1
|
Liu N, Qiang W, Jordan PW, Marko JF, Qiao H. Cell cycle and age-related modulations of mouse chromosome stiffness. eLife 2025; 13:RP97403. [PMID: 40226924 PMCID: PMC11996174 DOI: 10.7554/elife.97403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Chromosome structure is complex, and many aspects of chromosome organization are still not understood. Measuring the stiffness of chromosomes offers valuable insight into their structural properties. In this study, we analyzed the stiffness of chromosomes from metaphase I (MI) and metaphase II (MII) oocytes. Our results revealed a tenfold increase in stiffness (Young's modulus) of MI chromosomes compared to somatic chromosomes. Furthermore, the stiffness of MII chromosomes was found to be lower than that of MI chromosomes. We examined the role of meiosis-specific cohesin complexes in regulating chromosome stiffness. Surprisingly, the stiffness of chromosomes from three meiosis-specific cohesin mutants did not significantly differ from that of wild-type chromosomes, indicating that these cohesins may not be primary determinants of chromosome stiffness. Additionally, our findings revealed an age-related increase of chromosome stiffness for MI oocytes. Since aging is associated with elevated levels of DNA damage, we investigated the impact of etoposide-induced DNA damage on chromosome stiffness and found that it led to a reduction in stiffness in MI oocytes. Overall, our study underscores the dynamic and cyclical nature of chromosome stiffness, modulated by both the cell cycle and age-related factors.
Collapse
Affiliation(s)
- Ning Liu
- Department of Comparative Biosciences, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Wenan Qiang
- The Chemistry of Life Processes Institute, Northwestern UniversityEvanstonUnited States
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Philip W Jordan
- Biochemistry and Molecular Biology Departments, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
- Biochemistry and Molecular Biology Department, School of Medicine, Uniformed Services University of the Health SciencesBethesdaUnited States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- Department of Physics and Astronomy, Northwestern UniversityEvanstonUnited States
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
2
|
Morales J, Quintero Plancarte G, Hua L. Higher frequency of homologous chromosome pairing in human adult aortic endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643486. [PMID: 40166155 PMCID: PMC11956967 DOI: 10.1101/2025.03.15.643486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
During mitosis, pairing of homologous chromosomes can be detrimental and has been correlated with gene misregulation, chromosomal aberrations, and various pathological diseases. We previously demonstrated that homologous chromosomes are spatially segregated, or antipaired, in neonatal human endothelial cells at metaphase/anaphase, which may help prevent abnormal recombination. However, it is unclear if this antipairing persists in adult endothelial cells. To test whether the antipairing, or one homolog per nuclear hemisphere motif, is conserved in adult endothelial cells, we examined human aortic endothelial cells at metaphase. Using ImmunoFISH and high-resolution confocal microscopy to visualize the chromosomes and centrosomes, we found that small homologous chromosomes 13, 15, 17, 19, 21, 22, and the sex chromosomes, XY, exhibit a loss of spatial segregation in human adult aortic endothelial cells. In contrast, fewer adult endothelial cells showed a loss of segregation for the larger chromosomes 1, 4, and XX, suggesting a gradual decline in the fidelity of spatial segregation of homologous chromosomes. Notably, we observed a higher frequency of abnormal pairing in both small and large chromosomes in adult aortic endothelial cells as compared to neonatal umbilical vein endothelial cells. These findings suggest that mechanisms governing chromosome antipairing may decline with aortic endothelial cell age, leading to increased susceptibility to abnormal pairing and cardiovascular disease.
Collapse
Affiliation(s)
- Jemery Morales
- Biology Department, Sonoma State University, Rohnert Park, CA 94928
| | | | - Lisa Hua
- Biology Department, Sonoma State University, Rohnert Park, CA 94928
| |
Collapse
|
3
|
Liu N, Qiang W, Jordan P, Marko JF, Qiao H. Cell cycle and Age-Related Modulations of Mouse Chromosome Stiffness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.06.583771. [PMID: 38559262 PMCID: PMC10979861 DOI: 10.1101/2024.03.06.583771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Chromosome structure is complex, and many aspects of chromosome organization are still not understood. Measuring the stiffness of chromosomes offers valuable insight into their structural properties. In this study, we analyzed the stiffness of chromosomes from metaphase I (MI) and metaphase II (MII) oocytes. Our results revealed a ten-fold increase in stiffness (Young's modulus) of MI chromosomes compared to somatic chromosomes. Furthermore, the stiffness of MII chromosomes was found to be lower than that of MI chromosomes. We examined the role of meiosis-specific cohesin complexes in regulating chromosome stiffness. Surprisingly, the stiffness of chromosomes from three meiosis-specific cohesin mutants did not significantly differ from that of wild-type chromosomes, indicating that these cohesins may not be primary determinants of chromosome stiffness. Additionally, our findings revealed an age-related increase of chromosome stiffness for MI oocytes. Since aging is associated with elevated levels of DNA damage, we investigated the impact of etoposide-induced DNA damage on chromosome stiffness and found that it led to a reduction in stiffness in MI oocytes. Overall, our study underscores the dynamic and cyclical nature of chromosome stiffness, modulated by both the cell cycle, and by age-related factors.
Collapse
Affiliation(s)
- Ning Liu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wenan Qiang
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA
| | - Philip Jordan
- Biochemistry and Molecular Biology Departments, Johns Hopkins University, Baltimore, MD, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA 60208
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA 60208
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
4
|
Sasikumar J, Shaikh HA, Naik B, Laha S, Das SP. Emergence of fungal hybrids - Potential threat to humans. Microb Pathog 2025; 200:107278. [PMID: 39805347 DOI: 10.1016/j.micpath.2025.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer. Genetic mating barriers, changes in ploidy, chromosomal instability, and genomic diversity influence hybridization. These factors directly impact the fitness and adaptation of hybrid offspring. Epigenetic factors, including DNA methylation, histone modifications, non-coding RNAs, and chromatin remodelling, play a role in post-mating isolation in hybrids. In addition to all these mechanisms, successful hybridization in fungi is ensured by cellular mechanisms like mitochondrial inheritance, transposable elements, and other genome conversion mechanisms. These mechanisms support hybrid life and enhance the virulence and pathogenicity of fungal hybrids, which provoke diseases in host organisms. Recent advancements in sequencing have uncovered fungal hybrids in pathogens like Aspergillus, Candida, and Cryptococcus. Examples of these hybrids, such as Aspergillus latus, Candida metapsilosis, and Cryptococcus neoformans, induce severe human infections. Identifying fungal hybrids is challenging due to their altered genome traits. ITS sequencing has emerged as a promising method for diagnosing these hybrids. To prevent the emergence of novel hybrid fungal pathogens, it is crucial to develop effective diagnostic techniques and closely monitor pathogenic fungal populations for signs of hybridization. This comprehensive review delves into various facts about fungal hybridization, including its causes, genetic outcomes, barriers, diagnostic strategies, and examples of emerging fungal hybrids. The review emphasises the potential threat that fungal hybrids pose to human health and highlights their clinical significance.
Collapse
Affiliation(s)
- Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Heena Azhar Shaikh
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Bharati Naik
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Suparna Laha
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
5
|
Bravo JI, Zhang L, Benayoun BA. Multi-ancestry GWAS reveals loci linked to human variation in LINE-1- and Alu-insertion numbers. TRANSLATIONAL MEDICINE OF AGING 2025; 9:25-40. [PMID: 40051556 PMCID: PMC11883834 DOI: 10.1016/j.tma.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
LINE-1 (L1) and Alu are two families of transposable elements (TEs) occupying ~17% and ~11% of the human genome, respectively. Though only a small fraction of L1 copies is able to produce the machinery to mobilize autonomously, Alu and degenerate L1s can hijack their functional machinery and mobilize in trans. The expression and subsequent mobilization of L1 and Alu can exert pathological effects on their hosts. These features have made them promising focus subjects in studies of aging where they can become active. However, mechanisms regulating TE activity are incompletely characterized, especially in diverse human populations. To address these gaps, we leveraged genomic data from the 1000 Genomes Project to carry out a trans-ethnic GWAS of L1/Alu insertion singletons. These are rare, recently acquired insertions observed in only one person and which we used as proxies for variation in L1/Alu insertion numbers. Our approach identified SNVs in genomic regions containing genes with potential and known TE regulatory properties, and it enriched for SNVs in regions containing known regulators of L1 expression. Moreover, we identified reference TE copies and structural variants that associated with L1/Alu singletons, suggesting their potential contribution to TE insertion number variation. Finally, a transcriptional analysis of lymphoblastoid cells highlighted potential cell cycle alterations in a subset of samples harboring L1/Alu singletons. Collectively, our results suggest that known TE regulatory mechanisms may be active in diverse human populations, expand the list of loci implicated in TE insertion number variability, and reinforce links between TEs and disease.
Collapse
Affiliation(s)
- Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucia Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Lim EWK, Kompocholi S, Brannvoll A, Bagge KSV, Gruhn JR, Martin-Gonzalez J, Albers E, Hickson ID, López-Contreras A, Lisby M. Mouse ZGRF1 helicase facilitates DNA repair and maintains efficient fertility. Heliyon 2025; 11:e41979. [PMID: 39897830 PMCID: PMC11787654 DOI: 10.1016/j.heliyon.2025.e41979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
The recently characterised human ZGRF1 helicase promotes genomic stability by facilitating DNA interstrand crosslink repair. In its absence, human cells exhibit greater sensitivity towards anti-cancer drugs such as mitomycin C and camptothecin. Moreover, the downregulation of ZGRF1 expression is associated with increased survival in cancer patients. These attributes point to ZGRF1 as a potential anti-cancer drug target. Here, we investigated the role of ZGRF1 in tumorigenesis using the mouse model. We generated a ZGRF1 mutant mouse and find that it is viable and displays normal development. However, at a cellular level, mouse embryonic fibroblasts exhibit sensitivity to ICLs and show elevated levels of the DNA damage marker γH2AX. In the absence of ZGRF1, the rates of tumorigenesis and tumour-free survival in Eμ-Myc and Trp53 knockout mice remained largely unaffected. These findings suggest a potential role for ZGRF1 in the proliferation of specific cancer types, highlighting avenues for further research in other cancer models. Additionally, beyond its known function in DNA repair, our study also reveals that ZGRF1 promotes meiotic recombination and that its loss results in reduced fertility in mice manifested as a 30 % reduction in meiotic crossovers and a 15 % reduction in litter size.
