1
|
Su QY, Jiang ZQ, Song XY, Zhang SX. Regulatory B cells in autoimmune diseases: Insights and therapeutic potential. J Autoimmun 2024; 149:103326. [PMID: 39520834 DOI: 10.1016/j.jaut.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Autoimmune diseases are characterized by the body's immune system attacking its own cells, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In recent studies, regulatory B cells (Bregs), which play a vital role in maintaining peripheral tolerance and controlling persistent autoimmune diseases (ADs), have shown great potential in treating ADs. This review synthesizes the latest advancements in targeted therapies for ADs, with a particular emphasis on the subgroups, phenotypic markers, and signal pathways associated with Bregs. Following an examination of these elements, the discussion pivots to innovative Breg-based therapeutic approaches for the management of ADs.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Xuan-Yi Song
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Juković M, Ratkaj I, Kalafatovic D, Bradshaw NJ. Amyloids, amorphous aggregates and assemblies of peptides - Assessing aggregation. Biophys Chem 2024; 308:107202. [PMID: 38382283 DOI: 10.1016/j.bpc.2024.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Amyloid and amorphous aggregates represent the two major categories of aggregates associated with diseases, and although exhibiting distinct features, researchers often treat them as equivalent, which demonstrates the need for more thorough characterization. Here, we compare amyloid and amorphous aggregates based on their biochemical properties, kinetics, and morphological features. To further decipher this issue, we propose the use of peptide self-assemblies as minimalistic models for understanding the aggregation process. Peptide building blocks are significantly smaller than proteins that participate in aggregation, however, they make a plausible means to bridge the gap in discerning the aggregation process at the more complex, protein level. Additionally, we explore the potential use of peptide-inspired models to research the liquid-liquid phase separation as a feasible mechanism preceding amyloid formation. Connecting these concepts can help clarify our understanding of aggregation-related disorders and potentially provide novel drug targets to impede and reverse these serious illnesses.
Collapse
Affiliation(s)
- Maja Juković
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Ratkaj
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Daniela Kalafatovic
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
3
|
Fan W, Jiang X, Li Q, Wang J, Lv M, Liu J. Preparation of Phosphorylated Auricularia cornea var. Li. Polysaccharide Liposome Gel and Analysis of Its In Vitro Antioxidant Activity. Foods 2024; 13:335. [PMID: 38275702 PMCID: PMC10815469 DOI: 10.3390/foods13020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
In this study, Auricularia cornea var. Li. polysaccharides (ACP) were used as the research object to prepare liposome gel and determine its antioxidant activity in vitro. Phosphorylated Auricularia cornea var. Li. polysaccharides (P-ACP) were prepared via the phosphorylation of ACP by the phosphate method. Additionally, phosphorylated Auricularia cornea var. Li. polysaccharide liposomes (P-ACPL) were prepared using a reverse evaporation method. Finally, phosphorylated Auricularia cornea var. Li. polysaccharide liposome gel (P-ACPLG) was prepared by dispersing the P-ACPL in the gel matrix. The results show that the phosphorylation of the P-ACP was 15.51%, the containment rate of the P-ACPL was 84.50%, the average particle size was (192.2 ± 3.3) nm, and the particle size distribution map had a homogeneous peak, resulting in the particle dispersion being uniform and the polydispersion index (PDI) being 0.134 ± 0.021. The average Zeta potential was (-33.4 ± 0.57) mV. In addition, the in vitro antioxidant activity of the P-ACPL was slightly higher than that of the ACP and P-ACP. After the P-ACPL was emulsified into P-ACPLG, the DPPH, hydroxyl radical clearance, and reducing the ability of P-ACPL remained unchanged. In general, the P-ACPLG prepared in this study has good antioxidant activity in vitro and can retain the antioxidant activity of P-ACPL in vitro well.
Collapse
Affiliation(s)
- Wenguang Fan
- College of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (W.F.); (X.J.)
| | - Xintong Jiang
- College of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (W.F.); (X.J.)
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.W.); (M.L.)
- Jilin Province Plant Care Biotechnology Co., Ltd., Changchun 130012, China
| | - Qinyang Li
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Jiansheng Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.W.); (M.L.)
| | - Minghui Lv
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.W.); (M.L.)
