1
|
Slama Schwok A, Henri J. Long Neuro-COVID-19: Current Mechanistic Views and Therapeutic Perspectives. Biomolecules 2024; 14:1081. [PMID: 39334847 PMCID: PMC11429791 DOI: 10.3390/biom14091081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/30/2024] Open
Abstract
Long-lasting COVID-19 (long COVID) diseases constitute a real life-changing burden for many patients around the globe and, overall, can be considered societal and economic issues. They include a variety of symptoms, such as fatigue, loss of smell (anosmia), and neurological-cognitive sequelae, such as memory loss, anxiety, brain fog, acute encephalitis, and stroke, collectively called long neuro-COVID-19 (long neuro-COVID). They also include cardiopulmonary sequelae, such as myocardial infarction, pulmonary damage, fibrosis, gastrointestinal dysregulation, renal failure, and vascular endothelial dysregulation, and the onset of new diabetes, with each symptom usually being treated individually. The main unmet challenge is to understand the mechanisms of the pathophysiologic sequelae, in particular the neurological symptoms. This mini-review presents the main mechanistic hypotheses considered to explain the multiple long neuro-COVID symptoms, namely immune dysregulation and prolonged inflammation, persistent viral reservoirs, vascular and endothelial dysfunction, and the disruption of the neurotransmitter signaling along various paths. We suggest that the nucleoprotein N of SARS-CoV-2 constitutes a "hub" between the virus and the host inflammation, immunity, and neurotransmission.
Collapse
Affiliation(s)
- Anny Slama Schwok
- Sorbonne Université, INSERM U938, Biology and Cancer Therapeutics, Centre de Recherche Saint Antoine, Saint Antoine Hospital, 75231 Paris, France
| | - Julien Henri
- Sorbonne Université, CNRS UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, 75005 Paris, France
| |
Collapse
|
2
|
Huang ZM, Kang JQ, Chen PZ, Deng LF, Li JX, He YX, Liang J, Huang N, Luo TY, Lan QW, Chen HK, Guo XG. Identifying the Interaction Between Tuberculosis and SARS-CoV-2 Infections via Bioinformatics Analysis and Machine Learning. Biochem Genet 2024; 62:2606-2630. [PMID: 37991568 DOI: 10.1007/s10528-023-10563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
The number of patients with COVID-19 caused by severe acute respiratory syndrome coronavirus 2 is still increasing. In the case of COVID-19 and tuberculosis (TB), the presence of one disease affects the infectious status of the other. Meanwhile, coinfection may result in complications that make treatment more difficult. However, the molecular mechanisms underpinning the interaction between TB and COVID-19 are unclear. Accordingly, transcriptome analysis was used to detect the shared pathways and molecular biomarkers in TB and COVID-19, allowing us to determine the complex relationship between COVID-19 and TB. Two RNA-seq datasets (GSE114192 and GSE163151) from the Gene Expression Omnibus were used to find concerted differentially expressed genes (DEGs) between TB and COVID-19 to identify the common pathogenic mechanisms. A total of 124 common DEGs were detected and used to find shared pathways and drug targets. Several enterprising bioinformatics tools were applied to perform pathway analysis, enrichment analysis and networks analysis. Protein-protein interaction analysis and machine learning was used to identify hub genes (GAS6, OAS3 and PDCD1LG2) and datasets GSE171110, GSE54992 and GSE79362 were used for verification. The mechanism of protein-drug interactions may have reference value in the treatment of coinfection of COVID-19 and TB.
Collapse
Affiliation(s)
- Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Qi Kang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Pei-Zhen Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Lin-Fen Deng
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Xin Li
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Xin He
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Jie Liang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Nan Huang
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Tian-Ye Luo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi-Wen Lan
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Hao-Kai Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
3
|
Rurek M. Mitochondria in COVID-19: from cellular and molecular perspective. Front Physiol 2024; 15:1406635. [PMID: 38974521 PMCID: PMC11224649 DOI: 10.3389/fphys.2024.1406635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during β-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Buchynskyi M, Oksenych V, Kamyshna I, Vorobets I, Halabitska I, Kamyshnyi O. Modulatory Roles of AHR, FFAR2, FXR, and TGR5 Gene Expression in Metabolic-Associated Fatty Liver Disease and COVID-19 Outcomes. Viruses 2024; 16:985. [PMID: 38932276 PMCID: PMC11209102 DOI: 10.3390/v16060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a risk factor for severe COVID-19. This study explores the potential influence of gut hormone receptor and immune response gene expression on COVID-19 outcomes in MAFLD patients. METHODS We investigated gene expression levels of AHR, FFAR2, FXR, and TGR5 in patients with MAFLD and COVID-19 compared to controls. We examined associations between gene expression and clinical outcomes. RESULTS COVID-19 patients displayed altered AHR expression, potentially impacting immune response and recovery. Downregulated AHR in patients with MAFLD correlated with increased coagulation parameters. Elevated FFAR2 expression in patients with MAFLD was linked to specific immune cell populations and hospital stay duration. A significantly lower FXR expression was observed in both MAFLD and severe COVID-19. CONCLUSION Our findings suggest potential modulatory roles for AHR, FFAR2, and FXR in COVID-19 and MAFLD.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Ihor Vorobets
- Ophthalmology Clinic “Vizex”, Naukova St. 96B, 79060 Lviv, Ukraine
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine;
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
5
|
Schwartz J, Capistrano KJ, Gluck J, Hezarkhani A, Naqvi AR. SARS-CoV-2, periodontal pathogens, and host factors: The trinity of oral post-acute sequelae of COVID-19. Rev Med Virol 2024; 34:e2543. [PMID: 38782605 PMCID: PMC11260190 DOI: 10.1002/rmv.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