Collapse
Affiliation(s)
- Ernest Wee Kiat Lim
- Section for Functional Genomics, Department of Biology University of Copenhagen, 2200, Copenhagen N, Denmark
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Smaragda Kompocholi
- Section for Functional Genomics, Department of Biology University of Copenhagen, 2200, Copenhagen N, Denmark
| | - André Brannvoll
- Section for Functional Genomics, Department of Biology University of Copenhagen, 2200, Copenhagen N, Denmark
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
- Høiberg P/S, Adelgade 12, 1304, Copenhagen K, Denmark
| | - K. Stine V. Bagge
- Section for Functional Genomics, Department of Biology University of Copenhagen, 2200, Copenhagen N, Denmark
- Emendo Research & Development, 2150, Nordhavn, Denmark
| | - Jennifer R. Gruhn
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Javier Martin-Gonzalez
- Core Facility for Transgenic Mice, Department of Experimental Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Eliene Albers
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Ian D. Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Andrés López-Contreras
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
| | - Michael Lisby
- Section for Functional Genomics, Department of Biology University of Copenhagen, 2200, Copenhagen N, Denmark
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| |
Collapse
|
7
|
Bravo JI, Zhang L, Benayoun BA. Multi-ancestry GWAS reveals loci linked to human variation in LINE-1- and Alu-insertion numbers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.10.612283. [PMID: 39314493 PMCID: PMC11419044 DOI: 10.1101/2024.09.10.612283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
LINE-1 (L1) and Alu are two families of transposable elements (TEs) occupying ~17% and ~11% of the human genome, respectively. Though only a small fraction of L1 copies is able to produce the machinery to mobilize autonomously, Alu and degenerate L1s can hijack their functional machinery and mobilize in trans. The expression and subsequent mobilization of L1 and Alu can exert pathological effects on their hosts. These features have made them promising focus subjects in studies of aging where they can become active. However, mechanisms regulating TE activity are incompletely characterized, especially in diverse human populations. To address these gaps, we leveraged genomic data from the 1000 Genomes Project to carry out a trans-ethnic GWAS of L1/Alu insertion singletons. These are rare, recently acquired insertions observed in only one person and which we used as proxies for variation in L1/Alu insertion numbers. Our approach identified SNVs in genomic regions containing genes with potential and known TE regulatory properties, and it enriched for SNVs in regions containing known regulators of L1 expression. Moreover, we identified reference TE copies and structural variants that associated with L1/Alu singletons, suggesting their potential contribution to TE insertion number variation. Finally, a transcriptional analysis of lymphoblastoid cells highlighted potential cell cycle alterations in a subset of samples harboring L1/Alu singletons. Collectively, our results suggest that known TE regulatory mechanisms may be active in diverse human populations, expand the list of loci implicated in TE insertion number variability, and reinforce links between TEs and disease.
Collapse
Affiliation(s)
- Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucia Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Perez-Bertoldi JM, Zhao Y, Thawani A, Yildiz A, Nogales E. HURP regulates Kif18A recruitment and activity to synergistically control microtubule dynamics. Nat Commun 2024; 15:9687. [PMID: 39516196 PMCID: PMC11549086 DOI: 10.1038/s41467-024-53691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
During mitosis, microtubule dynamics are regulated to ensure proper alignment and segregation of chromosomes. The dynamics of kinetochore-attached microtubules are regulated by hepatoma-upregulated protein (HURP) and the mitotic kinesin-8 Kif18A, but the underlying mechanism remains elusive. Using single-molecule imaging in vitro, we demonstrate that Kif18A motility is regulated by HURP. While sparse decoration of HURP activates the motor, higher concentrations hinder processive motility. To shed light on this behavior, we determine the binding mode of HURP to microtubules using cryo-EM. The structure helps rationalize why HURP functions as a microtubule stabilizer. Additionally, HURP partially overlaps with the microtubule-binding site of the Kif18A motor domain, indicating that excess HURP inhibits Kif18A motility by steric exclusion. We also observe that HURP and Kif18A function together to suppress dynamics of the microtubule plus-end, providing a mechanistic basis for how they collectively serve in microtubule length control.
Collapse
Affiliation(s)
| | - Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Akanksha Thawani
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, CA, USA.
- Physics Department, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Ye H, Luo G, Zheng Z, Li X, Cao J, Liu J, Dai J. Plant synthetic genomics: Big lessons from the little yeast. Cell Chem Biol 2024; 31:1745-1754. [PMID: 39214084 DOI: 10.1016/j.chembiol.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Yeast has been extensively studied and engineered due to its genetic amenability. Projects like Sc2.0 and Sc3.0 have demonstrated the feasibility of constructing synthetic yeast genomes, yielding promising results in both research and industrial applications. In contrast, plant synthetic genomics has faced challenges due to the complexity of plant genomes. However, recent advancements of the project SynMoss, utilizing the model moss plant Physcomitrium patens, offer opportunities for plant synthetic genomics. The shared characteristics between P. patens and yeast, such as high homologous recombination rates and dominant haploid life cycle, enable researchers to manipulate P. patens genomes similarly, opening promising avenues for research and application in plant synthetic biology. In conclusion, harnessing insights from yeast synthetic genomics and applying them to plants, with P. patens as a breakthrough, shows great potential for revolutionizing plant synthetic genomics.
Collapse
Affiliation(s)
- Hao Ye
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Guangyu Luo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhenwu Zheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiaofang Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jie Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jia Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
10
|
Borseth AB, Kianersi HD, Galloway P, Gercken G, Stowe EL, Pizzorno M, Paliulis LV. Alignment of a Trivalent Chromosome on the Metaphase Plate Is Associated with Differences in Microtubule Density at Each Kinetochore. Int J Mol Sci 2024; 25:10719. [PMID: 39409048 PMCID: PMC11477388 DOI: 10.3390/ijms251910719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Chromosome alignment on the metaphase plate is a conserved phenomenon and is an essential function for correct chromosome segregation for many organisms. Organisms with naturally-occurring trivalent chromosomes provide a useful system for understanding how chromosome alignment is evolutionarily regulated, as they align on the spindle with one kinetochore facing one pole and two facing the opposite pole. We studied chromosome alignment in a praying mantid that has not been previously studied chromosomally, the giant shield mantis Rhombodera megaera. R. megaera has a chromosome number of 2n = 27 in males. Males have X1, X2, and Y chromosomes that combine to form a trivalent in meiosis I. Using live-cell imaging of spermatocytes in meiosis I, we document that sex trivalent Y chromosomes associate with one spindle pole and the two X chromosomes associate with the opposing spindle pole. Sex trivalents congress alongside autosomes, align with them on the metaphase I plate, and then the component chromosomes segregate alongside autosomes in anaphase I. Immunofluorescence imaging and quantification of brightness of kinetochore-microtubule bundles suggest that the X1 and X2 kinetochores are associated with fewer microtubules than the Y kinetochore, likely explaining the alignment of the sex trivalent at the spindle equator with autosomes. These observations in R. megaera support the evolutionary significance of the metaphase alignment of chromosomes and provide part of the explanation for how this alignment is achieved.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leocadia V. Paliulis
- Biology Department, Bucknell University, 1 Dent Dr., Lewisburg, PA 17837, USA (P.G.); (E.L.S.)
| |
Collapse
|
11
|
Karami Fath M, Nazari A, Parsania N, Behboodi P, Ketabi SS, Razmjouei P, Farzam F, Shafagh SG, Nabi Afjadi M. Centromeres in cancer: Unraveling the link between chromosomal instability and tumorigenesis. Med Oncol 2024; 41:254. [PMID: 39352464 DOI: 10.1007/s12032-024-02524-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/14/2024]
Abstract
Centromeres are critical structures involved in chromosome segregation, maintaining genomic stability, and facilitating the accurate transmission of genetic information. They are key in coordinating the assembly and help keep the correct structure, location, and function of the kinetochore, a proteinaceous structure vital for ensuring proper chromosome segregation during cell division. Abnormalities in centromere structure can lead to aneuploidy or chromosomal instability, which have been implicated in various diseases, including cancer. Accordingly, abnormalities in centromeres, such as structural rearrangements and dysregulation of centromere-associated proteins, disrupt gene function, leading to uncontrolled cell growth and tumor progression. For instance, altered expression of CENP-A, CENP-E, and others such as BUB1, BUBR1, MAD1, and INCENP, have been shown to ascribe to centromere over-amplification, chromosome missegregation, aneuploidy, and chromosomal instability; this, in turn, can culminate in tumor progression. These centromere abnormalities also promoted tumor heterogeneity by generating genetically diverse cell populations within tumors. Advanced techniques like fluorescence in situ hybridization (FISH) and chromosomal microarray analysis are crucial for detecting centromere abnormalities, enabling accurate cancer classification and tailored treatment strategies. Researchers are exploring strategies to disrupt centromere-associated proteins for targeted cancer therapies. Thus, this review explores centromere abnormalities in cancer, their molecular mechanisms, diagnostic implications, and therapeutic targeting. It aims to advance our understanding of centromeres' role in cancer and develop advanced diagnostic tools and targeted therapies for improved cancer management and treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Parsania
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paria Behboodi
- Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Pegah Razmjouei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Skinner MW, Simington CJ, López-Jiménez P, Baran KA, Xu J, Dayani Y, Pryzhkova MV, Page J, Gómez R, Holland AJ, Jordan PW. Spermatocytes have the capacity to segregate chromosomes despite centriole duplication failure. EMBO Rep 2024; 25:3373-3405. [PMID: 38943004 PMCID: PMC11316026 DOI: 10.1038/s44319-024-00187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Centrosomes are the canonical microtubule organizing centers (MTOCs) of most mammalian cells, including spermatocytes. Centrosomes comprise a centriole pair within a structurally ordered and dynamic pericentriolar matrix (PCM). Unlike in mitosis, where centrioles duplicate once per cycle, centrioles undergo two rounds of duplication during spermatogenesis. The first duplication is during early meiotic prophase I, and the second is during interkinesis. Using mouse mutants and chemical inhibition, we have blocked centriole duplication during spermatogenesis and determined that non-centrosomal MTOCs (ncMTOCs) can mediate chromosome segregation. This mechanism is different from the acentriolar MTOCs that form bipolar spindles in oocytes, which require PCM components, including gamma-tubulin and CEP192. From an in-depth analysis, we identified six microtubule-associated proteins, TPX2, KIF11, NuMA, and CAMSAP1-3, that localized to the non-centrosomal MTOC. These factors contribute to a mechanism that ensures bipolar MTOC formation and chromosome segregation during spermatogenesis when centriole duplication fails. However, despite the successful completion of meiosis and round spermatid formation, centriole inheritance and PLK4 function are required for normal spermiogenesis and flagella assembly, which are critical to ensure fertility.
