamide adenine dinucleotide (NADH) by the mitochondrial respiratory chain leads to cytosolic reductive carboxylation of glutamine as a new mechanism for cytosol-confined NADH recycling supported by malate dehydrogenase 1 (MDH1). We also observed that increased glycolysis in cells with mitochondrial dysfunction is associated with increased cell migration in an MDH1-dependent fashion. Our results describe a novel link between glycolysis and mitochondrial dysfunction mediated by reductive carboxylation of glutamine.
Collapse
Affiliation(s)
- Edoardo Gaude
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Christina Schmidt
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Payam A Gammage
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Aurelien Dugourd
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Blacker
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Sew Peak Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 2QH, UK
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 2QH, UK
| | - Gyorgy Szabadkai
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Department of Biomedical Sciences, University of Padua and CNR Neuroscience Institute, Padua 35121, Italy; The Francis Crick Institute, Midland Road, London NW1 1AT, UK
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.
| |
Collapse
|
48
|
Kastritis PL, O'Reilly FJ, Bock T, Li Y, Rogon MZ, Buczak K, Romanov N, Betts MJ, Bui KH, Hagen WJ, Hennrich ML, Mackmull MT, Rappsilber J, Russell RB, Bork P, Beck M, Gavin AC. Capturing protein communities by structural proteomics in a thermophilic eukaryote. Mol Syst Biol 2017; 13:936. [PMID: 28743795 PMCID: PMC5527848 DOI: 10.15252/msb.20167412] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The arrangement of proteins into complexes is a key organizational principle for many cellular functions. Although the topology of many complexes has been systematically analyzed in isolation, their molecular sociology in situ remains elusive. Here, we show that crude cellular extracts of a eukaryotic thermophile, Chaetomium thermophilum, retain basic principles of cellular organization. Using a structural proteomics approach, we simultaneously characterized the abundance, interactions, and structure of a third of the C. thermophilum proteome within these extracts. We identified 27 distinct protein communities that include 108 interconnected complexes, which dynamically associate with each other and functionally benefit from being in close proximity in the cell. Furthermore, we investigated the structure of fatty acid synthase within these extracts by cryoEM and this revealed multiple, flexible states of the enzyme in adaptation to its association with other complexes, thus exemplifying the need for in situ studies. As the components of the captured protein communities are known—at both the protein and complex levels—this study constitutes another step forward toward a molecular understanding of subcellular organization.
Collapse
Affiliation(s)
- Panagiotis L Kastritis
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Francis J O'Reilly
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.,Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Thomas Bock
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Yuanyue Li
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Matt Z Rogon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Katarzyna Buczak
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Natalie Romanov
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Matthew J Betts
- Cell Networks, Bioquant & Biochemie Zentrum Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Khanh Huy Bui
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Wim J Hagen
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Marco L Hennrich
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Marie-Therese Mackmull
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Juri Rappsilber
- Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.,Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert B Russell
- Cell Networks, Bioquant & Biochemie Zentrum Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
49
|
Jin M, Fuller GG, Han T, Yao Y, Alessi AF, Freeberg MA, Roach N, Moresco JJ, Karnovsky A, Baba M, Yates JR, Gitler AD, Inoki K, Klionsky DJ, Kim JK. Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep 2017; 20:895-908. [PMID: 28746874 PMCID: PMC5586494 DOI: 10.1016/j.celrep.2017.06.082] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/12/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022] Open
Abstract
Glycolysis is upregulated under conditions such as hypoxia and high energy demand to promote cell proliferation, although the mechanism remains poorly understood. We find that hypoxia in Saccharomyces cerevisiae induces concentration of glycolytic enzymes, including the Pfk2p subunit of the rate-limiting phosphofructokinase, into a single, non-membrane-bound granule termed the "glycolytic body" or "G body." A yeast kinome screen identifies the yeast ortholog of AMP-activated protein kinase, Snf1p, as necessary for G-body formation. Many G-body components identified by proteomics are required for G-body integrity. Cells incapable of forming G bodies in hypoxia display abnormal cell division and produce inviable daughter cells. Conversely, cells with G bodies show increased glucose consumption and decreased levels of glycolytic intermediates. Importantly, G bodies form in human hepatocarcinoma cells in hypoxia. Together, our results suggest that G body formation is a conserved, adaptive response to increase glycolytic output during hypoxia or tumorigenesis.
Collapse
Affiliation(s)
- Meiyan Jin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Ting Han
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Yao Yao
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Amelia F Alessi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Mallory A Freeberg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Misuzu Baba
- Research Institute for Science and Technology, Kogakuin University, Hachioji, Tokyo 192-0015 Japan
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Department of Molecular and Integrative Physiology and the Division of Nephrology in the Department of Internal Medicine
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA,corresponding authors: John K Kim, Ph.D., Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218-2683, . Daniel J Klionsky, Ph.D., Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216,
| | - John K Kim
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,corresponding authors: John K Kim, Ph.D., Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218-2683, . Daniel J Klionsky, Ph.D., Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216,
| |
Collapse
|
50
|
Rajendran A, Nakata E, Nakano S, Morii T. Nucleic-Acid-Templated Enzyme Cascades. Chembiochem 2017; 18:696-716. [DOI: 10.1002/cbic.201600703] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | - Eiji Nakata
- Institute of Advanced Energy; Kyoto University; Uji Kyoto 611-0011 Japan
| | - Shun Nakano
- Institute of Advanced Energy; Kyoto University; Uji Kyoto 611-0011 Japan
| | - Takashi Morii
- Institute of Advanced Energy; Kyoto University; Uji Kyoto 611-0011 Japan
| |
Collapse
|