COVID-19 as a pan-epidemic is waning but there it is imperative to understand virus interaction with oral tissues and oral inflammatory diseases. We review periodontal disease (PD), a common inflammatory oral disease, as a driver of COVID-19 and oral post-acute-sequelae conditions (PASC). Oral PASC identifies with PD, loss of teeth, dysgeusia, xerostomia, sialolitis-sialolith, and mucositis. We contend that PD-associated oral microbial dysbiosis involving higher burden of periodontopathic bacteria provide an optimal microenvironment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These pathogens interact with oral epithelial cells activate molecular or biochemical pathways that promote viral adherence, entry, and persistence in the oral cavity. A repertoire of diverse molecules identifies this relationship including lipids, carbohydrates and enzymes. The S protein of SARS-CoV-2 binds to the ACE2 receptor and is activated by protease activity of host furin or TRMPSS2 that cleave S protein subunits to promote viral entry. However, PD pathogens provide additional enzymatic assistance mimicking furin and augment SARS-CoV-2 adherence by inducing viral entry receptors ACE2/TRMPSS, which are poorly expressed on oral epithelial cells. We discuss the mechanisms involving periodontopathogens and host factors that facilitate SARS-CoV-2 infection and immune resistance resulting in incomplete clearance and risk for 'long-haul' oral health issues characterising PASC. Finally, we suggest potential diagnostic markers and treatment avenues to mitigate oral PASC.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | | | - Joseph Gluck
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Armita Hezarkhani
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Afsar R. Naqvi
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| |
Collapse
|
6
|
Healey AM, Fenner KN, O'Dell CT, Lawrence BP. Aryl hydrocarbon receptor activation alters immune cell populations in the lung and bone marrow during coronavirus infection. Am J Physiol Lung Cell Mol Physiol 2024; 326:L313-L329. [PMID: 38290163 PMCID: PMC11281796 DOI: 10.1152/ajplung.00236.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Respiratory viral infections are one of the major causes of illness and death worldwide. Symptoms associated with respiratory infections can range from mild to severe, and there is limited understanding of why there is large variation in severity. Environmental exposures are a potential causative factor. The aryl hydrocarbon receptor (AHR) is an environment-sensing molecule expressed in all immune cells. Although there is considerable evidence that AHR signaling influences immune responses to other immune challenges, including respiratory pathogens, less is known about the impact of AHR signaling on immune responses during coronavirus (CoV) infection. In this study, we report that AHR activation significantly altered immune cells in the lungs and bone marrow of mice infected with a mouse CoV. AHR activation transiently reduced the frequency of multiple cells in the mononuclear phagocyte system, including monocytes, interstitial macrophages, and dendritic cells in the lung. In the bone marrow, AHR activation altered myelopoiesis, as evidenced by a reduction in granulocyte-monocyte progenitor cells and an increased frequency of myeloid-biased progenitor cells. Moreover, AHR activation significantly affected multiple stages of the megakaryocyte lineage. Overall, these findings indicate that AHR activation modulates multiple aspects of the immune response to a CoV infection. Given the significant burden of respiratory viruses on human health, understanding how environmental exposures shape immune responses to infection advances our knowledge of factors that contribute to variability in disease severity and provides insight into novel approaches to prevent or treat disease.NEW & NOTEWORTHY Our study reveals a multifaceted role for aryl hydrocarbon receptor (AHR) signaling in the immune response to coronavirus (CoV) infection. Sustained AHR activation during in vivo mouse CoV infection altered the frequency of mature immune cells in the lung and modulated emergency hematopoiesis, specifically myelopoiesis and megakaryopoiesis, in bone marrow. This provides new insight into immunoregulation by the AHR and extends our understanding of how environmental exposures can impact host responses to respiratory viral infections.
Collapse
Affiliation(s)
- Alicia M Healey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Kristina N Fenner
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Colleen T O'Dell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| |
Collapse
|
7
|
Shi J, Du T, Wang J, Tang C, Lei M, Yu W, Yang Y, Ma Y, Huang P, Chen H, Wang X, Sun J, Wang H, Zhang Y, Luo F, Huang Q, Li B, Lu S, Hu Y, Peng X. Aryl hydrocarbon receptor is a proviral host factor and a candidate pan-SARS-CoV-2 therapeutic target. SCIENCE ADVANCES 2023; 9:eadf0211. [PMID: 37256962 PMCID: PMC10413656 DOI: 10.1126/sciadv.adf0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The emergence of a series of SARS-CoV-2 variants has necessitated the search for broad-spectrum antiviral targets. The aryl hydrocarbon receptor (AhR) senses tryptophan metabolites and is an immune regulator. However, the role of AhR in SARS-CoV-2 infection and whether AhR can be used as the target of antiviral therapy against SARS-CoV-2 and its variants are yet unclear. Here, we show that infection with SARS-CoV-2 activates AhR signaling and facilitates viral replication by interfering with IFN-I-driven antiviral immunity and up-regulating ACE2 receptor expression. The pharmacological AhR blockade or AhR knockout reduces SARS-CoV-2 and its variants' replication in vitro. Drug targeting of AhR with AhR antagonists markedly reduced SARS-CoV-2 and its variants' replication in vivo and ameliorated lung inflammation caused by SARS-CoV-2 infection in hamsters. Overall, AhR was a SARS-CoV-2 proviral host factor and a candidate host-directed broad-spectrum target for antiviral therapy against SARS-CoV-2 and its variants, including Delta and Omicron, and potentially other variants in the future.