Collapse
Affiliation(s)
- Marnie W Skinner
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Carter J Simington
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pablo López-Jiménez
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
| | - Kerstin A Baran
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jingwen Xu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yaron Dayani
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Marina V Pryzhkova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jesús Page
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Rocío Gómez
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
13
|
Drif AI, Yücer R, Damiescu R, Ali NT, Abu Hagar TH, Avula B, Khan IA, Efferth T. Anti-Inflammatory and Cancer-Preventive Potential of Chamomile ( Matricaria chamomilla L.): A Comprehensive In Silico and In Vitro Study. Biomedicines 2024; 12:1484. [PMID: 39062057 PMCID: PMC11275008 DOI: 10.3390/biomedicines12071484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND AND AIM Chamomile tea, renowned for its exquisite taste, has been appreciated for centuries not only for its flavor but also for its myriad health benefits. In this study, we investigated the preventive potential of chamomile (Matricaria chamomilla L.) towards cancer by focusing on its anti-inflammatory activity. METHODS AND RESULTS A virtual drug screening of 212 phytochemicals from chamomile revealed β-amyrin, β-eudesmol, β-sitosterol, apigenin, daucosterol, and myricetin as potent NF-κB inhibitors. The in silico results were verified through microscale thermophoresis, reporter cell line experiments, and flow cytometric determination of reactive oxygen species and mitochondrial membrane potential. An oncobiogram generated through comparison of 91 anticancer agents with known modes of action using the NCI tumor cell line panel revealed significant relationships of cytotoxic chamomile compounds, lupeol, and quercetin to microtubule inhibitors. This hypothesis was verified by confocal microscopy using α-tubulin-GFP-transfected U2OS cells and molecular docking of lupeol and quercetin to tubulins. Both compounds induced G2/M cell cycle arrest and necrosis rather than apoptosis. Interestingly, lupeol and quercetin were not involved in major mechanisms of resistance to established anticancer drugs (ABC transporters, TP53, or EGFR). Performing hierarchical cluster analyses of proteomic expression data of the NCI cell line panel identified two sets of 40 proteins determining sensitivity and resistance to lupeol and quercetin, further pointing to the multi-specific nature of chamomile compounds. Furthermore, lupeol, quercetin, and β-amyrin inhibited the mRNA expression of the proinflammatory cytokines IL-1β and IL6 in NF-κB reporter cells (HEK-Blue Null1). Moreover, Kaplan-Meier-based survival analyses with NF-κB as the target protein of these compounds were performed by mining the TCGA-based KM-Plotter repository with 7489 cancer patients. Renal clear cell carcinomas (grade 3, low mutational rate, low neoantigen load) were significantly associated with shorter survival of patients, indicating that these subgroups of tumors might benefit from NF-κB inhibition by chamomile compounds. CONCLUSION This study revealed the potential of chamomile, positioning it as a promising preventive agent against inflammation and cancer. Further research and clinical studies are recommended.
Collapse
Affiliation(s)
- Assia I. Drif
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Roxana Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Nadeen T. Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Tobias H. Abu Hagar
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Bharati Avula
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (B.A.); (I.A.K.)
| | - Ikhlas A. Khan
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (B.A.); (I.A.K.)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| |
Collapse
|
14
|
Buitrago-Rodríguez MY, Rangel N, Vega-Valderrama JD, Pulido-Medellín M, Rondón-Lagos M. Unraveling chromosomal and genotoxic damage in individuals occupationally exposed to coal from underground mining. Front Genet 2024; 15:1422938. [PMID: 39027885 PMCID: PMC11254797 DOI: 10.3389/fgene.2024.1422938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Purpose Coal mining is a vital sector in Colombia, contributing significantly to the nation's economy and the development of its regions. However, despite its importance, it has led to a gradual decline in the health of mine workers and nearby residents. While the adverse health effects of open-pit coal mining on exposed individuals have been well-documented in Colombia and globally, studies investigating genetic damage in underground coal miners are lacking. Methods The aim of our study was to evaluate chromosomal and genotoxic damage, in peripheral blood samples from a group of underground coal miners and residents of areas exposed to coal, in the town of Samacá, Boyacá-Colombia, and in a group of unexposed individuals by using banding and molecular cytogenetic techniques, as well as cytokinesis block micronucleus assays. Results Our results suggest that occupational exposure to coal induces chromosomal and genotoxic damage in somatic cells of underground coal miners. Chromosomal and genotoxic damage is an important step in carcinogenesis and the development of many other diseases. Our findings provide valuable insights into the effects of coal dust exposure on chromosomal integrity and genetic stability. Conclusion Our pilot study suggests that occupational exposure to coal induces chromosomal damage in underground coal miners, highlighting the importance of validating these findings with a larger sample size. Our results highlight the need to implement prevention and protection measures, as well as educational programs for underground coal miners. Characterizing and estimating exposure risks are extremely important for the safety of people exposed occupationally and environmentally to coal and its derivatives.
Collapse
Affiliation(s)
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan D. Vega-Valderrama
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Martín Pulido-Medellín
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
15
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
16
|
Ha G, Dieterle P, Shen H, Amir A, Needleman DJ. Measuring and modeling the dynamics of mitotic error correction. Proc Natl Acad Sci U S A 2024; 121:e2323009121. [PMID: 38875144 PMCID: PMC11194551 DOI: 10.1073/pnas.2323009121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/11/2024] [Indexed: 06/16/2024] Open
Abstract
Error correction is central to many biological systems and is critical for protein function and cell health. During mitosis, error correction is required for the faithful inheritance of genetic material. When functioning properly, the mitotic spindle segregates an equal number of chromosomes to daughter cells with high fidelity. Over the course of spindle assembly, many initially erroneous attachments between kinetochores and microtubules are fixed through the process of error correction. Despite the importance of chromosome segregation errors in cancer and other diseases, there is a lack of methods to characterize the dynamics of error correction and how it can go wrong. Here, we present an experimental method and analysis framework to quantify chromosome segregation error correction in human tissue culture cells with live cell confocal imaging, timed premature anaphase, and automated counting of kinetochores after cell division. We find that errors decrease exponentially over time during spindle assembly. A coarse-grained model, in which errors are corrected in a chromosome-autonomous manner at a constant rate, can quantitatively explain both the measured error correction dynamics and the distribution of anaphase onset times. We further validated our model using perturbations that destabilized microtubules and changed the initial configuration of chromosomal attachments. Taken together, this work provides a quantitative framework for understanding the dynamics of mitotic error correction.
Collapse
Affiliation(s)
- Gloria Ha
- Department of Systems Biology, Harvard Medical School, Boston, MA02115
| | - Paul Dieterle
- Department of Physics, Harvard University, Cambridge, MA02138
| | - Hao Shen
- Reverie Labs, Cambridge, MA02139
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Daniel J. Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Center for Computational Biology, Flatiron Institute, New York, NY10010
| |
Collapse
|
17
|
Perez-Bertoldi JM, Zhao Y, Thawani A, Yildiz A, Nogales E. Molecular interplay between HURP and Kif18A in mitotic spindle regulation. RESEARCH SQUARE 2024:rs.3.rs-4249615. [PMID: 38854046 PMCID: PMC11160874 DOI: 10.21203/rs.3.rs-4249615/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
During mitosis, microtubule dynamics are regulated to ensure proper alignment and segregation of chromosomes. The dynamics of kinetochore-attached microtubules are regulated by hepatoma-upregulated protein (HURP) and the mitotic kinesin-8 Kif18A, but the underlying mechanism remains elusive. Using single-molecule imaging in vitro, we demonstrate that Kif18A motility is regulated by HURP. While sparse decoration of HURP activates the motor, higher concentrations hinder processive motility. To shed light on this behavior, we determined the binding mode of HURP to microtubules using Cryo-EM. The structure reveals that one HURP motif spans laterally across β-tubulin, while a second motif binds between adjacent protofilaments. HURP partially overlaps with the microtubule-binding site of the Kif18A motor domain, indicating that excess HURP inhibits Kif18A motility by steric exclusion. We also observed that HURP and Kif18A function together to suppress dynamics of the microtubule plus-end, providing a mechanistic basis for how they collectively serve in spindle length control.
Collapse
Affiliation(s)
| | - Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, USA
| | - Akanksha Thawani
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Physics Department, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
18
|
Tang F, Wang Z, Sun Y, Fan L, Yang Y, Guo X, Wang Y, Yan S, Qiao Z, Li Y, Jiang T, Wang X, Man J, Wang L, Wang S, Peng H, Peng Z, Xie X, Song L. Recurrent neural network for predicting absence of heterozygosity from low pass WGS with ultra-low depth. BMC Genomics 2024; 25:470. [PMID: 38745141 PMCID: PMC11092001 DOI: 10.1186/s12864-024-10400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The absence of heterozygosity (AOH) is a kind of genomic change characterized by a long contiguous region of homozygous alleles in a chromosome, which may cause human genetic disorders. However, no method of low-pass whole genome sequencing (LP-WGS) has been reported for the detection of AOH in a low-pass setting of less than onefold. We developed a method, termed CNVseq-AOH, for predicting the absence of heterozygosity using LP-WGS with ultra-low sequencing data, which overcomes the sparse nature of typical LP-WGS data by combing population-based haplotype information, adjustable sliding windows, and recurrent neural network (RNN). We tested the feasibility of CNVseq-AOH for the detection of AOH in 409 cases (11 AOH regions for model training and 863 AOH regions for validation) from the 1000 Genomes Project (1KGP). AOH detection using CNVseq-AOH was also performed on 6 clinical cases with previously ascertained AOHs by whole exome sequencing (WES). RESULTS Using SNP-based microarray results as reference (AOHs detected by CNVseq-AOH with at least a 50% overlap with the AOHs detected by chromosomal microarray analysis), 409 samples (863 AOH regions) in the 1KGP were used for concordant analysis. For 784 AOHs on autosomes and 79 AOHs on the X chromosome, CNVseq-AOH can predict AOHs with a concordant rate of 96.23% and 59.49% respectively based on the analysis of 0.1-fold LP-WGS data, which is far lower than the current standard in the field. Using 0.1-fold LP-WGS data, CNVseq-AOH revealed 5 additional AOHs (larger than 10 Mb in size) in the 409 samples. We further analyzed AOHs larger than 10 Mb, which is recommended for reporting the possibility of UPD. For the 291 AOH regions larger than 10 Mb, CNVseq-AOH can predict AOHs with a concordant rate of 99.66% with only 0.1-fold LP-WGS data. In the 6 clinical cases, CNVseq-AOH revealed all 15 known AOH regions. CONCLUSIONS Here we reported a method for analyzing LP-WGS data to accurately identify regions of AOH, which possesses great potential to improve genetic testing of AOH.
