1
|
Wang F, Liu J. The dual anti-inflammatory and anticoagulant effects of Jianpi Huashi Tongluo prescription on Rheumatoid Arthritis through inhibiting the activation of the PI3K/AKT signaling pathway. Front Pharmacol 2025; 16:1541314. [PMID: 40012623 PMCID: PMC11860884 DOI: 10.3389/fphar.2025.1541314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Abstract
Background Rheumatoid arthritis (RA) is often accompanied by abnormal changes in inflammatory responses and coagulation-fibrinolysis indicators. Jianpi Huashi Tongluo Prescription - Xinfeng Capsule (XFC), a traditional Chinese medicine formulation comprising multiple herbal ingredients, is widely used clinically for the treatment of RA. It exhibits dual anti-inflammatory and anticoagulant effects. However, the specific mechanisms underlying its actions remain to be further investigated. Objective This study aims to elucidate the anti-inflammatory and anticoagulant mechanisms of XFC in the treatment of RA. Methods A multidimensional methodological framework was employed. Firstly, through retrospective clinical data mining, combined with the Apriori algorithm and random walk models, an in-depth analysis was conducted to explore the potential associations between XFC treatment and improvements in clinical inflammatory and coagulation markers among RA patients. Secondly, an adjuvant-induced arthritis rat model was established to directly observe the anti-inflammatory and anticoagulant effects of XFC in vivo. Furthermore, bioinformatics and network pharmacology techniques were applied to decipher the major active components and their targets of XFC. Lastly, a co-culture system of RA patient-derived peripheral blood mononuclear cells (RA-PBMCs) and vascular endothelial cells (VECs) was established to mimic the in vivo microenvironment, and the anti-inflammatory and anticoagulant mechanisms of XFC were validated in vitro. Results Data mining analysis revealed abnormally elevated levels of inflammatory and coagulation markers such as fibrinogen (FBG), erythrocyte sedimentation rate (ESR), high-sensitivity C-reactive protein (Hs-CRP), and rheumatoid factor (RF) in RA patients (p < 0.001), and emphasized the close correlation between XFC treatment and the improvement of these markers including Hs-CRP, ESR, and RF (confidence >60% and lift >1). Animal experimental data indicated that XFC effectively reduced the levels of inflammatory and coagulant markers (IL-6, D-D, FBG, PAF, VEGF, and TF) in adjuvant-induced arthritis (AA) rats while enhancing the expression of anti-inflammatory factors (IL-10) (p < 0.05). Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results suggested that the pharmacodynamic mechanism of XFC may be closely related to the regulation of the PI3K/AKT signaling pathway. Additionally, network pharmacology and molecular docking results show that the main active components of XFC, namely, calycosin-7-O-beta-D-glucoside, calycosin, and formononetin, exhibit excellent docking with the core targets HIF1A, PTGS2, and MMP9. In vitro co-culture model showed that XFC inhibited RA-related inflammatory responses and hypercoagulable states by suppressing the activation of the PI3K/AKT signaling pathway. Conclusion This study demonstrates that XFC exerts its dual anti-inflammatory and anticoagulant effects, at least in part, by inhibiting the activation of the PI3K/AKT signaling pathway, providing potential insights into targeted therapy for RA.
Collapse
Affiliation(s)
- Fanfan Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, First Clinical Medical College, Hefei, Anhui, China
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Liu
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
2
|
Weng M, Zhang R, Zhang Z, Wu J, Zheng W, Lu Q, Long S, Liu R, Wang Z, Cui J. A Novel Trichinella spiralis Galectin Strengthens the Macrophage ADCC Killing of Larvae via Driving M1 Polarization. Int J Mol Sci 2024; 25:10920. [PMID: 39456703 PMCID: PMC11506943 DOI: 10.3390/ijms252010920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Galectin recognizes β-galactosides through its carbohydrate recognition domains (CRDs). This study aimed to determine the biological features of a novel Trichinella spiralis galectin (galactoside-binding lectin family protein, TsGLFP) and its role in driving macrophage M1 polarization and enhancing ADCC killing of larvae. TsGLFP belongs to the galectin family and has two CRDs. The complete TsGLFP cDNA sequence was cloned and then expressed in Escherichia coli BL21. The results of qPCR, Western blot, and indirect immunofluorescence tests (IIFTs) revealed that TsGLFP was expressed in various stages of T. spiralis worms and principally localized at the cuticle and around the female embryos of the nematode. rTsGLFP had the function of agglutinating mouse erythrocytes, and this agglutination activity could be inhibited by lactose. After the mouse macrophage RAW264.7 was incubated with rTsGLFP, the expression level of the M1 genes (iNOS, IL-6, and TNF-α) and NO production were obviously increased. After incubating macrophages with rTsGLFP, there was a noticeable rise in the expression levels of p-IκB-α and p-NF-κB p65. Additionally, rTsGLFP enhanced the macrophage's ability to kill newborn larvae by ADCC cytotoxicity. When the macrophages were pretreated with the specific p-NF-κB p65 inhibitor PDTC, and then stimulated with rTsGLFP, the expression levels of iNOS, NO, and p-NF-κB p65 and the macrophages' ADCC cytotoxicity were distinctly decreased. These findings indicated that rTsGLFP enhanced the macrophage ADCC killing of larvae by driving M1 polarization through activating the NF-κB pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhongquan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (R.Z.); (Z.Z.); (J.W.); (W.Z.); (Q.L.); (S.L.); (R.L.)