Collapse
Affiliation(s)
- Jiandong Shi
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingfu Du
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Tang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyue Lei
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Ma
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pu Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongli Chen
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haixuan Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Zhang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyu Luo
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bai Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunzhang Hu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing China
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing China
| |
Collapse
|
8
|
Anderson G. Depression Pathophysiology: Astrocyte Mitochondrial Melatonergic Pathway as Crucial Hub. Int J Mol Sci 2022; 24:ijms24010350. [PMID: 36613794 PMCID: PMC9820523 DOI: 10.3390/ijms24010350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is widely accepted as having a heterogenous pathophysiology involving a complex mixture of systemic and CNS processes. A developmental etiology coupled to genetic and epigenetic risk factors as well as lifestyle and social process influences add further to the complexity. Consequently, antidepressant treatment is generally regarded as open to improvement, undoubtedly as a consequence of inappropriately targeted pathophysiological processes. This article reviews the diverse array of pathophysiological processes linked to MDD, and integrates these within a perspective that emphasizes alterations in mitochondrial function, both centrally and systemically. It is proposed that the long-standing association of MDD with suppressed serotonin availability is reflective of the role of serotonin as a precursor for the mitochondrial melatonergic pathway. Astrocytes, and the astrocyte mitochondrial melatonergic pathway, are highlighted as crucial hubs in the integration of the wide array of biological underpinnings of MDD, including gut dysbiosis and permeability, as well as developmental and social stressors, which can act to suppress the capacity of mitochondria to upregulate the melatonergic pathway, with consequences for oxidant-induced changes in patterned microRNAs and subsequent patterned gene responses. This is placed within a development context, including how social processes, such as discrimination, can physiologically regulate a susceptibility to MDD. Future research directions and treatment implications are derived from this.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PX, UK
| |
Collapse
|
9
|
Batiha GES, Al-Gareeb AI, Elekhnawy E, Al-kuraishy HM. Potential role of lipoxin in the management of COVID-19: a narrative review. Inflammopharmacology 2022; 30:1993-2001. [PMID: 36114383 PMCID: PMC9483298 DOI: 10.1007/s10787-022-01070-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection leads to the development of coronavirus disease 2019 (COVID-19), which causes endothelial dysfunction (ED), oxidative stress (OS), and inflammatory disorders. These changes cause hypoxia and cytokine storm with the development of cardio-pulmonary complications. Bioactive lipids and other polyunsaturated fatty acids participate in a vital role in the SARS-CoV-2 infection process. One of these mediators is the anti-inflammatory compound, lipoxin (LX). LXs are produced from arachidonic acid (AA) by collaboration between 5-lipoxygenase (5-LO) and 12-15 LO during cell interactions. Thus, our goal was to review the probable role of LXs in COVID-19 regarding the effects of LXs on the inflammatory signaling pathways that are linked with COVID-19 pathogenesis and complications.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| |
Collapse
|
10
|
Singh Y, Singh SK, Dua K, Gupta G. A molecular study of aryl hydrocarbon receptor activation in COVID 19 associated cognitive impairment - Correspondence. Int J Surg 2022; 105:106895. [PMID: 36096293 PMCID: PMC9458762 DOI: 10.1016/j.ijsu.2022.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 10/27/2022]
Affiliation(s)
- Yogendra Singh
- Department of Pharmacology, Maharishi Arvind College of Pharmacy, Ambabari Circle, Ambabari, Jaipur, 302023, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, 302017, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
11
|
Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology 2022; 30:1569-1596. [PMID: 35665873 PMCID: PMC9167428 DOI: 10.1007/s10787-022-01011-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Melatonin is an indole hormone secreted primarily by the pineal gland that showing anti-oxidant, anti-inflammatory and anti-apoptotic capacity. It can play an important role in the pathophysiological mechanisms of various diseases. In this regard, different studies have shown that there is a relationship between Melatonin and Multiple Sclerosis (MS). MS is a chronic immune-mediated disease of the Central Nervous System. AIM The objective of this review was to evaluate the mechanisms of action of melatonin on oxidative stress, inflammation and intestinal dysbiosis caused by MS, as well as its interaction with different hormones and factors that can influence the pathophysiology of the disease. RESULTS Melatonin causes a significant increase in the levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione and can counteract and inhibit the effects of the NLRP3 inflammasome, which would also be beneficial during SARS-CoV-2 infection. In addition, melatonin increases antimicrobial peptides, especially Reg3β, which could be useful in controlling the microbiota. CONCLUSION Melatonin could exert a beneficial effect in people suffering from MS, running as a promising candidate for the treatment of this disease. However, more research in human is needed to help understand the possible interaction between melatonin and certain sex hormones, such as estrogens, to know the potential therapeutic efficacy in both men and women.