Collapse
Affiliation(s)
- Fei Tang
- Clin Lab, BGI Genomics, Tianjin, 300308, China
| | | | - Yan Sun
- BGI Genomics, Shenzhen, 518083, China
| | - Linlin Fan
- Clin Lab, BGI Genomics, Tianjin, 300308, China
| | - Yun Yang
- Clin Lab, BGI Genomics, Wuhan, 430074, China
| | - Xueqin Guo
- Clin Lab, BGI Genomics, Wuhan, 430074, China
| | | | - Saiying Yan
- Clin Lab, BGI Genomics, Tianjin, 300308, China
| | | | - Yun Li
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Ting Jiang
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Xiaoli Wang
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Jianfen Man
- Clin Lab, BGI Genomics, Wuhan, 430074, China
| | - Lina Wang
- Clin Lab, BGI Genomics, Wuhan, 430074, China
| | | | | | | | - Xiaoyuan Xie
- Tianjin Women's and Children's Health Center, Tianjin, 300070, China.
| | - Lijie Song
- Clin Lab, BGI Genomics, Tianjin, 300308, China.
- DTU Bioengineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
19
|
Mascanzoni F, Ayala I, Iannitti R, Luini A, Colanzi A. The Golgi checkpoint: Golgi unlinking during G2 is necessary for spindle formation and cytokinesis. Life Sci Alliance 2024; 7:e202302469. [PMID: 38479814 PMCID: PMC10941482 DOI: 10.26508/lsa.202302469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Entry into mitosis requires not only correct DNA replication but also extensive cell reorganization, including the separation of the Golgi ribbon into isolated stacks. To understand the significance of pre-mitotic Golgi reorganization, we devised a strategy to first block Golgi segregation, with the consequent G2-arrest, and then force entry into mitosis. We found that the cells forced to enter mitosis with an intact Golgi ribbon showed remarkable cell division defects, including spindle multipolarity and binucleation. The spindle defects were caused by reduced levels at the centrosome of the kinase Aurora-A, a pivotal spindle formation regulator controlled by Golgi segregation. Overexpression of Aurora-A rescued spindle formation, indicating a crucial role of the Golgi-dependent recruitment of Aurora-A at the centrosome. Thus, our results reveal that alterations of the pre-mitotic Golgi segregation in G2 have profound consequences on the fidelity of later mitotic processes and represent potential risk factors for cell transformation and cancer development.
Collapse
Affiliation(s)
- Fabiola Mascanzoni
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Inmaculada Ayala
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Roberta Iannitti
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Alberto Luini
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Antonino Colanzi
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
20
|
Ghosh S, Choudhury D, Ghosh D, Mondal M, Singha D, Malakar P. Characterization of polyploidy in cancer: Current status and future perspectives. Int J Biol Macromol 2024; 268:131706. [PMID: 38643921 DOI: 10.1016/j.ijbiomac.2024.131706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Various cancers frequently exhibit polyploidy, observed in a condition where a cell possesses more than two sets of chromosomes, which is considered a hallmark of the disease. The state of polyploidy often leads to aneuploidy, where cells possess an abnormal number or structure of chromosomes. Recent studies suggest that oncogenes contribute to aneuploidy. This finding significantly underscores its impact on cancer. Cancer cells exposed to certain chemotherapeutic drugs tend to exhibit an increased incidence of polyploidy. This occurrence is strongly associated with several challenges in cancer treatment, including metastasis, resistance to chemotherapy and the recurrence of malignant tumors. Indeed, it poses a significant hurdle to achieve complete tumor eradication and effective cancer therapy. Recently, there has been a growing interest in the field of polyploidy related to cancer for developing effective anti-cancer therapies. Polyploid cancer cells confer both advantages and disadvantages to tumor pathogenicity. This review delineates the diverse characteristics of polyploid cells, elucidates the pivotal role of polyploidy in cancer, and explores the advantages and disadvantages it imparts to cancer cells, along with the current approaches tried in lab settings to target polyploid cells. Additionally, it considers experimental strategies aimed at addressing the outstanding questions within the realm of polyploidy in relation to cancer.
Collapse
Affiliation(s)
- Srijonee Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Debopriya Choudhury
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Dhruba Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Didhiti Singha
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India.
| |
Collapse
|
21
|
Watson S, Porter H, Sudbery I, Thompson R. Modification of Seurat v4 for the Development of a Phase Assignment Tool Able to Distinguish between G2 and Mitotic Cells. Int J Mol Sci 2024; 25:4589. [PMID: 38731808 PMCID: PMC11083997 DOI: 10.3390/ijms25094589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Single-cell RNA sequencing (scRNAseq) is a rapidly advancing field enabling the characterisation of heterogeneous gene expression profiles within a population. The cell cycle phase is a major contributor to gene expression variance between cells and computational analysis tools have been developed to assign cell cycle phases to cells within scRNAseq datasets. Whilst these tools can be extremely useful, all have the drawback that they classify cells as only G1, S or G2/M. Existing discrete cell phase assignment tools are unable to differentiate between G2 and M and continuous-phase-assignment tools are unable to identify a region corresponding specifically to mitosis in a pseudo-timeline for continuous assignment along the cell cycle. In this study, bulk RNA sequencing was used to identify differentially expressed genes between mitotic and interphase cells isolated based on phospho-histone H3 expression using fluorescence-activated cell sorting. These gene lists were used to develop a methodology which can distinguish G2 and M phase cells in scRNAseq datasets. The phase assignment tools present in Seurat were modified to allow for cell cycle phase assignment of all stages of the cell cycle to identify a mitotic-specific cell population.
Collapse
Affiliation(s)
- Steven Watson
- School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
| | - Harry Porter
- School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Ian Sudbery
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Sheffield Institute for Nucleic Acid Research (SInFoNiA), Sheffield S10 2TN, UK
| | - Ruth Thompson
- School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
- Sheffield Institute for Nucleic Acid Research (SInFoNiA), Sheffield S10 2TN, UK
| |
Collapse
|
22
|
Perez-Bertoldi JM, Zhao Y, Thawani A, Yildiz A, Nogales E. Molecular interplay between HURP and Kif18A in mitotic spindle regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589088. [PMID: 38645125 PMCID: PMC11030443 DOI: 10.1101/2024.04.11.589088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
During mitosis, microtubule dynamics are regulated to ensure proper alignment and segregation of chromosomes. The dynamics of kinetochore-attached microtubules are regulated by hepatoma-upregulated protein (HURP) and the mitotic kinesin-8 Kif18A, but the underlying mechanism remains elusive. Using single-molecule imaging in vitro , we demonstrate that Kif18A motility is regulated by HURP. While sparse decoration of HURP activates the motor, higher concentrations hinder processive motility. To shed light on this behavior, we determined the binding mode of HURP to microtubules using Cryo-EM. The structure reveals that one HURP motif spans laterally across β-tubulin, while a second motif binds between adjacent protofilaments. HURP partially overlaps with the microtubule-binding site of the Kif18A motor domain, indicating that excess HURP inhibits Kif18A motility by steric exclusion. We also observed that HURP and Kif18A function together to suppress dynamics of the microtubule plus-end, providing a mechanistic basis for how they collectively serve in spindle length control.
Collapse
|
23
|
Zhang JL, Xu MF, Chen J, Wei YL, She ZY. Kinesin-7 CENP-E mediates chromosome alignment and spindle assembly checkpoint in meiosis I. Chromosoma 2024; 133:149-168. [PMID: 38456964 DOI: 10.1007/s00412-024-00818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.
Collapse
Affiliation(s)
- Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
24
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
25
|
Parveen N, Mondal P, Vanapalli KR, Das A, Goel S. Phytotoxicity of trihalomethanes and trichloroacetic acid on Vigna radiata and Allium cepa plant models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5100-5115. [PMID: 38110686 DOI: 10.1007/s11356-023-31419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Disinfection by-products (DBPs) are a concern due to their presence in chlorinated wastewater, sewage treatment plant discharge, and surface water, and their potential for environmental toxicity. Despite some attention to their ecotoxicity, little is known about the phytotoxicity of DBPs. This study aimed to evaluate the individual and combined phytotoxicity of four trihalomethanes (THMs: trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM) and their mixture (THM4)), and trichloroacetic acid (TCAA) using genotoxic and cytotoxic assays. The analysis included seed germination tests using Vigna radiata and root growth tests, mitosis studies, oxidative stress response, chromosomal aberrations (CA), and DNA laddering using Allium cepa. The results showed a progressive increase in root growth inhibition for both plant species as the concentration of DBPs increased. High concentrations of mixtures of four THMs resulted in significant (p < 0.05) antagonistic interactions. The effective concentration (EC50) value for V. radiata was 5655, 3145, 2690, 1465, 3570, and 725 mg/L for TCM, BDCM, DBCM, TBM, THM4, and TCAA, respectively. For A. cepa, the EC50 for the same contaminants was 700, 400, 350, 250, 450, and 105 mg/L, respectively. DBP cytotoxicity was observed through CAs, including C-metaphase, unseparated anaphase, lagging chromosome, sticky metaphase, and bridging. Mitotic depression (MD) increased with dose, reaching up to 54.4% for TCAA (50-500 mg/L). The electrophoresis assay showed DNA fragmentation and shearing, suggesting genotoxicity for some DBPs. The order of phytotoxicity for the tested DBPs was TCAA > TBM > DBCM > BDCM > THM4 > TCM. These findings underscore the need for further research on the phytotoxicity of DBPs, especially given their common use in agricultural practices such as irrigation and the use of sludge as manure.