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.W.); (M.L.)
| |
Collapse
|
4
|
Djukić T, Drvenica I, Kovačić M, Minić R, Vučetić D, Majerič D, Šefik-Bukilica M, Savić O, Bugarski B, Ilić V. Dynamic light scattering analysis of immune complexes in sera of rheumatoid arthritis patients. Anal Biochem 2023:115194. [PMID: 37279816 DOI: 10.1016/j.ab.2023.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
The size of circulating immune complexes (CICs) in rheumatoid arthritis (RA) could be an emerging criterion in disease diagnosis. This study analyzed size and electrokinetic potential of CICs from RA patients, healthy young adults, and RA patients age-matched controls aiming to establish their unique CIC features. Pooled CIC of 30 RA patients, 30 young adults, and 30 RA group's age-matched controls (middle-aged and oldеr healthy adults), and in vitro IgG aggregates from pooled sera of 300 healthy volunteers were tested using dynamic light scattering (DLS). Size distribution of CIC in healthy young adults exhibited high polydispersity. RA CIC patients and their age-matched control showed distinctly narrower size distributions compared with young adults. In these groups, particles clustered around two well-defined peaks. Particles of peak 1 were 36.1 ± 6.8 nm in RA age-matched control, and 30.8 ± 4.2 nm in RA patients. Particles of peak 2 of the RA age-matched control's CIC was 251.7 ± 41.2 nm, while RA CIC contained larger particles (359.9 ± 50.5 nm). The lower zeta potential of RA CIC, compared to control, indicated a disease-related decrease in colloidal stability. DLS identified RA-specific, but also age-specific distribution of CIC size and opened possibility of becoming a method for CIC size analysis in IC-mediated diseases.
Collapse
Affiliation(s)
- Tamara Djukić
- Innovation Center of the Faculty of Technology and Metallurgy Ltd, Belgrade, Serbia
| | - Ivana Drvenica
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Belgrade, Serbia.
| | - Marijana Kovačić
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Belgrade, Serbia
| | - Rajna Minić
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Belgrade, Serbia
| | - Dušan Vučetić
- Institute for Transfusiology and Haemobiology, Military Medical Academy, Belgrade, Serbia; Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Dragana Majerič
- School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Mirjana Šefik-Bukilica
- Institute for Rheumatology, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Savić
- Blood Transfusion Institute of Serbia, Belgrade, Serbia
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna Ilić
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Belgrade, Serbia
| |
Collapse
|
5
|
Gelli R, Ridi F. Reconsidering the role of albumin towards amorphous calcium phosphate-based calciprotein particles formation and stability from a physico-chemical perspective. Colloids Surf B Biointerfaces 2023; 227:113372. [PMID: 37257300 DOI: 10.1016/j.colsurfb.2023.113372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/03/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
The formation of calciprotein particles (CPPs) in serum is a physiological phenomenon fundamental to prevent the rise of ectopic calcifications. CPPs are colloidal hybrid particles made of amorphous calcium phosphate stabilized by a protein, fetuin-A. Since albumin is the most abundant protein present in serum, we aimed at understanding if it plays a synergic action together with fetuin-A towards CPPs formation and stability. CPPs were prepared using a constant fetuin-A concentration (5 µM) and different concentrations of albumin (0-606 µM). The stability of CPPs, their crystallization and sedimentation were followed in situ by combining turbidimetry, precipitation analysis and dynamic light scattering. The morphology was investigated by scanning electron microscopy and cryo-transmission electron microscopy, while crystallinity was inspected by infrared spectroscopy. The effect of albumin on the amount of formed CPPs was also studied, as well as the amount of protein adsorbed on CPPs. We found that albumin is not able to prolong the lifetime of the amorphous phase, but it is very effective in delaying the sedimentation of CPPs after crystallization. Albumin also significantly decreases the amount and size of CPPs when present in their synthetic medium, likely playing a fundamental role in our organism together with fetuin-A towards the stabilization of CPPs.
Collapse
Affiliation(s)
- Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
6
|
Pre-Clinical In-Vitro Studies on Parameters Governing Immune Complex Formation. Pharmaceutics 2022; 14:pharmaceutics14061254. [PMID: 35745826 PMCID: PMC9227392 DOI: 10.3390/pharmaceutics14061254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
The success of biotherapeutics is often challenged by the undesirable events of immunogenicity in patients, characterized by the formation of anti-drug antibodies (ADA). Under specific conditions, the ADAs recognizing the biotherapeutic can trigger the formation of immune complexes (ICs), followed by cascades of subsequent effects on various cell types. Hereby, the connection between the characteristics of ICs and their downstream impact is still not well understood. Factors governing the formation of ICs and the characteristics of these IC species were assessed systematically in vitro. Classic analytical methodologies such as SEC-MALS and SV-AUC, and the state-of-the-art technology mass photometry were applied for the characterization. The study demonstrates a clear interplay between (1) the absolute concentration of the involved components, (2) their molar ratios, (3) structural features of the biologic, (4) and of its endogenous target. This surrogate study design and the associated analytical tool-box is readily applicable to most biotherapeutics and provides valuable insights into mechanisms of IC formation prior to FIH studies. The applicability is versatile—from the detection of candidates with immunogenicity risks during developability assessment to evaluation of the impact of degraded or post-translationally modified biotherapeutics on the formation of ICs.