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (R.Z.); (Z.Z.); (J.W.); (W.Z.); (Q.L.); (S.L.); (R.L.)
| |
Collapse
|
3
|
Shen L, Lu K, Chen Z, Zhu Y, Zhang C, Zhang L. Pre-treatment with galectin-1 attenuates lipopolysaccharide-induced myocarditis by regulating the Nrf2 pathway. Eur J Histochem 2023; 67:3816. [PMID: 38058290 PMCID: PMC10773196 DOI: 10.4081/ejh.2023.3816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Galectin-1 (Gal-1), a member of a highly conserved family of animal lectins, plays a crucial role in controlling inflammation and neovascularization. However, the potential role of Gal-1 in preventing myocarditis remains uncertain. We aimed to explore the functions and mechanisms of Gal-1 in preventing myocarditis. In vivo, C57/BL6 mice were pre-treated with or without Gal-1 and then exposed to lipopolysaccharide (LPS) to induce myocarditis. Subsequently, cardiac function, histopathology, inflammation, oxidative stress, and apoptosis of myocardial tissues were detected. Following this, qRT-PCR and Western blotting were applied to measure iNOS, COX2, TXNIP, NLRP3 and Caspase-1 p10 expressions. In vitro, H9c2 cells pre-treated with different doses of Gal-1 were stimulated by LPS to induce myocarditis models. CCK8, flow cytometry and reactive oxygen species (ROS) assay were then employed to estimate cell viability, apoptosis and oxidative stress. Furthermore, Nrf2 and HO-1 protein expressions were evaluated by Western blotting in vivo and in vitro. The results showed that in vivo, Gal-1 pre-treatment not only moderately improved cardiac function and cardiomyocyte apoptosis, but also ameliorated myocardial inflammation and oxidative damage in mice with myocarditis. Furthermore, Gal-1 inhibited TXNIP-NLRP3 inflammasome activation. In vitro, Gal-1 pre-treatment prevented LPS-induced apoptosis, cell viability decrease and ROS generation. Notably, Gal-1 elevated HO-1, total Nrf2 and nuclear Nrf2 protein expressions both in vivo and in vitro. In conclusion, pre-treatment with Gal-1 exhibited cardioprotective effects in myocarditis via anti-inflammatory and antioxidant functions, and the mechanism may relate to the Nrf2 pathway, which offered new solid evidence for the use of Gal-1 in preventing myocarditis.
Collapse
Affiliation(s)
- Liying Shen
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang.
| | - Kongjie Lu
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang.
| | - Zhenfeng Chen
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang.
| | - Yingwei Zhu
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang.
| | - Cong Zhang
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang.
| | - Li Zhang
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang.