Collapse
Affiliation(s)
- Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India
| | - Papiya Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Kumar Raja Vanapalli
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India.
| | - Abhijit Das
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
26
|
Alabi OA, Okorie B, Simon-Oke IA, Atanda HC, Olumurewa JAV, Adebo TC. Cellular toxicity and DNA damage induced by Newbouldia laevis used for male infertility treatment in prokaryotic and eukaryotic models. PROTOPLASMA 2024; 261:53-64. [PMID: 37438649 DOI: 10.1007/s00709-023-01880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Leaves of Newbouldia laevis have been extensively used in solving problems associated with infertility and childbirth in many African countries. Yet, information is very limited on the DNA damaging potential of this plant. This study evaluated the cytogenotoxic effect of the aqueous extract of N. laevis leaf using prokaryotic models (Ames Salmonella fluctuation test using TA100 and TA98 strains of Salmonella typhimurium and SOS Chromotest with Escherichia coli PQ37) and eukaryotic model (Allium cepa root cells). Identification of the volatile organic compounds (VOCs) and phytochemical screening of the plant extract were also performed. Onion bulbs were grown on each concentration (1 to 50%; v/v, extract/tap water) of the extract for chromosomal aberrations and root growth analyses. Results of the Ames test indicated that the extract is mutagenic while the SOS Chromotest results showed good complementation to the Ames test results, although the E. coli PQ37 system showed slightly higher sensitivity in the detection of mutagenicity and genotoxicity of the extract. The plant extract was cytotoxic when compared to the control, inducing a significant (p < 0.05) concentration-dependent inhibition of root growth from 5 to 50% concentrations. At 50% concentration, the extract completely inhibited cell division in the A. cepa. Also, chromosomal aberration increased significantly (p < 0.05) in exposed onions from 5 to 20% concentrations. The mutagenicity and cytogenotoxicity recorded in this report were believed to be caused by the presence of VOCs such as 1,2,3-benzene-triol, 1,2-benzenediol, and 5-hydroxymethylfurfural, and alkaloids in the extract an indication of the cytogenotoxicity of the aqueous extract of N. laevis leaf even at low concentration.
Collapse
Affiliation(s)
- Okunola Adenrele Alabi
- Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria.
- Department of Biotechnology, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - Benson Okorie
- Department of Biotechnology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Iyabo A Simon-Oke
- Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Halimat Chisom Atanda
- Department of Biotechnology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - John A V Olumurewa
- Department of Biotechnology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Taiwo Cosmas Adebo
- Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria
| |
Collapse
|
27
|
Abramczyk D, Del Carmen Sanchez Olmos M, Rojas AAR, Schindler D, Robertson D, McColm S, Marston AL, Barlow PN. A supernumerary synthetic chromosome in Komagataella phaffii as a repository for extraneous genetic material. Microb Cell Fact 2023; 22:259. [PMID: 38104077 PMCID: PMC10724962 DOI: 10.1186/s12934-023-02262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Komagataella phaffii (Pichia pastoris) is a methylotrophic commercially important non-conventional species of yeast that grows in a fermentor to exceptionally high densities on simple media and secretes recombinant proteins efficiently. Genetic engineering strategies are being explored in this organism to facilitate cost-effective biomanufacturing. Small, stable artificial chromosomes in K. phaffii could offer unique advantages by accommodating multiple integrations of extraneous genes and their promoters without accumulating perturbations of native chromosomes or exhausting the availability of selection markers. RESULTS Here, we describe a linear "nano"chromosome (of 15-25 kb) that, according to whole-genome sequencing, persists in K. phaffii over many generations with a copy number per cell of one, provided non-homologous end joining is compromised (by KU70-knockout). The nanochromosome includes a copy of the centromere from K. phaffii chromosome 3, a K. phaffii-derived autonomously replicating sequence on either side of the centromere, and a pair of K. phaffii-like telomeres. It contains, within its q arm, a landing zone in which genes of interest alternate with long (approx. 1-kb) non-coding DNA chosen to facilitate homologous recombination and serve as spacers. The landing zone can be extended along the nanochromosome, in an inch-worming mode of sequential gene integrations, accompanied by recycling of just two antibiotic-resistance markers. The nanochromosome was used to express PDI, a gene encoding protein disulfide isomerase. Co-expression with PDI allowed the production, from a genomically integrated gene, of secreted murine complement factor H, a plasma protein containing 40 disulfide bonds. As further proof-of-principle, we co-expressed, from a nanochromosome, both PDI and a gene for GFP-tagged human complement factor H under the control of PAOX1 and demonstrated that the secreted protein was active as a regulator of the complement system. CONCLUSIONS We have added K. phaffii to the list of organisms that can produce human proteins from genes carried on a stable, linear, artificial chromosome. We envisage using nanochromosomes as repositories for numerous extraneous genes, allowing intensive engineering of K. phaffii without compromising its genome or weakening the resulting strain.
Collapse
Affiliation(s)
| | | | | | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Daniel Robertson
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Paul N Barlow
- School of Chemistry, University of Edinburgh, Edinburgh, UK.
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
28
|
Kumari A, Chokheli VA, Lysenko VS, Mandzhieva SS, Minkina TM, Mazarji M, Rajput VD, Shuvaeva VA, Sushkova SS, Barakhov A. Genotoxic and morpho-physiological responses of ZnO macro- and nano-forms in plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9345-9357. [PMID: 36383335 DOI: 10.1007/s10653-022-01428-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
In the current study, two plants, viz., Pisum sativum L. and Hordeum vulgare L., were exposed to nano- and macro-dispersed ZnO at 1, 10, and 30 times of maximal permissible concentration (MPC). The main objective of the study is to depict and compare the genotoxicity in terms of chromosomal anomalies, cytotoxicity (i.e., mitotic index), and phytotoxicity (viz., germination, morphometry, maximal quantum yield, and chlorophyll fluorescence imaging) of macro- and nano-forms of ZnO along with their accumulation and translocation. In the case of genotoxic and cytotoxic responses, the maximal effect was observed at 30 MPC, regardless of the macro- or nano-forms of ZnO. The phytotoxic observations revealed that the treatment with macro- and nano-forms of ZnO significantly affected the germination rate, germination energy, and length of roots and shoots of H. vulgare in a dose-dependent manner. The factor toxicity index of treated soil demonstrated that toxicity soared as concentrations increased and that at 30 MPC, toxicity was average and high in macro- and nano-dispersed ZnO, respectively. Furthermore, the photosynthetic parameters were observed to be negatively affected in both treatments, but the maximal effect was observed in the case of nano-dispersed form. It was noted that the mobility of nano-dispersed ZnO in the soil was higher than macro-dispersed. The increased mobility of nano-dispersed ZnO might have boosted their accumulation and translocation that subsequently led to the oxidative stress due to the accelerated production of reactive oxygen species, thus strengthen toxicity implications in plants.
Collapse
Affiliation(s)
- Arpna Kumari
- Southern Federal University, Rostov-On-Don, Russia, 344006.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kirchner K, Seidel C, Paulsen FO, Sievers B, Bokemeyer C, Lessel D. Further Association of Germline CHEK2 Loss-of-Function Variants with Testicular Germ Cell Tumors. J Clin Med 2023; 12:7065. [PMID: 38002677 PMCID: PMC10672725 DOI: 10.3390/jcm12227065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) represent the most frequent malignancy in young adult men and have one the highest heritability rates among all cancers. A recent multicenter case-control study identified CHEK2 as the first moderate-penetrance TGCT predisposition gene. Here, we analyzed CHEK2 in 129 TGCT cases unselected for age of onset, histology, clinical outcome, and family history of any cancer, and the frequency of identified variants was compared to findings in 27,173 ancestry-matched cancer-free men. We identified four TGCT cases harboring a P/LP variant in CHEK2 (4/129, 3.10%), which reached statistical significance (p = 0.0191; odds ratio (OR), 4.06; 95% CI, 1.59-10.54) as compared to the control group. Cases with P/LP variants in CHEK2 developed TGCT almost 6 years earlier than individuals with CHEK2 wild-type alleles (5.67 years; 29.5 vs. 35.17). No association was found between CHEK2 status and further clinical and histopathological characteristics, including histological subtypes, the occurrence of aggressive TGCT, family history of TGCT, and family history of any cancer. In addition, we found significant enrichment for the low-penetrance CHEK2 variant p.Ile157Thr (p = 0.0259; odds ratio (OR), 3.69; 95% CI, 1.45-9.55). Thus, we provide further independent evidence of CHEK2 being a moderate-penetrance TGCT predisposition gene.
Collapse
Affiliation(s)
- Kira Kirchner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.K.); (B.S.)
| | - Christoph Seidel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.S.); (F.-O.P.); (C.B.)
| | - Finn-Ole Paulsen
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.S.); (F.-O.P.); (C.B.)
| | - Bianca Sievers
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.K.); (B.S.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.S.); (F.-O.P.); (C.B.)
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.K.); (B.S.)
- Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
30
|
Mihajlović AI, Byers C, Reinholdt L, FitzHarris G. Spindle assembly checkpoint insensitivity allows meiosis-II despite chromosomal defects in aged eggs. EMBO Rep 2023; 24:e57227. [PMID: 37795949 PMCID: PMC10626445 DOI: 10.15252/embr.202357227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Chromosome segregation errors in mammalian oocyte meiosis lead to developmentally compromised aneuploid embryos and become more common with advancing maternal age. Known contributors include age-related chromosome cohesion loss and spindle assembly checkpoint (SAC) fallibility in meiosis-I. But how effective the SAC is in meiosis-II and how this might contribute to age-related aneuploidy is unknown. Here, we developed genetic and pharmacological approaches to directly address the function of the SAC in meiosis-II. We show that the SAC is insensitive in meiosis-II oocytes and that as a result misaligned chromosomes are randomly segregated. Whilst SAC ineffectiveness in meiosis-II is not age-related, it becomes most prejudicial in oocytes from older females because chromosomes that prematurely separate by age-related cohesion loss become misaligned in meiosis-II. We show that in the absence of a robust SAC in meiosis-II these age-related misaligned chromatids are missegregated and lead to aneuploidy. Our data demonstrate that the SAC fails to prevent cell division in the presence of misaligned chromosomes in oocyte meiosis-II, which explains how age-related cohesion loss can give rise to aneuploid embryos.
Collapse
Affiliation(s)
| | - Candice Byers
- The Institute for Experiential AI, Roux InstituteNortheastern UniversityPortlandMEUSA
| | | | | |
Collapse
|
31
|
McCoy RC, Summers MC, McCollin A, Ottolini CS, Ahuja K, Handyside AH. Meiotic and mitotic aneuploidies drive arrest of in vitro fertilized human preimplantation embryos. Genome Med 2023; 15:77. [PMID: 37779206 PMCID: PMC10544495 DOI: 10.1186/s13073-023-01231-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND The high incidence of aneuploidy in early human development, arising either from errors in meiosis or postzygotic mitosis, is the primary cause of pregnancy loss, miscarriage, and stillbirth following natural conception as well as in vitro fertilization (IVF). Preimplantation genetic testing for aneuploidy (PGT-A) has confirmed the prevalence of meiotic and mitotic aneuploidies among blastocyst-stage IVF embryos that are candidates for transfer. However, only about half of normally fertilized embryos develop to the blastocyst stage in vitro, while the others arrest at cleavage to late morula or early blastocyst stages. METHODS To achieve a more complete view of the impacts of aneuploidy, we applied low-coverage sequencing-based PGT-A to a large series (n = 909) of arrested embryos and trophectoderm biopsies. We then correlated observed aneuploidies with abnormalities of the first two cleavage divisions using time-lapse imaging (n = 843). RESULTS The combined incidence of meiotic and mitotic aneuploidies was strongly associated with blastocyst morphological grading, with the proportion ranging from 20 to 90% for the highest to lowest grades, respectively. In contrast, the incidence of aneuploidy among arrested embryos was exceptionally high (94%), dominated by mitotic aneuploidies affecting multiple chromosomes. In turn, these mitotic aneuploidies were strongly associated with abnormal cleavage divisions, such that 51% of abnormally dividing embryos possessed mitotic aneuploidies compared to only 23% of normally dividing embryos. CONCLUSIONS We conclude that the combination of meiotic and mitotic aneuploidies drives arrest of human embryos in vitro, as development increasingly relies on embryonic gene expression at the blastocyst stage.