Collapse
|
12
|
de Oliveira JADP, de Athaide MM, Rahman AU, de Mattos Barbosa MG, Jardim MM, Moraes MO, Pinheiro RO. Kynurenines in the Pathogenesis of Peripheral Neuropathy During Leprosy and COVID-19. Front Cell Infect Microbiol 2022; 12:815738. [PMID: 35281455 PMCID: PMC8907883 DOI: 10.3389/fcimb.2022.815738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory disorders are associated with the activation of tryptophan (TRYP) catabolism via the kynurenine pathway (KP). Several reports have demonstrated the role of KP in the immunopathophysiology of both leprosy and coronavirus disease 19 (COVID-19). The nervous system can be affected in infections caused by both Mycobacterium leprae and SARS-CoV-2, but the mechanisms involved in the peripheral neural damage induced by these infectious agents are not fully understood. In recent years KP has received greater attention due the importance of kynurenine metabolites in infectious diseases, immune dysfunction and nervous system disorders. In this review, we discuss how modulation of the KP may aid in controlling the damage to peripheral nerves and the effects of KP activation on neural damage during leprosy or COVID-19 individually and we speculate its role during co-infection.
Collapse
Affiliation(s)
| | | | - Atta Ur Rahman
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Marcia Maria Jardim
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Neurology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Roberta Olmo Pinheiro,
| |
Collapse
|
13
|
Melatonin: highlighting its use as a potential treatment for SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:143. [PMID: 35187603 PMCID: PMC8858600 DOI: 10.1007/s00018-021-04102-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death rate, and shortened the duration of hospitalization. Melatonin’s ability to arrest SARS-CoV-2 infections may reduce health care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should be used in pandemics such as that caused by SARS-CoV-2.
Collapse
|
14
|
Cihan M, Doğan Ö, Ceran Serdar C, Altunçekiç Yıldırım A, Kurt C, Serdar MA. Kynurenine pathway in Coronavirus disease (COVID‐19): Potential role in prognosis. J Clin Lab Anal 2022; 36:e24257. [PMID: 35092710 PMCID: PMC8906035 DOI: 10.1002/jcla.24257] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2021] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Background It is known that inflammatory responses play an important role in the pathophysiology of COVID‐19. Aims In this study, we aimed to examine the role of kynurenine (KYN) metabolism on the severity of COVID‐19 disease AQ5. Materials & Methods Seventy COVID‐19 patients of varying severity and 30 controls were included in the study. In addition to the classical laboratory parameters, KYN, tryptophan (TRP), kynurenic acid (KYNA), 3 hydroxykynurenine (3OHKYN), quinolinic acid (QA), and picolinic acid (PA) were measured with mass spectrometry. Results TRP, KYN, KYN:TRP ratio, KYNA, 3OHKYN, PA, and QA results were found to be significantly different in COVID‐19 patients (p < 0.001 for all). The KYN:TRP ratio and PA of severe COVID‐19 patients was statistically higher than that of mild‐moderate COVID‐19 patients (p < 0.001 for all). When results were examined, statistically significant correlations with KYN:TRP ratio, IL‐6, ferritin, and procalcitonin were only found in COVID‐19 patients. ROC analysis indicated that highest AUC values were obtained by KYN:TRP ratio and PA (0.751 vs 0.742). In determining the severity of COVID‐19 disease, the odd ratios (and confidence intervals) of KYN:TRP ratio and PA levels that were adjusted according to age, gender, and comorbidity were determined to be 1.44 (1.1–1.87, p = 0.008) and 1.06 (1.02–1.11, p = 0.006), respectively. Discussion & Conclusion According to the results of this study, KYN metabolites play a role in the pathophysiology of COVID‐19, especially KYN:TRP ratio and PA could be markers for identification of severe COVID‐19 cases.
Collapse
Affiliation(s)
- Murat Cihan
- Clinical Laboratory Ordu University Training and Research Hospital Ordu Turkey
| | - Özlem Doğan
- Department of Biochemistry Ankara University School of Medicine Ankara Turkey
| | - Ceyhan Ceran Serdar
- Medical Biology and Genetics Faculty of Medicine Ankara Medipol University Ankara Turkey
| | - Arzu Altunçekiç Yıldırım
- Department of Infectious Diseases and Clinical Microbiology Ordu University School of Medicine Ordu Turkey
| | - Celali Kurt
- Department of Infectious Diseases and Clinical Microbiology Ordu University School of Medicine Ordu Turkey
| | - Muhittin A. Serdar
- Department of Medical Biochemistry Acıbadem Mekmet Ali Aydinlar University Istanbul Turkey
| |
Collapse
|
15
|
Markus RP, Sousa KS, da Silveira Cruz-Machado S, Fernandes PA, Ferreira ZS. Possible Role of Pineal and Extra-Pineal Melatonin in Surveillance, Immunity, and First-Line Defense. Int J Mol Sci 2021; 22:12143. [PMID: 34830026 PMCID: PMC8620487 DOI: 10.3390/ijms222212143] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Melatonin is a highly conserved molecule found in prokaryotes and eukaryotes that acts as the darkness hormone, translating environmental lighting to the whole body, and as a moderator of innate and acquired defense, migration, and cell proliferation processes. This review evaluates the importance of pineal activity in monitoring PAMPs and DAMPs and in mounting an inflammatory response or innate immune response. Activation of the immune-pineal axis, which coordinates the pro-and anti-inflammatory phases of an innate immune response, is described. PAMPs and DAMPs promote the immediate suppression of melatonin production by the pineal gland, which allows leukocyte migration. Monocyte-derived macrophages, important phagocytes of microbes, and cellular debris produce melatonin locally and thereby initiate the anti-inflammatory phase of the acute inflammatory response. The role of locally produced melatonin in organs that directly contact the external environment, such as the skin and the gastrointestinal and respiratory tracts, is also discussed. In this context, as resident macrophages are self-renewing cells, we explore evidence indicating that, besides avoiding overreaction of the immune system, extra-pineal melatonin has a fundamental role in the homeostasis of organs and tissues.