| |
Collapse
|
4
|
Thammasonthijarern N, Boonnak K, Reamtong O, Krasae T, Thankansakul J, Phongphaew W, Ampawong S, Adisakwattana P. Amelioration of ovalbumin-induced lung inflammation in a mouse model by Trichinella spiralis novel cystatin. Vet World 2023; 16:2366-2373. [PMID: 38152266 PMCID: PMC10750734 DOI: 10.14202/vetworld.2023.2366-2373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023] Open
Abstract
Background and Aims Asthma, a chronic disease affecting humans and animals, has recently become increasingly prevalent and steadily widespread. The alternative treatment of asthma using helminth infections or helminth-derived immunomodulatory molecules (IMs) has been evaluated and demonstrated significant amelioration of disease severity index in vitro and in vivo. Trichinella spiralis, a parasitic nematode and its IMs, elicits a potential to relieve asthma and other immune-related disorders. In this study, we investigated the immunomodulatory function of recombinant T. spiralis novel cystatin (rTsCstN) in ameliorating acute inflammatory asthma disorders in a murine model. Materials and Methods Female BALB/c mice were sensitized using intraperitoneal injection of ovalbumin (OVA)/alum and subsequently challenged with intranasal administration of OVA alone or OVA + rTsCstN for 3 consecutive days, producing OVA-induced allergic asthma models. To evaluate the therapeutic efficacy of rTsCstN, the inflammatory cells and cytokines in bronchoalveolar lavage fluid (BALF) and OVA-specific immunoglobulin E levels in serum were assessed. Histological alterations in the lung tissues were determined by hematoxylin and eosin (H&E) staining and eventually scored for the extent of inflammatory cell infiltration. Results The asthmatic mouse models challenged with OVA + rTsCstN demonstrated a significant reduction of eosinophils (p < 0.01), macrophages (p < 0.05), and cytokines tumor necrosis factor-α (p < 0.05) and interferon (IFN)-γ (p < 0.05) in BALF when compared with the mice challenged with OVA alone. However, the levels of interleukin (IL)-4 and IL-10 remained unchanged. Histological examination revealed that mice administered OVA + rTsCstN were less likely to have inflammatory cell infiltration in their perivascular and peribronchial lung tissues than those administered OVA alone. Conclusion Recombinant T. spiralis novel cystatin demonstrated immunomodulatory effects to reduce severe pathogenic alterations in asthma mouse models, encouraging a viable alternative treatment for asthma and other immunoregulatory disorders in humans and animals in the future.
Collapse
Affiliation(s)
- Nipa Thammasonthijarern
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thanyaluk Krasae
- Laboratory Animal Science Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Janyaporn Thankansakul
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Wallaya Phongphaew
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Ahmed N, Roy BC, Hasan MM, Zim MMR, Biswas H, Talukder MH. Molecular and phylogenetic characterization of zoonotic Trichostrongylus species from goats for the first time in Bangladesh. Trans R Soc Trop Med Hyg 2023; 117:705-713. [PMID: 37309997 DOI: 10.1093/trstmh/trad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Trichostrongylus is one of the most important nematodes infecting animals and humans. The current study was designed to identify the Trichostrongylus species infecting goats by multiplex PCR and phylogenetic analysis. METHODS A total of 124 goats' viscera were collected from different abattoirs of Mymensingh division. Trichostrongylus species were isolated and characterized based on morphometry, multiplex PCR and phylogenetic analysis. RESULTS Among 124 viscera of goats, 39 were positive with two species, Trichostrongylus colubriformis and Trichostrongylus vitrinus, revealing an overall 31.45% prevalence. Morphological identification of Trichostrongylus species was confirmed by multiplex PCR amplification of the ITS2 gene and sequencing. Partial sequencing of the ITS2 gene of two species revealed seven single nucleotide polymorphisms (three transitions and four transversions) in this study. The neighbor-joining phylogenetic tree demonstrated that T. colubriformis and T. vitrinus isolates were clustered together with the reference sequences that belong to the clade A and B without any geographical boundaries. CONCLUSIONS This is the first report on molecular and phylogenetic analysis of Trichostrongylus species from ruminants in Bangladesh. These results provide the baseline data for understanding the zoonosis and epidemiology of this parasite in Bangladesh and global perspectives.
Collapse
Affiliation(s)
- Nurnabi Ahmed
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Babul Chandra Roy
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | | | | | - Hiranmoy Biswas
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | | |
Collapse
|
6
|
Wen Z, Zhang Y, Feng J, Aimulajiang K, Aleem MT, Lu M, Xu L, Song X, Li X, Yan R. Excretory/secretory proteins inhibit host immune responses by downregulating the TLR4/NF-κB/MAPKs signaling pathway: A possible mechanism of immune evasion in parasitic nematode Haemonchus contortus. Front Immunol 2022; 13:1013159. [PMID: 36238295 PMCID: PMC9551057 DOI: 10.3389/fimmu.2022.1013159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Haemonchus contortus is an important parasitic nematode of ruminants. Previous studies showed that H. contortus escape the immunity through complex mechanisms, including releasing excretory/secretory proteins (ESPs) to modulate the host immune response. However, the detailed mechanism through which H. contortus excretory/secretory proteins (HcESPs) promote immune evasion remains unknown. In the present study, we demonstrated that HcESPs inhibit the adaptive immune response of goats including downregulation of immune cell antigen presentation, upregulation of immune checkpoint molecules, activation of the STAT3/PD-L1 pathway, and activation of immunosuppressive regulatory T (Treg) cells. Furthermore, HcESPs reversed the LPS-induced upregulation of pro-inflammatory mediators in PBMCs by inhibiting the TLR4/NF-κB/MAPKs/NLRP3 signaling pathway. Our study provides a better understanding of the evasion mechanisms for H. contortus, which could be helpful in providing an alternative way to prevent the infection of this parasite.