Collapse
Affiliation(s)
- Rajiv C McCoy
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21212, USA.
| | - Michael C Summers
- London Women's Clinic, 113-115 Harley Street, Marylebone, London, W1G 6AP, UK
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
- Present Address: London Women's Clinic, The Chesterfield, Nuffield Health Clinic, 3 Clifton Hill, Bristol, BS8 1BN, UK
| | - Abeo McCollin
- London Women's Clinic, 113-115 Harley Street, Marylebone, London, W1G 6AP, UK
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| | - Christian S Ottolini
- London Women's Clinic, 113-115 Harley Street, Marylebone, London, W1G 6AP, UK
- Department of Maternal and Fetal Medicine, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- Present Address: Juno Genetics Italia, Via Di Quarto Peperino 22, 00188, Rome, Italy
| | - Kamal Ahuja
- London Women's Clinic, 113-115 Harley Street, Marylebone, London, W1G 6AP, UK
| | - Alan H Handyside
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| |
Collapse
|
32
|
Shen R, Li Z, Wu X. The mitotic spindle-related seven-gene predicts the prognosis and immune microenvironment of lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:10131-10141. [PMID: 37266661 PMCID: PMC10423164 DOI: 10.1007/s00432-023-04906-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
PURPOSE Abnormalities in the mitotic spindle have been linked to a variety of cancers. Data on their role in the onset, progression, and treatment of lung adenocarcinoma (LUAD) need to be explored. METHODS The data were retrieved from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Molecular Signatures Database (MSigDB), for the training cohort, external validation cohort, and the hallmark mitotic spindle gene set, respectively. Mitotic spindle genes linked to LUAD prognosis were identified and intersected with differentially expressed up-regulated genes in the training cohort. Nomogram prediction models were built based on least absolute shrinkage and selection operator (LASSO) regression, univariate cox, and multivariate cox analyses. The seven-gene immunological score was examined, as well as the correlation of immune checkpoints. The DLGAP5 and KIF15 expression in BEAS-2B, A549, H1299, H1975, and PC-9 cell lines was validated with western blot (WB). RESULTS A total of 965 differentially expressed up-regulated genes in the training cohort intersected with 51 mitotic spindle genes associated with LUAD prognosis. Finally, the seven-gene risk score was determined and integrated with clinical characteristics to construct the nomogram model. Immune cell correlation analysis revealed a negative correlation between seven-gene expression with B cell, endothelial cell (excluding LMNB1), and T cell CD8 + (p < 0.05). However, the seven-gene expression was positively correlated with multiple immune checkpoints (p < 0.05). The expression of DLGAP5 and KIF15 were significantly higher in A549, H1299, H1975, and PC-9 cell lines than that in BEAS-2B cell line. CONCLUSION High expression of the seven genes is positively correlated with poor prognosis of LUAD, and these genes are promising as prospective immunotherapy targets.
Collapse
Affiliation(s)
- Ruxin Shen
- Department of Thoracic Surgery, Affiliated Nantong Hospital of Shanghai University, Nantong, 226000, Jiangsu, China
| | - Zhaoshui Li
- Qingdao Medical College, Qingdao University, Qingdao, 266023, China
| | - Xiaoting Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
33
|
Li Z, Jian Y, Hu J, Zhang C, Meng X, Liu J. SpindlesTracker: An Automatic and Low-Cost Labeled Workflow for Spindle Analysis. IEEE J Biomed Health Inform 2023; 27:4098-4109. [PMID: 37252866 DOI: 10.1109/jbhi.2023.3281454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Quantitative analysis of spindle dynamics in mitosis through fluorescence microscopy requires tracking spindle elongation in noisy image sequences. Deterministic methods, which use typical microtubule detection and tracking methods, perform poorly in the sophisticated background of spindles. In addition, the expensive data labeling cost also limits the application of machine learning in this field. Here we present a fully automatic and low-cost labeled workflow that efficiently analyzes the dynamic spindle mechanism of time-lapse images, called SpindlesTracker. In this workflow, we design a network named YOLOX-SP which can accurately detect the location and endpoint of each spindle under box-level data supervision. We then optimize the algorithm SORT and MCP for spindle's tracking and skeletonization. As there was no publicly available dataset, we annotated a S.pombe dataset that was entirely acquired from the real world for both training and evaluation. Extensive experiments demonstrate that SpindlesTracker achieves excellent performance in all aspects, while reducing label costs by 60%. Specifically, it achieves 84.1% mAP in spindle detection and over 90% accuracy in endpoint detection. Furthermore, the improved algorithm enhances tracking accuracy by 1.3% and tracking precision by 6.5%. Statistical results also indicate that the mean error of spindle length is within 1 μm. In summary, SpindlesTracker holds significant implications for the study of mitotic dynamic mechanisms and can be readily extended to the analysis of other filamentous objects. The code and the dataset are both released on GitHub.
Collapse
|
34
|
Valdez VA, Neahring L, Petry S, Dumont S. Mechanisms underlying spindle assembly and robustness. Nat Rev Mol Cell Biol 2023; 24:523-542. [PMID: 36977834 PMCID: PMC10642710 DOI: 10.1038/s41580-023-00584-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 03/30/2023]
Abstract
The microtubule-based spindle orchestrates chromosome segregation during cell division. Following more than a century of study, many components and pathways contributing to spindle assembly have been described, but how the spindle robustly assembles remains incompletely understood. This process involves the self-organization of a large number of molecular parts - up to hundreds of thousands in vertebrate cells - whose local interactions give rise to a cellular-scale structure with emergent architecture, mechanics and function. In this Review, we discuss key concepts in our understanding of spindle assembly, focusing on recent advances and the new approaches that enabled them. We describe the pathways that generate the microtubule framework of the spindle by driving microtubule nucleation in a spatially controlled fashion and present recent insights regarding the organization of individual microtubules into structural modules. Finally, we discuss the emergent properties of the spindle that enable robust chromosome segregation.
Collapse
Affiliation(s)
| | - Lila Neahring
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA
- Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA, USA
| | - Sabine Petry
- Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA.
- Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA, USA.
- Department of Biochemistry & Biophysics, UCSF, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
35
|
Liu X, Yan R, Liu H, Zhang S, Wang R, Zhang B, Sun L. Genome-Wide Expression Analysis of Long Noncoding RNAs and Their Target Genes in Metafemale Drosophila. Int J Mol Sci 2023; 24:ijms24098381. [PMID: 37176087 PMCID: PMC10179461 DOI: 10.3390/ijms24098381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Aneuploidy is usually more detrimental than altered ploidy of the entire set of chromosomes. To explore the regulatory mechanism of gene expression in aneuploidy, we analyzed the transcriptome sequencing data of metafemale Drosophila. The results showed that most genes on the X chromosome undergo dosage compensation, while the genes on the autosomal chromosomes mainly present inverse dosage effects. Furthermore, long noncoding RNAs (lncRNAs) have been identified as key regulators of gene expression, and they are more sensitive to dosage changes than mRNAs. We analyzed differentially expressed mRNAs (DEGs) and differentially expressed lncRNAs (DELs) in metafemale Drosophila and performed functional enrichment analyses of DEGs and the target genes of DELs, and we found that they are involved in several important biological processes. By constructing lncRNA-mRNA interaction networks and calculating the maximal clique centrality (MCC) value of each node in the network, we also identified two key candidate lncRNAs (CR43940 and CR42765), and two of their target genes, Sin3A and MED1, were identified as inverse dosage modulators. These results suggest that lncRNAs play an important role in the regulation of genomic imbalances. This study may deepen the understanding of the gene expression regulatory mechanisms in aneuploidy from the perspective of lncRNAs.
Collapse
Affiliation(s)
- Xinyu Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ran Yan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Haosheng Liu
- State Key Laboratory of Earth Surface Process and Resource Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bowen Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
36
|
Adibi R, Moein S, Gheisari Y. Cisplatin-Resistant Ovarian Cancer Cells Reveal a Polyploid Phenotype with Remarkable Activation of Nuclear Processes. Adv Biomed Res 2023; 12:77. [PMID: 37200756 PMCID: PMC10186044 DOI: 10.4103/abr.abr_348_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 05/20/2023] Open
Abstract
Background Tumor recurrence as one of the main causes of cancer death is a big barrier to cancer complete treatment. Various studies denote the possible role of therapeutics in tumor relapse. Cisplatin as one of the generally used chemotherapy agents is supposed to be the source of therapy resistance through formation of polyploid giant cancer cells (PGCCs). Nevertheless, the mechanisms by which PGCCs promote tumor relapse are not fully understood. Materials and Methods In this study, we performed experimental and bioinformatic investigations to recognize the mechanisms related to cisplatin resistance. A2780 and SCOV-3 cell lines were treated with cisplatin for 72 hours and were evaluated for their morphology by fluorescent microscopy and DNA content analysis. Furthermore, a microarray dataset of cisplatin-resistant ovarian cancer cells was re-analyzed to determine the significantly altered genes and signaling pathways. Results Although cisplatin led to death of considerable fraction of cells in both cell lines, a significant number of survived cells became polyploid. On the other hand, our high throughput analysis determined significant change in expression of 1930 genes which mainly related to gene regulatory mechanisms and nuclear processes. Besides, mTOR, hypoxia, Hippo, and 14-3-3 signaling pathways previously shown to have role in PGCCs were determined. Conclusion Taken together, results of this study demonstrated some key biological mechanisms related to cisplatin-resistant polyploid cancer cells.