Collapse
|
7
|
Gimpel AK, Maccataio A, Unterweger H, Sokolova MV, Schett G, Steffen U. IgA Complexes Induce Neutrophil Extracellular Trap Formation More Potently Than IgG Complexes. Front Immunol 2022; 12:761816. [PMID: 35095840 PMCID: PMC8792984 DOI: 10.3389/fimmu.2021.761816] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Neutrophil extracellular trap (NET) formation is a powerful instrument to fight pathogens, but may induce collateral damage in the affected tissues. Besides pathogen-derived factors, immune complexes are potent inducers of NET formation. Neutrophils express IgA and IgG specific Fc receptors (FcRs) and therefore respond to complexed IgA and IgG. Especially in the context of autoimmune diseases, IgA and IgG immune complexes have been shown to trigger NET formation, a process that putatively contributes to disease severity. However, it is of question if both antibody classes stimulate neutrophils to the same extent. In this study, we compared the capability of IgA and IgG complexes formed by heat aggregation to induce NET formation. While stimulation of neutrophils with IgA complexes robustly induced NET formation, complexed IgG only marginally increased the amount of NETs compared to the unstimulated control. Mixing IgA with IgG before heat aggregation did not increase the effect of complexed IgA on neutrophils. By contrast, the presence of IgG complexes seemed to disturb neutrophil stimulation by IgA complexes. The capacity of complexed IgG to induce NET formation could not be increased by the addition of autologous serum or the removal of terminal sialic acid in the Fc glycan. Together, our data show that IgA is a much more potent inducer of NET formation than IgG. IgA may thus be the main driving force in (auto)immune complex-mediated NET formation.
Collapse
Affiliation(s)
- Anna-Katharina Gimpel
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Antonio Maccataio
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria V Sokolova
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Velichko EN, Nepomnyashchaya EK, Baranov MA, Skvortsov AN, Pleshakov IV, Dong G. Aggregation Properties of Albumin in Interacting with Magnetic Fluids. Int J Mol Sci 2021; 22:10734. [PMID: 34639075 PMCID: PMC8509288 DOI: 10.3390/ijms221910734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, interactions of Fe3O4 magnetic nanoparticles with serum albumin biomolecules in aqueous solutions were considered. The studies were conducted with the laser correlation spectroscopy and optical analysis of dehydrated films. It was shown that the addition of magnetite to an albumin solution at low concentrations of up to 10-6 g/L led to the formation of aggregates with sizes of up to 300 nm in the liquid phase and an increase in the number of spiral structures in the dehydrated films, which indicated an increase in their stability. With a further increase in the magnetite concentration in the solution (from 10-4 g/L), the magnetic particles stuck together and to albumin, thus forming aggregates with sizes larger than 1000 nm. At the same time, the formation of morphological structures in molecular films was disturbed, and a characteristic decrease in their stability occurred. Most stable films were formed at low concentrations of magnetic nanoparticles (less than 10-4 g/L) when small albumin-magnetic nanoparticle aggregates were formed. These results are important for characterizing the interaction processes of biomolecules with magnetic nanoparticles and can be useful for predicting the stability of biomolecular films with the inclusion of magnetite particles.
Collapse
Affiliation(s)
- Elena N. Velichko
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Elina K. Nepomnyashchaya
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Maksim A. Baranov
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Alexey N. Skvortsov
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia;
| | | | - Ge Dong
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Mabrouk M, Das DB, Salem ZA, Beherei HH. Nanomaterials for Biomedical Applications: Production, Characterisations, Recent Trends and Difficulties. Molecules 2021; 26:1077. [PMID: 33670668 PMCID: PMC7922738 DOI: 10.3390/molecules26041077] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Designing of nanomaterials has now become a top-priority research goal with a view to developing specific applications in the biomedical fields. In fact, the recent trends in the literature show that there is a lack of in-depth reviews that specifically highlight the current knowledge based on the design and production of nanomaterials. Considerations of size, shape, surface charge and microstructures are important factors in this regard as they affect the performance of nanoparticles (NPs). These parameters are also found to be dependent on their synthesis methods. The characterisation techniques that have been used for the investigation of these nanomaterials are relatively different in their concepts, sample preparation methods and obtained results. Consequently, this review article aims to carry out an in-depth discussion on the recent trends on nanomaterials for biomedical engineering, with a particular emphasis on the choices of the nanomaterials, preparation methods/instruments and characterisations techniques used for designing of nanomaterials. Key applications of these nanomaterials, such as tissue regeneration, medication delivery and wound healing, are also discussed briefly. Covering this knowledge gap will result in a better understanding of the role of nanomaterial design and subsequent larger-scale applications in terms of both its potential and difficulties.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St (former EL Tahrir St), Dokki, Giza P.O. 12622, Egypt;
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK
| | - Zeinab A. Salem
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Giza P.O. 12613, Egypt;
- Faculty of Oral and Dental Medicine, Ahram Canadian University, 6 October City P.O. 12573, Egypt
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St (former EL Tahrir St), Dokki, Giza P.O. 12622, Egypt;
| |
Collapse
|