Collapse
Affiliation(s)
- Zhaohai Wen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yue Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiajun Feng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kalibixiati Aimulajiang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Muhammad Tahir Aleem
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingmin Lu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruofeng Yan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Ruofeng Yan,
| |
Collapse
|
7
|
Wen Z, Zhang Z, Aimulajiang K, Aleem MT, Feng J, Liang M, Lu M, Xu L, Song X, Li X, Yan R. Histidine acid phosphatase domain-containing protein from Haemonchus contortus is a stimulatory antigen for the Th1 immune response of goat PBMCs. Parasit Vectors 2022; 15:282. [PMID: 35933400 PMCID: PMC9356432 DOI: 10.1186/s13071-022-05411-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background Histidine acid phosphatase (HAP), a member of the histidine phosphatase superfamily, is widely found in parasites and is also a potential vaccine antigen or drug target. However, the biological function of HAP in Haemonchus contortus is still unclear. Methods We cloned the HAP gene from H. contortus (Hc-HAP) and expressed the purified recombinant Hc-HAP (rHc-HAP) protein. The transcription of the Hc-HAP gene in the eggs, infective third-stage larvae (L3s), exsheathed third-stage larvae (xL3s) and adults (females/males) was analyzed by quantitative real-time-PCR (qPCR). An immunofluorescence assay was also used to detect the localization of Hc-HAP expression in adult worms. The effect of rHc-HAP on the function of peripheral blood mononuclear cells (PBMCs) was observed by co-culture of rHc-HAP protein with goat PBMCs. Results The qPCR results revealed that the Hc-HAP gene was transcribed at a higher level in the L3 and xL3 stages that there were gender differences in transcription at the adult stage, with females exhibiting higher transcription than males. Moreover, Hc-HAP was mainly expressed in adult intestinal microvilli. Additionally, western blot results revealed that rHc-HAP could be detected in goat sera artificially infected with H. contortus. In the experiments, rHc-HAP bound to goat PBMCs and released nitric oxide. The rHc-HAP also induced the expression of interferon gamma (IFN-γ) and the phosphorylated STAT 1 transcription factor, while inhibiting interleukin-4 expression. Conclusions The results shows that rHc-HAP stimulated the IFN-γ/STAT1 signaling pathway and enabled polarization of PBMCs toward T-helper 1 immune responses. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05411-7.
Collapse
Affiliation(s)
- Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhaoying Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jiajun Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Identification of Somatic Proteins in Haemonchus Contortus Infective Larvae (L 3) and Adults. Helminthologia 2022; 59:143-151. [PMID: 36118367 PMCID: PMC9444209 DOI: 10.2478/helm-2022-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/05/2022] [Indexed: 11/26/2022] Open
Abstract
Haemonchus contortus is considered the most pathogenic nematode in sheep production systems based on grazing. Comparing infective larvae (L3) with adult parasites can lead to the identification of proteins that play an important role in parasite-host interactions. In this study, we report a list of H. contortus somatic proteins and made a comparative analysis of somatic proteins of L3 and adult worms. L3 and adult parasites were subjected to protein extraction and subsequently to peptide fractionation. Peptides were analysed by mass spectrometry and LC-MS/MS data analysis. Data analysis and search on SEQUEST and MASCOT against H. contortus from the WormBase ParaSite database resulted in the identification of 775 unique peptide sequences corresponding to 227 proteins at 1 % FDR. From these, 18 proteins were specific to L3 and 63 to adult parasites. The gene ontology (GO) enrichment analysis of the proteins specific to L3 and adult worms to gain insight into cellular components, molecular functions and biological processes that affect the parasite-host interaction showed some differences between the two parasite stages. The list of proteins found provides a database to identify target proteins that could be useful as biomarkers of the infection or in the generation of anthelmintic drugs that inhibit proteins essential for the establishment of the infection and the survival of adult parasites. They can also serve as new candidates for vaccine research.