Collapse
Affiliation(s)
- Rezvan Adibi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Moein
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousof Gheisari
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
37
|
Kletter T, Biswas A, Reber S. Engineering metaphase spindles: Construction site and building blocks. Curr Opin Cell Biol 2022; 79:102143. [PMID: 36436307 DOI: 10.1016/j.ceb.2022.102143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
In an active, crowded cytoplasm, eukaryotic cells construct metaphase spindles from conserved building blocks to segregate chromosomes. Yet, spindles execute their function in a stunning variety of cell shapes and sizes across orders of magnitude. Thus, the current challenge is to understand how unique mesoscale spindle characteristics emerge from the interaction of molecular collectives. Key components of these collectives are tubulin dimers, which polymerise into microtubules. Despite all conservation, tubulin is a genetically and biochemically complex protein family, and we only begin to uncover how tubulin diversity affects microtubule dynamics and thus spindle assembly. Moreover, it is increasingly appreciated that spindles are dynamically intertwined with the cytoplasm that itself exhibits cell-type specific emergent properties with yet mostly unexplored consequences for spindle construction. Therefore, on our way toward a quantitative picture of spindle function, we need to understand molecular behaviour of the building blocks and connect it to the entire cellular context.
Collapse
Affiliation(s)
- Tobias Kletter
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Abin Biswas
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Max-Planck-Institute for the Science of Light, 91058 Erlangen, Germany
| | - Simone Reber
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; University of Applied Sciences Berlin, 13353 Berlin, Germany.
| |
Collapse
|
38
|
Centromere Chromatin Dynamics at a Glance. EPIGENOMES 2022; 6:epigenomes6040039. [PMID: 36412794 PMCID: PMC9680212 DOI: 10.3390/epigenomes6040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The centromere is a specialized DNA locus that ensures the faithful segregation of chromosomes during cell division. It does so by directing the assembly of an essential proteinaceous structure called the kinetochore. The centromere identity is primarily epigenetically defined by a nucleosome containing an H3 variant called CENP-A as well as by the interplay of several factors such as differential chromatin organization driven by CENP-A and H2A.Z, centromere-associated proteins, and post-translational modifications. At the centromere, CENP-A is not just a driving force for kinetochore assembly but also modifies the structural and dynamic properties of the centromeric chromatin, resulting in a distinctive chromatin organization. An additional level of regulation of the centromeric chromatin conformation is provided by post-translational modifications of the histones in the CENP-A nucleosomes. Further, H2A.Z is present in the regions flanking the centromere for heterochromatinization. In this review, we focus on the above-mentioned factors to describe how they contribute to the organization of the centromeric chromatin: CENP-A at the core centromere, post-translational modifications that decorate CENP-A, and the variant H2A.Z.
Collapse
|
39
|
Tilk S, Tkachenko S, Curtis C, Petrov DA, McFarland CD. Most cancers carry a substantial deleterious load due to Hill-Robertson interference. eLife 2022; 11:67790. [PMID: 36047771 PMCID: PMC9499534 DOI: 10.7554/elife.67790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer genomes exhibit surprisingly weak signatures of negative selection1,2. This may be because selective pressures are relaxed or because genome-wide linkage prevents deleterious mutations from being removed (Hill-Robertson interference)3. By stratifying tumors by their genome-wide mutational burden, we observe negative selection (dN/dS ~ 0.56) in low mutational burden tumors, while remaining cancers exhibit dN/dS ratios ~1. This suggests that most tumors do not remove deleterious passengers. To buffer against deleterious passengers, tumors upregulate heat shock pathways as their mutational burden increases. Finally, evolutionary modeling finds that Hill-Robertson interference alone can reproduce patterns of attenuated selection and estimates the total fitness cost of passengers to be 46% per cell on average. Collectively, our findings suggest that the lack of observed negative selection in most tumors is not due to relaxed selective pressures, but rather the inability of selection to remove deleterious mutations in the presence of genome-wide linkage.
Collapse
Affiliation(s)
- Susanne Tilk
- Department of Biology, Stanford University, Stanford, United States
| | - Svyatoslav Tkachenko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, United States
| | - Christina Curtis
- Department of Genetics, Stanford University, Stanford, United States
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, United States
| | - Christopher D McFarland
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
40
|
Jamasbi E, Hamelian M, Hossain MA, Varmira K. The cell cycle, cancer development and therapy. Mol Biol Rep 2022; 49:10875-10883. [PMID: 35931874 DOI: 10.1007/s11033-022-07788-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
The process of cell division plays a vital role in cancer progression. Cell proliferation and error-free chromosomes segregation during mitosis are central events in life cycle. Mistakes during cell division generate changes in chromosome content and alter the balances of chromosomes number. Any defects in expression of TIF1 family proteins, SAC proteins network, mitotic checkpoint proteins involved in chromosome mis-segregation and cancer development. Here we discuss the function of organelles deal with the chromosome segregation machinery, proteins and correction mechanisms involved in the accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Elaheh Jamasbi
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Hamelian
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kambiz Varmira
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
41
|
Li Z, Ma Z, Xue H, Shen R, Qin K, Zhang Y, Zheng X, Zhang G. Chromatin Separation Regulators Predict the Prognosis and Immune Microenvironment Estimation in Lung Adenocarcinoma. Front Genet 2022; 13:917150. [PMID: 35873497 PMCID: PMC9305311 DOI: 10.3389/fgene.2022.917150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Abnormal chromosome segregation is identified to be a common hallmark of cancer. However, the specific predictive value of it in lung adenocarcinoma (LUAD) is unclear. Method: The RNA sequencing and the clinical data of LUAD were acquired from The Cancer Genome Atlas (TACG) database, and the prognosis-related genes were identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were carried out for functional enrichment analysis of the prognosis genes. The independent prognosis signature was determined to construct the nomogram Cox model. Unsupervised clustering analysis was performed to identify the distinguishing clusters in LUAD-samples based on the expression of chromosome segregation regulators (CSRs). The differentially expressed genes (DEGs) and the enriched biological processes and pathways between different clusters were identified. The immune environment estimation, including immune cell infiltration, HLA family genes, immune checkpoint genes, and tumor immune dysfunction and exclusion (TIDE), was assessed between the clusters. The potential small-molecular chemotherapeutics for the individual treatments were predicted via the connectivity map (CMap) database. Results: A total of 2,416 genes were determined as the prognosis-related genes in LUAD. Chromosome segregation is found to be the main bioprocess enriched by the prognostic genes. A total of 48 CSRs were found to be differentially expressed in LUAD samples and were correlated with the poor outcome in LUAD. Nine CSRs were identified as the independent prognostic signatures to construct the nomogram Cox model. The LUAD-samples were divided into two distinct clusters according to the expression of the 48 CSRs. Cell cycle and chromosome segregation regulated genes were enriched in cluster 1, while metabolism regulated genes were enriched in cluster 2. Patients in cluster 2 had a higher score of immune, stroma, and HLA family components, while those in cluster 1 had higher scores of TIDES and immune checkpoint genes. According to the hub genes highly expressed in cluster 1, 74 small-molecular chemotherapeutics were predicted to be effective for the patients at high risk. Conclusion: Our results indicate that the CSRs were correlated with the poor prognosis and the possible immunotherapy resistance in LUAD.
Collapse
Affiliation(s)
- Zhaoshui Li
- Qingdao Medical College, Qingdao University, Qingdao, China
- Cardiothoracic Surgery Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Zaiqi Ma
- Cardiothoracic Surgery Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Hong Xue
- Heart Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Ruxin Shen
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Kun Qin
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Zhang
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xin Zheng
- Cancer Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Xin Zheng, ; Guodong Zhang,
| | - Guodong Zhang
- Thoracic Surgery Department, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Xin Zheng, ; Guodong Zhang,
| |
Collapse
|
42
|
Cyto-Genotoxic Effect Causing Potential of Polystyrene Micro-Plastics in Terrestrial Plants. NANOMATERIALS 2022; 12:nano12122024. [PMID: 35745363 PMCID: PMC9228652 DOI: 10.3390/nano12122024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022]
Abstract
The polystyrene micro-plastics (Ps-MPs) is one of the leading pollutants found in both aquatic and terrestrial ecosystems. While most of the studies on the morphology and cyto-toxicity of MPs have been based on aquatic organisms, their effects on terrestrial plants are still scarcely known. The present study was an attempt to measure the effect of different sizes (80, 100, 200, 500, 1000, 2000, 4000, and 8000 nm) and concentrations (100 and 400 mg/L) of Ps-MPs on the root length and chromosomes of root tip cells of Allium cepa using A. cepa root chromosomal aberration assay. Large size Ps-MPs (4000 and 8000 nm) showed the highest reduction in A. cepa root length; however, the differences were not significant (at p ≤ 0.05), with respect to negative control (Milli-Q water). The mitotic index showed both significant size- and concentration-dependent decreases, being the lowest (12.06%) in 100 nm at 100 mg/L concentration, with respect to the control (25.05%). The chromosomal abnormality index (CAI) and nuclear abnormality index (NAI) showed significant decreases, with respect to negative control. In addition, the induction of micro-nucleated cells was also observed in Allium root tip cells, when treated with MPs of all sizes, which can predict direct DNA damage to the plant cells. Hence, we conclude that most of the MP sizes caused cyto-toxic and nuclear damage by adversely impacting the spindle formation and induction of micro-nucleated cells in Allium cepa root tip cells. To the best of our knowledge, this is the first study that showed the effect of considerable size range of Ps-MP sizes on the root length and cell division in plants.
Collapse
|
43
|
Kouznetsova A, Liu JG, Valentiniene S, Brismar H, Höög C. Age-dependent aneuploidy in mammalian oocytes instigated at the second meiotic division. Aging Cell 2022; 21:e13649. [PMID: 35665589 PMCID: PMC9282850 DOI: 10.1111/acel.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/07/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Ageing severely affects the chromosome segregation process in human oocytes resulting in aneuploidy, infertility and developmental disorders. A considerable amount of segregation errors in humans are introduced at the second meiotic division. We have here compared the chromosome segregation process in young adult and aged female mice during the second meiotic division. More than half of the oocytes in aged mice displayed chromosome segregation irregularities at anaphase II, resulting in dramatically increased level of aneuploidy in haploid gametes, from 4% in young adult mice to 30% in aged mice. We find that the post‐metaphase II process that efficiently corrects aberrant kinetochore‐microtubule attachments in oocytes in young adult mice is approximately 10‐fold less efficient in aged mice, in particular affecting chromosomes that show small inter‐centromere distances at the metaphase II stage in aged mice. Our results reveal that post‐metaphase II processes have critical impact on age‐dependent aneuploidy in mammalian eggs.