Collapse
Affiliation(s)
- Regina P. Markus
- Laboratory Chronopharmacology, Department Physiology, Institute Bioscience, University of São Paulo, São Paulo 05508-090, Brazil; (K.S.S.); (P.A.F.); (Z.S.F.)
| | - Kassiano S. Sousa
- Laboratory Chronopharmacology, Department Physiology, Institute Bioscience, University of São Paulo, São Paulo 05508-090, Brazil; (K.S.S.); (P.A.F.); (Z.S.F.)
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Molecular, Endocrine and Reproductive Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, UNIFESP, São Paulo 04044-020, Brazil;
| | - Pedro A. Fernandes
- Laboratory Chronopharmacology, Department Physiology, Institute Bioscience, University of São Paulo, São Paulo 05508-090, Brazil; (K.S.S.); (P.A.F.); (Z.S.F.)
| | - Zulma S. Ferreira
- Laboratory Chronopharmacology, Department Physiology, Institute Bioscience, University of São Paulo, São Paulo 05508-090, Brazil; (K.S.S.); (P.A.F.); (Z.S.F.)
| |
Collapse
|
16
|
Kukula-Koch W, Szwajgier D, Gaweł-Bęben K, Strzępek-Gomółka M, Głowniak K, Meissner HO. Is Phytomelatonin Complex Better Than Synthetic Melatonin? The Assessment of the Antiradical and Anti-Inflammatory Properties. Molecules 2021; 26:6087. [PMID: 34641628 PMCID: PMC8512846 DOI: 10.3390/molecules26196087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
This work aims to assess the recently established anti-inflammatory and antioxidant potential of melatonin of plant origin extracted from the plant matrix as a phytomelatonin complex (PHT-MLT), and compare its activity with synthetic melatonin (SNT-MLT) when used on its own or with vitamin C. For this purpose, a COX-2 enzyme inhibitory activity test, an antiradical activity in vitro and on cell lines assays, was performed on both PHT-MLT and SNT-MLT products. COX-2 inhibitory activity of PHT-MLT was found to be ca. 6.5 times stronger than that of SNT-MLT (43.3% and 6.7% enzyme inhibition, equivalent to the activity of acetylsalicylic acid in conc. 30.3 ± 0.2 and 12.0 ± 0.3 mg/mL, respectively). Higher antiradical potential and COX-2 inhibitory properties of PHT-MLT could be explained by the presence of additional naturally occurring constituents in alfalfa, chlorella, and rice, which were clearly visible on the HPLC-ESI-QTOF-MS fingerprint. The antiradical properties of PHT-MLT determined in the DPPH test (IC50 of 21.6 ± 1 mg of powder/mL) were found to originate from the presence of other metabolites in the 50% EtOH extract while SNT-MLT was found to be inactive under the applied testing conditions. However, the antioxidant studies on HaCaT keratinocytes stimulated with H2O2 revealed a noticeable activity in all samples. The presence of PHT-MLT (12.5, 25 and 50 µg/mL) and vitamin C (12.5, 25 and 50 µg/mL) in the H2O2-pretreated HaCaT keratinocytes protected the cells from generating reactive oxygen species. This observation confirms that MLT-containing samples affect the intracellular production of enzymes and neutralize the free radicals. Presented results indicated that MLT-containing products in combination with Vitamin C dosage are worth to be considered as a preventive alternative in the therapy of various diseases in the etiopathogenesis, of which radical and inflammatory mechanisms play an important role.
Collapse
Affiliation(s)
- Wirginia Kukula-Koch
- Department of Pharmacognosy with Garden of Medicinal Plants, Medicinal University in Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, 8 Skromna Str., 20-704 Lublin, Poland;
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego Str., 35-225 Rzeszów, Poland; (K.G.-B.); (M.S.-G.); (K.G.)
| | - Marcelina Strzępek-Gomółka
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego Str., 35-225 Rzeszów, Poland; (K.G.-B.); (M.S.-G.); (K.G.)
| | - Kazimierz Głowniak
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego Str., 35-225 Rzeszów, Poland; (K.G.-B.); (M.S.-G.); (K.G.)