Collapse
|
9
|
Xu JY, Gu X, Xie Y, He R, Xu J, Xiong L, Peng X, Yang G. Regulatory effects of a novel cysteine protease inhibitor in Baylisascaris schroederi migratory larvae on mice immune cells. Parasit Vectors 2022; 15:121. [PMID: 35379304 PMCID: PMC8981815 DOI: 10.1186/s13071-022-05240-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background The giant panda (Ailuropoda melanoleuca) is a well-known, rare and endangered species. Baylisascaris schroederi is a pathogenic ascarid. Infection with B. schroederi may cause death in giant pandas. At present, the immune evasion mechanism of B. schroederi is little known. Cysteine protease inhibitors (CPI) play important roles in the regulation of host immune responses against certain nematodes. In this study, we focused on the analysis of the regulation of B. schroederi migratory larvae CPI (rBsCPI-1) on mice immune cells. Methods First, the pattern recognition receptors on the surface of peripheral blood mononuclear cells (PBMCs) and the signal pathways that transduce extracellular signals into the nucleus activated by rBsCPI-1 were identified. Then, the regulatory effects of rBsCPI-1 on PBMCs physiological activities were detected. Finally, the effects of rBsCPI-1 on TLR signaling pathway activation and NF-κB phosphorylation in mice immunized with recombinant protein were analysed. Results The results suggested that rBsCPI-1 secreted by B. schroederi migratory larvae is mainly recognized by TLR2 and TLR4 on PBMCs. Extracellular signals are transduced into the nucleus through the MAPK and NF-κB signaling pathways, enhancing the phagocytosis, migration, and apoptosis of PBMCs; meanwhile, rBsCPI-1 induces high expression of NO. Thus, rBsCPI-1 plays a role in immune regulation. In addition, the high expression of negative regulatory factors also ensured that TLR activation is maintained at the optimal level. Conclusions rBsCPI-1 can transduce regulatory signals into immune cells by activating the TLR2/4-NF-κB/MAPK signaling pathway, having a certain regulatory effect on the physiological activities. Meanwhile, rBsCPI-1 can maintain the immune response in a balance by limiting the over-activation of the TLRs signaling pathway and thus contributes to B. schroederi immune evasion. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05240-8.
Collapse
Affiliation(s)
- Jing-Yun Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - XiaoBin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - XueRong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - GuangYou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.
| |
Collapse
|
10
|
Huang D, Wang L, Wu Y, Qin X, Du G, Zhou Y. Metabolomics Based on Peripheral Blood Mononuclear Cells to Dissect the Mechanisms of Chaigui Granules for Treating Depression. ACS OMEGA 2022; 7:8466-8482. [PMID: 35309492 PMCID: PMC8928523 DOI: 10.1021/acsomega.1c06046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Chaigui granules were a traditional Chinese medicine (TCM) preparation with antidepressant effects derived from a famous antidepressant prescription. It was of great significance to clarify the antidepressant mechanism of Chaigui granules for the clinical application of this drug. In this study, a chronic unpredictable mild stress (CUMS) depression model was successfully established, and behavioral indicators were used to evaluate the antidepressant effect. Second, the CD4+, CD8+, and CD4+/CD8+ levels were detected in peripheral blood. Meanwhile, the amount of inflammatory cytokines was determined in serum. Correspondingly, LC/MS-based peripheral blood mononuclear cell (PBMC) metabolomics was used to investigate vital metabolic pathways participating in the antidepressive effects of Chaigui granules. Finally, bioinformatics technology was further employed to discover the potential antidepressant mechanism of Chaigui granules regulating the immune system. The results suggested that the administration of Chaigui granules significantly improved CUMS-induced depressive symptoms. Chaigui granules could improve immune function by regulating T lymphocyte subsets, increasing anti-inflammatory cytokine levels of IL-2 and IL-10, and reducing pro-inflammatory cytokine levels of TNF-α, IL-1β, and IL-6. In addition, metabolomics results of PBMCs showed that Chaigui granules improved 14 of the 25 potential biomarkers induced by CUMS. Metabolic pathway analyses indicated that purine metabolism was the critical metabolic pathway regulated by Chaigui granules. Furthermore, correlation analysis indicated that 13 key biomarkers were related to immune-related indicators. The metabolite-gene network of 13 key biomarkers was investigated by using bioinformatics. The investigation showed that 10 targets (5'-nucleotidase ecto; 5'-nucleotidase, cytosolic IB; 5'-nucleotidase, cytosolic II; etc.), mainly belong to the purine metabolism, might be potential targets for Chaigui granules to exert their antidepressant effects by improving immune function impairment. Together, our results suggested that Chaigui granules might exert antidepressant effects by improving immune function and regulating the purine metabolic pathway in PBMCs. This work used PBMCs metabolomics as an entry point to study the antidepressant mechanism of Chaigui granules, which provided a new way to elucidate the mechanism of a traditional Chinese medicine prescription.