Collapse
Affiliation(s)
- Anna Kouznetsova
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| | - Jian Guo Liu
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| | - Sonata Valentiniene
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics Royal Institute of Technology Solna Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| |
Collapse
|
44
|
Kanwore K, Kanwore K, Adzika GK, Abiola AA, Guo X, Kambey PA, Xia Y, Gao D. Cancer Metabolism: The Role of Immune Cells Epigenetic Alteration in Tumorigenesis, Progression, and Metastasis of Glioma. Front Immunol 2022; 13:831636. [PMID: 35392088 PMCID: PMC8980436 DOI: 10.3389/fimmu.2022.831636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Glioma is a type of brain and spinal cord tumor that begins in glial cells that support the nervous system neurons functions. Age, radiation exposure, and family background of glioma constitute are risk factors of glioma initiation. Gliomas are categorized on a scale of four grades according to their growth rate. Grades one and two grow slowly, while grades three and four grow faster. Glioblastoma is a grade four gliomas and the deadliest due to its aggressive nature (accelerated proliferation, invasion, and migration). As such, multiple therapeutic approaches are required to improve treatment outcomes. Recently, studies have implicated the significant roles of immune cells in tumorigenesis and the progression of glioma. The energy demands of gliomas alter their microenvironment quality, thereby inducing heterogeneity and plasticity change of stromal and immune cells via the PI3K/AKT/mTOR pathway, which ultimately results in epigenetic modifications that facilitates tumor growth. PI3K is utilized by many intracellular signaling pathways ensuring the proper functioning of the cell. The activation of PI3K/AKT/mTOR regulates the plasma membrane activities, contributing to the phosphorylation reaction necessary for transcription factors activities and oncogenes hyperactivation. The pleiotropic nature of PI3K/AKT/mTOR makes its activity unpredictable during altered cellular functions. Modification of cancer cell microenvironment affects many cell types, including immune cells that are the frontline cells involved in inflammatory cascades caused by cancer cells via high cytokines synthesis. Typically, the evasion of immunosurveillance by gliomas and their resistance to treatment has been attributed to epigenetic reprogramming of immune cells in the tumor microenvironment, which results from cancer metabolism. Hence, it is speculative that impeding cancer metabolism and/or circumventing the epigenetic alteration of immune cell functions in the tumor microenvironment might enhance treatment outcomes. Herein, from an oncological and immunological perspective, this review discusses the underlying pathomechanism of cell-cell interactions enhancing glioma initiation and metabolism activation and tumor microenvironment changes that affect epigenetic modifications in immune cells. Finally, prospects for therapeutic intervention were highlighted.
Collapse
Affiliation(s)
- Kouminin Kanwore
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Konimpo Kanwore
- Faculty Mixed of Medicine and Pharmacy, Lomé-Togo, University of Lomé, Lomé, Togo
| | | | - Ayanlaja Abdulrahman Abiola
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxiao Guo
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Ying Xia
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
45
|
Multi-site desmoplastic small round cell tumors are genetically related and immune-cold. NPJ Precis Oncol 2022; 6:21. [PMID: 35379887 PMCID: PMC8980094 DOI: 10.1038/s41698-022-00257-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) is a highly aggressive soft tissue sarcoma that is characterized by the EWSR1-WT1 fusion protein. Patients present with hundreds of tumor implants in their abdominal cavity at various sites. To determine the genetic relatedness among these sites, exome and RNA sequencing were performed on 22 DSRCT specimens from 14 patients, four of whom had specimens from various tissue sites. Multi-site tumors from individual DSRCT patients had a shared origin and were highly related. Other than the EWSR1-WT1 fusion, very few secondary cancer gene mutations were shared among the sites. Among these, ARID1A, was recurrently mutated, which corroborates findings by others in DSRCT patients. Knocking out ARID1A in JN-DSRCT cells using CRISPR/CAS9 resulted in significantly lower cell proliferation and increased drug sensitivity. The transcriptome data were integrated using network analysis and drug target database information to identify potential therapeutic opportunities in EWSR1-WT1-associated pathways, such as PI3K and mTOR pathways. Treatment of JN-DSRCT cells with the PI3K inhibitor alpelisib and mTOR inhibitor temsirolimus reduced cell proliferation. In addition, the low mutation burden was associated with an immune-cold state in DSRCT. Together, these data reveal multiple genomic and immune features of DSRCT and suggest therapeutic opportunities in patients.
Collapse
|
46
|
Osadska M, Selicky T, Kretova M, Jurcik J, Sivakova B, Cipakova I, Cipak L. The Interplay of Cohesin and RNA Processing Factors: The Impact of Their Alterations on Genome Stability. Int J Mol Sci 2022; 23:3939. [PMID: 35409298 PMCID: PMC8999970 DOI: 10.3390/ijms23073939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Cohesin, a multi-subunit protein complex, plays important roles in sister chromatid cohesion, DNA replication, chromatin organization, gene expression, transcription regulation, and the recombination or repair of DNA damage. Recently, several studies suggested that the functions of cohesin rely not only on cohesin-related protein-protein interactions, their post-translational modifications or specific DNA modifications, but that some RNA processing factors also play an important role in the regulation of cohesin functions. Therefore, the mutations and changes in the expression of cohesin subunits or alterations in the interactions between cohesin and RNA processing factors have been shown to have an impact on cohesion, the fidelity of chromosome segregation and, ultimately, on genome stability. In this review, we provide an overview of the cohesin complex and its role in chromosome segregation, highlight the causes and consequences of mutations and changes in the expression of cohesin subunits, and discuss the RNA processing factors that participate in the regulation of the processes involved in chromosome segregation. Overall, an understanding of the molecular determinants of the interplay between cohesin and RNA processing factors might help us to better understand the molecular mechanisms ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Michaela Osadska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Tomas Selicky
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Miroslava Kretova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Jan Jurcik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia;
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| |
Collapse
|
47
|
Stoczynska-Fidelus E, Węgierska M, Kierasińska A, Ciunowicz D, Rieske P. Role of Senescence in Tumorigenesis and Anticancer Therapy. JOURNAL OF ONCOLOGY 2022; 2022:5969536. [PMID: 35342397 PMCID: PMC8956409 DOI: 10.1155/2022/5969536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/18/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022]
Abstract
Although the role of senescence in many physiological and pathological processes is becoming more identifiable, many aspects of senescence are still enigmatic. A special attention is paid to the role of this phenomenon in tumor development and therapy. This review mainly deals with a large spectrum of oncological issues, beginning with therapy-induced senescence and ending with oncogene-induced senescence. Moreover, the role of senescence in experimental approaches, such as primary cancer cell culture or reprogramming into stem cells, is also beginning to receive further consideration. Additional focus is made on senescence resulting from mitotic catastrophe processes triggered by events occurring during mitosis and jeopardizing chromosomal stability. It has to be also realized that based on recent findings, the basics of senescent cell property interpretation, such as irreversibility of proliferation blockade, can be undermined. It shows that the definition of senescence probably requires updating. Finally, the role of senescence is lately more understandable in the immune system, especially since senescence can diminish the effectiveness of the chimeric antigen receptor T-cell (CAR-T) therapy. In this review, we summarize the current knowledge regarding all these issues.
Collapse
Affiliation(s)
- Ewelina Stoczynska-Fidelus
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Marta Węgierska
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Amelia Kierasińska
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Damian Ciunowicz
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| |
Collapse
|
48
|
Hua LL, Casas C, Mikawa T. Mitotic Antipairing of Homologous Chromosomes. Results Probl Cell Differ 2022; 70:191-220. [PMID: 36348108 PMCID: PMC9731508 DOI: 10.1007/978-3-031-06573-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome organization is highly dynamic and plays an essential role during cell function. It was recently found that pairs of the homologous chromosomes are continuously separated at mitosis and display a haploid (1n) chromosome set, or "antipairing," organization in human cells. Here, we provide an introduction to the current knowledge of homologous antipairing in humans and its implications in human disease.
Collapse
Affiliation(s)
- Lisa L. Hua
- Department of Biology, Sonoma State University, San Francisco
| | - Christian Casas
- Department of Biology, Sonoma State University, San Francisco
| | - Takashi Mikawa
- Department of Anatomy, Cardiovascular Research Institute, University of California, San Francisco,Corresponding author:
| |
Collapse
|
49
|
BP-M345, a New Diarylpentanoid with Promising Antimitotic Activity. Molecules 2021; 26:molecules26237139. [PMID: 34885726 PMCID: PMC8659070 DOI: 10.3390/molecules26237139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/09/2023] Open
Abstract
Previously, we reported the in vitro growth inhibitory effect of diarylpentanoid BP-M345 on human cancer cells. Nevertheless, at that time, the cellular mechanism through which BP-M345 exerts its growth inhibitory effect remained to be explored. In the present work, we report its mechanism of action on cancer cells. The compound exhibits a potent tumor growth inhibitory activity with high selectivity index. Mechanistically, it induces perturbation of the spindles through microtubule instability. As a consequence, treated cells exhibit irreversible defects in chromosome congression during mitosis, which induce a prolonged spindle assembly checkpoint-dependent mitotic arrest, followed by massive apoptosis, as revealed by live cell imaging. Collectively, the results indicate that the diarylpentanoid BP-M345 exerts its antiproliferative activity by inhibiting mitosis through microtubule perturbation and causing cancer cell death, thereby highlighting its potential as antitumor agent.
Collapse
|
50
|
Wordeman L, Vicente JJ. Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles. Cancers (Basel) 2021; 13:5650. [PMID: 34830812 PMCID: PMC8616087 DOI: 10.3390/cancers13225650] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Microtubule-targeting agents (MTAs) represent one of the most successful first-line therapies prescribed for cancer treatment. They interfere with microtubule (MT) dynamics by either stabilizing or destabilizing MTs, and in culture, they are believed to kill cells via apoptosis after eliciting mitotic arrest, among other mechanisms. This classical view of MTA therapies persisted for many years. However, the limited success of drugs specifically targeting mitotic proteins, and the slow growing rate of most human tumors forces a reevaluation of the mechanism of action of MTAs. Studies from the last decade suggest that the killing efficiency of MTAs arises from a combination of interphase and mitotic effects. Moreover, MTs have also been implicated in other therapeutically relevant activities, such as decreasing angiogenesis, blocking cell migration, reducing metastasis, and activating innate immunity to promote proinflammatory responses. Two key problems associated with MTA therapy are acquired drug resistance and systemic toxicity. Accordingly, novel and effective MTAs are being designed with an eye toward reducing toxicity without compromising efficacy or promoting resistance. Here, we will review the mechanism of action of MTAs, the signaling pathways they affect, their impact on cancer and other illnesses, and the promising new therapeutic applications of these classic drugs.
Collapse
Affiliation(s)
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA;
| |
Collapse
|