| | - Henry O. Meissner
- Therapeutic Research, TTD International Pty Ltd., 39 Leopard Ave., Gold Coast 4221, Australia;
| |
Collapse
|
17
|
Ramos E, López-Muñoz F, Gil-Martín E, Egea J, Álvarez-Merz I, Painuli S, Semwal P, Martins N, Hernández-Guijo JM, Romero A. The Coronavirus Disease 2019 (COVID-19): Key Emphasis on Melatonin Safety and Therapeutic Efficacy. Antioxidants (Basel) 2021; 10:1152. [PMID: 34356384 PMCID: PMC8301107 DOI: 10.3390/antiox10071152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Viral infections constitute a tectonic convulsion in the normophysiology of the hosts. The current coronavirus disease 2019 (COVID-19) pandemic is not an exception, and therefore the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, like any other invading microbe, enacts a generalized immune response once the virus contacts the body. Melatonin is a systemic dealer that does not overlook any homeostasis disturbance, which consequently brings into play its cooperative triad, antioxidant, anti-inflammatory, and immune-stimulant backbone, to stop the infective cycle of SARS-CoV-2 or any other endogenous or exogenous threat. In COVID-19, the corporal propagation of SARS-CoV-2 involves an exacerbated oxidative activity and therefore the overproduction of great amounts of reactive oxygen and nitrogen species (RONS). The endorsement of melatonin as a possible protective agent against the current pandemic is indirectly supported by its widely demonstrated beneficial role in preclinical and clinical studies of other respiratory diseases. In addition, focusing the therapeutic action on strengthening the host protection responses in critical phases of the infective cycle makes it likely that multi-tasking melatonin will provide multi-protection, maintaining its efficacy against the virus variants that are already emerging and will emerge as long as SARS-CoV-2 continues to circulate among us.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Francisco López-Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain;
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
- Portucalense Institute of Neuropsychology and Cognitive and Behavioural Neurosciences (INPP), Portucalense University, R. Dr. António Bernardino de Almeida 541, 4200-072 Porto, Portugal
- Thematic Network for Cooperative Health Research (RETICS), Addictive Disorders Network, Health Institute Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Emilio Gil-Martín
- Nutrition, Food & Plant Science Group NF1, Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain;
| | - Javier Egea
- Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain;
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain; (I.Á.-M.); (J.M.H.-G.)
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9100, 28029 Madrid, Spain
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248002, India; (S.P.); (P.S.)
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248002, India; (S.P.); (P.S.)
- Uttarakhand State Council for Science and Technology, Dehradun, Uttarakhand 248007, India
| | - Natália Martins
- Faculty of Medicine, Institute for Research and Innovation in Health (i3S), University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute for Research and Advanced Training in Health Sciences and Technologies, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Jesús M. Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain; (I.Á.-M.); (J.M.H.-G.)
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9100, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
18
|
Collier ME, Zhang S, Scrutton NS, Giorgini F. Inflammation control and improvement of cognitive function in COVID-19 infections: is there a role for kynurenine 3-monooxygenase inhibition? Drug Discov Today 2021; 26:1473-1481. [PMID: 33609782 PMCID: PMC7889466 DOI: 10.1016/j.drudis.2021.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
The novel respiratory virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), emerged during late 2019 and spread rapidly across the world. It is now recognised that the nervous system can be affected in COVID-19, with several studies reporting long-term cognitive problems in patients. The metabolic pathway of tryptophan degradation, known as the kynurenine pathway (KP), is significantly activated in patients with COVID-19. KP metabolites have roles in regulating both inflammatory/immune responses and neurological functions. In this review, we speculate on the effects of KP activation in patients with COVID-19, and how modulation of this pathway might impact inflammation and reduce neurological symptoms.
Collapse
Affiliation(s)
- Mary Ew Collier
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Shaowei Zhang
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
19
|
da Silveira Cruz-Machado S, Guissoni Campos LM, Fadini CC, Anderson G, Markus RP, Pinato L. Disrupted nocturnal melatonin in autism: Association with tumor necrosis factor and sleep disturbances. J Pineal Res 2021; 70:e12715. [PMID: 33421193 DOI: 10.1111/jpi.12715] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Sleep disturbances, abnormal melatonin secretion, and increased inflammation are aspects of autism spectrum disorder (ASD) pathophysiology. The present study evaluated the daily urinary 6-sulfatoxymelatonin (aMT6s) excretion profile and the salivary levels of tumor necrosis factor (TNF) and interleukin-6 (IL-6) in 20 controls and 20 ASD participants, as well as correlating these measures with sleep disturbances. Although 60% of ASD participants showed a significant night-time rise in aMT6s excretion, this rise was significantly attenuated, compared to controls (P < .05). The remaining 40% of ASD individuals showed no significant increase in nocturnal aMT6s. ASD individuals showed higher nocturnal levels of saliva TNF, but not IL-6. Dysfunction in the initiation and maintenance of sleep, as indicated by the Sleep Disturbance Scale for Children, correlated with night-time aMT6s excretion (r = -.28, P < .05). Dysfunction in sleep breathing was inversely correlated with aMT6s (r = -.31, P < .05) and positively associated with TNF level (r = .42, P < .01). Overall such data indicate immune-pineal axis activation, with elevated TNF but not IL-6 levels associated with disrupted pineal melatonin release and sleep dysfunction in ASD. It is proposed that circadian dysregulation in ASD is intimately linked to heightened immune-inflammatory activity. Such two-way interactions of the immune-pineal axis may underpin many aspects of ASD pathophysiology, including sleep disturbances, as well as cognitive and behavioral alterations.