Collapse
Affiliation(s)
- Dehua Huang
- Modern
Research Center for Traditional Chinese Medicine, Key Laboratory of
Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
- Key
Laboratory of Effective Substances Research and Utilization in TCM
of Shanxi Province, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
| | - Liwen Wang
- Modern
Research Center for Traditional Chinese Medicine, Key Laboratory of
Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
- Key
Laboratory of Effective Substances Research and Utilization in TCM
of Shanxi Province, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
| | - Yanfei Wu
- Department
of Traditional Chinese Medicine, First Hospital
of Shanxi Medical University, Yingze District, Taiyuan 030001, Shanxi, China
| | - Xuemei Qin
- Modern
Research Center for Traditional Chinese Medicine, Key Laboratory of
Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
- Key
Laboratory of Effective Substances Research and Utilization in TCM
of Shanxi Province, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
| | - Guanhua Du
- Modern
Research Center for Traditional Chinese Medicine, Key Laboratory of
Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
- Key
Laboratory of Effective Substances Research and Utilization in TCM
of Shanxi Province, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
- Institute
of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Xicheng District, Beijing 100050, P. R. China
| | - Yuzhi Zhou
- Modern
Research Center for Traditional Chinese Medicine, Key Laboratory of
Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
- Key
Laboratory of Effective Substances Research and Utilization in TCM
of Shanxi Province, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, Shanxi, P. R. China
| |
Collapse
|
11
|
Wen Z, Aleem MT, Aimulajiang K, Chen C, Liang M, Song X, Xu L, Li X, Yan R. The GT1-TPS Structural Domain Protein From Haemonchus contortus Could Be Suppressive Antigen of Goat PBMCs. Front Immunol 2022; 12:787091. [PMID: 35058927 PMCID: PMC8764253 DOI: 10.3389/fimmu.2021.787091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Trehalose phosphate synthase (TPS), a key enzyme in trehalose synthesis, is not present in mammals but critical to the viability of a wide range of lower organisms. However, almost nothing is known about the function of Hc-TPS (GT1-TPS structural domain protein from Haemonchus contortus). In this study, Hc-TPS gene was cloned and the recombinant protein (rHc-TPS) was expressed and purified. The quantitative real-time PCR (qPCR) results showed that Hc-TPS was transcribed at different stages of H. contortus, with higher levels of transcription at the molting and embryo stages. Immunofluorescence analysis showed that Hc-TPS was widely distributed in adults, but the expression was mainly localized on the mucosal surface of the intestine as well as in the embryos of female worms. The impacts of rHc-TPS on peripheral blood mononuclear cell (PBMC) proliferation, nitric oxide (NO) generation, transcriptional expression of cytokines, and related pathways were examined by co-incubating rHc-TPS with goat PBMCs. The results showed that rHc-TPS significantly inhibited PBMC proliferation and NO secretion in a dose-dependent manner. We also found that rHc-TPS activated the interleukin (IL)-10/signal transducer and activator of transcription 3/suppressor of cytokine signaling 3 (IL-10/STAT3/SOCS3) axis and significantly promoted SOCS3 expression, while inhibiting interferon-gamma (INF-γ), IL-4, IL-9, and IL-2 pathways. Our findings may contribute to understanding the immune evasion mechanism for the parasite during host-parasite interactions and also help to provide ideas for discovering new drug targets.