Collapse
Affiliation(s)
- Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Cintia Cristina Fadini
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marilia, Brazil
| | | | - Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), São Paulo, Brazil
| | - Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marilia, Brazil
| |
Collapse
|
20
|
Mazzoccoli G, Kvetnoy I, Mironova E, Yablonskiy P, Sokolovich E, Krylova J, Carbone A, Anderson G, Polyakova V. The melatonergic pathway and its interactions in modulating respiratory system disorders. Biomed Pharmacother 2021; 137:111397. [PMID: 33761613 DOI: 10.1016/j.biopha.2021.111397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Melatonin is a key intracellular neuroimmune-endocrine regulator and coordinator of multiple complex and interrelated biological processes. The main functions of melatonin include the regulation of neuroendocrine and antioxidant system activity, blood pressure, rhythms of the sleep-wake cycle, the retardation of ageing processes, as well as reseting and optimizing mitochondria and thereby the cells of the immune system. Melatonin and its agonists have therefore been mooted as a treatment option across a wide array of medical disorders. This article reviews the role of melatonin in the regulation of respiratory system functions under normal and pathological conditions. Melatonin can normalize the structural and functional organization of damaged lung tissues, by a number of mechanisms, including the regulation of signaling molecules, oxidant status, lipid raft function, optimized mitochondrial function and reseting of the immune response over the circadian rhythm. Consequently, melatonin has potential clinical utility for bronchial asthma, chronic obstructive pulmonary disease, lung cancer, lung vascular diseases, as well as pulmonary and viral infections. The integration of melatonin's effects with the alpha 7 nicotinic receptor and the aryl hydrocarbon receptor in the regulation of mitochondrial function are proposed as a wider framework for understanding the role of melatonin across a wide array of diverse pulmonary disorders.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy.
| | - Igor Kvetnoy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Department of Pathology, Saint Petersburg State University, University Embankment, 7/9, Saint Petersburg 199034, Russian Federation
| | - Ekaterina Mironova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, Saint Petersburg 197110, Russian Federation
| | - Petr Yablonskiy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Evgenii Sokolovich
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Julia Krylova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Pavlov First Saint Petersburg State Medical University, Lev Tolstoy str. 6-8, Saint Petersburg 197022, Russian Federation
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy
| | | | - Victoria Polyakova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; St. Petersburg State Pediatric Medical University, Litovskaia str. 2, Saint-Petersburg 194100, Russian Federation
| |
Collapse
|
21
|
Anderson G, Carbone A, Mazzoccoli G. Tryptophan Metabolites and Aryl Hydrocarbon Receptor in Severe Acute Respiratory Syndrome, Coronavirus-2 (SARS-CoV-2) Pathophysiology. Int J Mol Sci 2021; 22:ijms22041597. [PMID: 33562472 PMCID: PMC7915649 DOI: 10.3390/ijms22041597] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The metabolism of tryptophan is intimately associated with the differential regulation of diverse physiological processes, including in the regulation of responses to severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) infection that underpins the COVID-19 pandemic. Two important products of tryptophan metabolism, viz kynurenine and interleukin (IL)4-inducible1 (IL41)-driven indole 3 pyruvate (I3P), activate the aryl hydrocarbon receptor (AhR), thereby altering the nature of immune responses to SARS-CoV-2 infection. AhR activation dysregulates the initial pro-inflammatory cytokines production driven by neutrophils, macrophages, and mast cells, whilst AhR activation suppresses the endogenous antiviral responses of natural killer cells and CD8+ T cells. Such immune responses become further dysregulated by the increased and prolonged pro-inflammatory cytokine suppression of pineal melatonin production coupled to increased gut dysbiosis and gut permeability. The suppression of pineal melatonin and gut microbiome-derived butyrate, coupled to an increase in circulating lipopolysaccharide (LPS) further dysregulates the immune response. The AhR mediates its effects via alterations in the regulation of mitochondrial function in immune cells. The increased risk of severe/fatal SARS-CoV-2 infection by high risk conditions, such as elderly age, obesity, and diabetes are mediated by these conditions having expression levels of melatonin, AhR, butyrate, and LPS that are closer to those driven by SARS-CoV-2 infection. This has a number of future research and treatment implications, including the utilization of melatonin and nutraceuticals that inhibit the AhR, including the polyphenols, epigallocatechin gallate (EGCG), and resveratrol.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PX, UK
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
22
|
Anderson G. Tumour Microenvironment: Roles of the Aryl Hydrocarbon Receptor, O-GlcNAcylation, Acetyl-CoA and Melatonergic Pathway in Regulating Dynamic Metabolic Interactions across Cell Types-Tumour Microenvironment and Metabolism. Int J Mol Sci 2020; 22:E141. [PMID: 33375613 PMCID: PMC7795031 DOI: 10.3390/ijms22010141] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
This article reviews the dynamic interactions of the tumour microenvironment, highlighting the roles of acetyl-CoA and melatonergic pathway regulation in determining the interactions between oxidative phosphorylation (OXPHOS) and glycolysis across the array of cells forming the tumour microenvironment. Many of the factors associated with tumour progression and immune resistance, such as yin yang (YY)1 and glycogen synthase kinase (GSK)3β, regulate acetyl-CoA and the melatonergic pathway, thereby having significant impacts on the dynamic interactions of the different types of cells present in the tumour microenvironment. The association of the aryl hydrocarbon receptor (AhR) with immune suppression in the tumour microenvironment may be mediated by the AhR-induced cytochrome P450 (CYP)1b1-driven 'backward' conversion of melatonin to its immediate precursor N-acetylserotonin (NAS). NAS within tumours and released from tumour microenvironment cells activates the brain-derived neurotrophic factor (BDNF) receptor, TrkB, thereby increasing the survival and proliferation of cancer stem-like cells. Acetyl-CoA is a crucial co-substrate for initiation of the melatonergic pathway, as well as co-ordinating the interactions of OXPHOS and glycolysis in all cells of the tumour microenvironment. This provides a model of the tumour microenvironment that emphasises the roles of acetyl-CoA and the melatonergic pathway in shaping the dynamic intercellular metabolic interactions of the various cells within the tumour microenvironment. The potentiation of YY1 and GSK3β by O-GlcNAcylation will drive changes in metabolism in tumours and tumour microenvironment cells in association with their regulation of the melatonergic pathway. The emphasis on metabolic interactions across cell types in the tumour microenvironment provides novel future research and treatment directions.