Collapse
Affiliation(s)
- Zhaohai Wen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Tahir Aleem
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kalibixiati Aimulajiang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Cheng Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Liang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruofeng Yan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Wen Z, Xie X, Aleem MT, Aimulajiang K, Chen C, Liang M, Song X, Xu L, Li X, Yan R. In vitro characterization of Haemonchus contortus trehalose-6-phosphate phosphatase and its immunomodulatory effects on peripheral blood mononuclear cells (PBMCs). Parasit Vectors 2021; 14:611. [PMID: 34930417 PMCID: PMC8685816 DOI: 10.1186/s13071-021-05115-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background Trehalose-6-phosphate phosphatase (TPP6) is a key enzyme in the trehalose biosynthesis pathway. The accumulation of TPP6 inside the body is harmful to the pathogen, but almost nothing is currently known about the function of TPP6 from Haemonchus contortus (CRE-GOB-1). Methods The H. contortus CRE-GOB-1 (HcGOB) gene was cloned and recombinant protein of GOB (rHcGOB) was expressed; transcription of the HcGOB gene at different developmental stages of H. contortus was then studied. The spatial expression pattern of the HcGOB gene in adult female and male worms was determined by both quantitative real-time PCR (qPCR) and immunofluorescence. The binding of the rHcGOB protein to goat PBMCs was assessed by immunofluorescence assay. The immunomodulatory impacts of rHcGOB on cell proliferation, nitric oxide generation and cytokine secretion were assessed by co-culture of rHcGOB protein with goat PBMCs. Results The HcGOB protein was transcribed in eggs, infective third-stage larvae (iL3s) and adults of H. contortus, with the highest transcript levels found in the egg stage. The transcript levels were significantly elevated in iL3s after manual desheathing. HcGOB was widely distributed in adult worms where it was mainly localized in the gut and gonads. rHcGOB was observed to bind to PBMCs and also to be recognized by sera collected from a goat infected with H. contortus. rHcGOB significantly activated the interleukin-10/transforming growth factor β/signal transducer and activator of transcription 3 (IL-10/TGF-β/STAT3) pathway in PBMCs while suppressing the transcription and expression of IL-4 and IL-17. Conclusions These results suggest that the HcGOB gene plays an important role in the development, parasitism and reproduction of H. contortus. The rHcGOB protein affected the immunomodulatory function of PBMCs in the in vitro study, suggesting that this protein would be a promising vaccine target. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05115-4.
Collapse
Affiliation(s)
- ZhaoHai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XinRan Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Cheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Fei H, Naqvi MAUH, Naqvi SZ, Xu L, Song X, Li X, Yan R. Trichinella spiralis: Knockdown of gamma interferon inducible lysosomal thiol reductase (GILT) results in the reduction of worm burden. PLoS Negl Trop Dis 2021; 15:e0009958. [PMID: 34847145 PMCID: PMC8631631 DOI: 10.1371/journal.pntd.0009958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Trichinella spiralis is mammalian skeletal muscles parasite which may cause trichinellosis in animals and humans. Gamma interferon inducible lysosomal thiol reductase (GILT) is a widespread superfamily which plays key role in processing and presentation of MHC class II restricted antigen by catalyzing disulfide bond reduction. There are no reports about GILT in T. spiralis. In present study, GILT from T. spiralis (Tsp-GILT) was cloned, analyzed by multiple-sequence alignment, and predicted by 3D structure model. Recombinant Tsp-GILT (about 46 kDa) was efficiently expressed in Escherichia coli and thiol reductase activity suggested that in acidic environment the addition of a reducing agent is needed. Soaking method was used to knockdown expression of Tsp-GILT using small interference RNA (siRNA). Immunofluorescence assay confirmed the transformation of siRNA into muscle larva (ML) and new born larva (NBL). Quantitative real time-PCR (QRT-PCR) analysis revealed that transcription level of Tsp-GILT mRNA can be up-regulated by stimulation of mouse IFN-γ and down-regulated by siRNA2 in vitro. NBLs soaked with siRNA2 showed 32.3% reduction in the generation of MLs. MLs soaked with siRNA2 showed 26.2% reduction in the next generation of MLs, but no significant effect was observed on adult worms or NBLs. These findings concluded that GILT may play important roles in the development of T. spiralis parasite.
Collapse
Affiliation(s)
- Hong Fei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Ali-ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Sana Zahra Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Aimulajiang K, Wen Z, Naqvi MAUH, Liang M, Tian X, Feng K, Muhammad Khand F, Memon MA, Xu L, Song X, Li X, Yan R. Characteristics of Biotin lipoyl attachment and 2-oxoacid dehydrogenase acyltransferase of the parasitic nematode Haemonchus contortus and its modulatory functions on goat PBMCs in vitro. Parasite Immunol 2021; 43:e12895. [PMID: 34674283 DOI: 10.1111/pim.12895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022]
Abstract
Biotin lipoyl attachment and 2-oxoacid dehydrogenase acyltransferase (BLAODA), as an essential excretion of Haemonchus contortus (HcESPs), was identified to have antigenic functions. T helper-9 (Th9) cells secrete interleukin (IL)-9, a signature cytokine associated with tumour immunology, allergy and autoimmunity. Nonetheless, the understanding of modulatory functions of BLAODA on Th9 and other immune cells is limited. In this study, the BLAODA gene was cloned, and the recombinant (r) protein of BLAODA (rHcBLAODA) was expressed and immunoblotting was performed. The results revealed that HcBLAODA gene was successfully cloned and rHcBLAODA protein was expressed. The localization of rHcBLAODA was confirmed on the surface of gut sections from adult H. contortus. The rHcBLAODA protein capability to react precisely with anti-H. contortus antibodies were confirmed by immunoblotting and immunofluorescence assay (IFA). Further functional analysis showed that interaction of rHcBLAODA with host cells significantly enhanced Th9 cells generation, IL-9 expression, nitric oxide production and cell apoptosis while suppressing the cells proliferation and cells migration depending on the concentration. Overall, these findings suggest that rHcBLAODA protein could modulate the host immune response by inducing Th9 cells to secrete IL-9 cytokine in vitro.