Collapse
Affiliation(s)
- George Anderson
- Clinical Research Communications (CRC) Scotland & London, Eccleston Square, London SW1V 6UT, UK
| |
Collapse
|
23
|
Lionetto L, Ulivieri M, Capi M, De Bernardini D, Fazio F, Petrucca A, Pomes LM, De Luca O, Gentile G, Casolla B, Curto M, Salerno G, Schillizzi S, Torre MS, Santino I, Rocco M, Marchetti P, Aceti A, Ricci A, Bonfini R, Nicoletti F, Simmaco M, Borro M. Increased kynurenine-to-tryptophan ratio in the serum of patients infected with SARS-CoV2: An observational cohort study. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166042. [PMID: 33338598 PMCID: PMC7834629 DOI: 10.1016/j.bbadis.2020.166042] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/16/2022]
Abstract
Immune dysregulation is a hallmark of patients infected by SARS-CoV2 and the balance between immune reactivity and tolerance is a key determinant of all stages of infection, including the excessive inflammatory state causing the acute respiratory distress syndrome. The kynurenine pathway (KP) of tryptophan (Trp) metabolism is activated by pro-inflammatory cytokines and drives mechanisms of immune tolerance. We examined the state of activation of the KP by measuring the Kyn:Trp ratio in the serum of healthy subjects (n = 239), and SARS-CoV2-negative (n = 305) and -positive patients (n = 89). Patients were recruited at the Emergency Room of St. Andrea Hospital (Rome, Italy). Kyn and Trp serum levels were assessed by HPLC/MS-MS. Compared to healthy controls, both SARS-CoV2-negative and -positive patients showed an increase in the Kyn:Trp ratio. The increase was larger in SARS-CoV2-positive patients, with a significant difference between SARS-CoV2-positive and -negative patients. In addition, the increase was more prominent in males, and positively correlated with age and severity of SARS-CoV2 infection, categorized as follows: 1 = no need for intensive care unit (ICU); 2 ≤ 3 weeks spent in ICU; 3 ≥ 3 weeks spent in ICU; and 4 = death. The highest Kyn:Trp values were found in SARS-CoV2-positive patients with severe lymphopenia. These findings suggest that the Kyn:Trp ratio reflects the level of inflammation associated with SARS-CoV2 infection, and, therefore, might represent a valuable biomarker for therapeutic intervention.
Collapse
Affiliation(s)
- Luana Lionetto
- Laboratory of Clinical Biochemistry, Mass Spectrometry Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Martina Ulivieri
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY, USA
| | - Matilde Capi
- Laboratory of Clinical Biochemistry, Mass Spectrometry Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Donatella De Bernardini
- Laboratory of Clinical Biochemistry, Mass Spectrometry Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Francesco Fazio
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY, USA
| | - Andrea Petrucca
- Microbiology Unit, Sant'Andrea University Hospital, Rome, Italy; Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Leda Marina Pomes
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Rome, Italy
| | - Ottavia De Luca
- Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giovanna Gentile
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Rome, Italy; Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Barbara Casolla
- University of Lille, Inserm U1172, CHU Lille, Department of Neurology, Stroke Unit, Lille, France
| | - Martina Curto
- Department of Mental Health, ASL, Rome 3, Rome, Italy; International Mood & Psychotic Disorders Research Consortium, Mailman Research Center, Belmon, MA, USA
| | - Gerardo Salerno
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Rome, Italy
| | | | - Maria Simona Torre
- Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Iolanda Santino
- Microbiology Unit, Sant'Andrea University Hospital, Rome, Italy; Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Monica Rocco
- Department of Surgical and Medical Science and Translational Medicine, Anesthesia and Intensive Care, Sapienza University, Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Antonio Aceti
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Rome, Italy; Infectious disease Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Alberto Ricci
- Department of Surgical and Medical Science and Translational Medicine, Anesthesia and Intensive Care, Sapienza University, Rome, Italy; Division of Pneumology, Sant'Andrea University Hospital, Rome, Italy
| | - Rita Bonfini
- Emergency Department, Sant'Andrea University Hospital, Rome, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Maurizio Simmaco
- Laboratory of Clinical Biochemistry, Mass Spectrometry Unit, Sant'Andrea University Hospital, Rome, Italy; Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Rome, Italy; Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Marina Borro
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Rome, Italy; Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant'Andrea University Hospital, Rome, Italy.
| |
Collapse
|