Collapse
Affiliation(s)
- Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Muhammad Ali-Ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaowei Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Kangli Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Faiz Muhammad Khand
- Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, Sindh, Pakistan
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Doligalska M, Jóźwicka K, Szewczak L, Nowakowska J, Brodaczewska K, Goździk K, Pączkowski C, Szakiel A. Calendula officinalis Triterpenoid Saponins Impact the Immune Recognition of Proteins in Parasitic Nematodes. Pathogens 2021; 10:pathogens10030296. [PMID: 33806494 PMCID: PMC7999767 DOI: 10.3390/pathogens10030296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
The influence of triterpenoid saponins on subcellular morphological changes in the cells of parasitic nematodes remains poorly understood. Our study examines the effect of oleanolic acid glucuronides from marigold (Calendula officinalis) on the possible modification of immunogenic proteins from infective Heligmosomoides polygyrus bakeri larvae (L3). Our findings indicate that the triterpenoid saponins alter the subcellular morphology of the larvae and prevent recognition of nematode-specific proteins by rabbit immune-IgG. TEM ultrastructure and HPLC analysis showed that microtubule and cytoskeleton fibres were fragmented by saponin treatment. MASCOT bioinformatic analysis revealed that in larvae exposed to saponins, the immune epitopes of their proteins altered. Several mitochondrial and cytoskeleton proteins involved in signalling and cellular processes were downregulated or degraded. As possible candidates, the following set of recognised proteins may play a key role in the immunogenicity of larvae: beta-tubulin isotype, alpha-tubulin, myosin, paramyosin isoform-1, actin, disorganized muscle protein-1, ATP-synthase, beta subunit, carboxyl transferase domain protein, glutamate dehydrogenase, enolase (phosphopyruvate hydratase), fructose-bisphosphate aldolase 2, tropomyosin, arginine kinase or putative chaperone protein DnaK, and galactoside-binding lectin. Data are available via ProteomeXchange with identifier PXD024205.
Collapse
Affiliation(s)
- Maria Doligalska
- Department of Parasitology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (K.J.); (L.S.); (K.B.); (K.G.)
- Correspondence: ; Tel.: +48-22-55-41-115
| | - Kinga Jóźwicka
- Department of Parasitology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (K.J.); (L.S.); (K.B.); (K.G.)
| | - Ludmiła Szewczak
- Department of Parasitology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (K.J.); (L.S.); (K.B.); (K.G.)
| | - Julita Nowakowska
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Klaudia Brodaczewska
- Department of Parasitology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (K.J.); (L.S.); (K.B.); (K.G.)
| | - Katarzyna Goździk
- Department of Parasitology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (K.J.); (L.S.); (K.B.); (K.G.)
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.P.); (A.S.)
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.P.); (A.S.)
| |
Collapse
|
16
|
Aimulajiang K, Wen Z, Tian X, Lakho SA, Zhang Y, Naqvi MAUH, Liang M, Song X, Xu L, Li X, Yan R. Unveiling the Immunomodulatory Characteristics of Haemonchus contortus Ephrin Domain Containing Protein in the Parasite-Host Interactions. Animals (Basel) 2020; 10:ani10112137. [PMID: 33213045 PMCID: PMC7698521 DOI: 10.3390/ani10112137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Haemonchus contortus excretory/secretory products (HcESPs) contain many proteins that can perform various functions including modulating the host immune response. Recent studies indicate that IL-9 can be secreted by a specialized population of T cells called Th9 cells, which mediate anti-parasite immunity. Furthermore, HcESPs could enhance goat peripheral blood mononuclear cells (PBMCs) derived Th9 cells production. Ephrin domain containing protein (EPH) was identified as one of the HcESPs that can be isolated from different stages of this helminth. Nonetheless, the understanding of immunomodulatory roles of EPH on Th9 and other immune cells remains limited. In this study, the correlation between recombinant H. contortus Ephrin domain containing protein(rHcEPH)and goat PBMCs significantly enhanced Th9 cells differentiation, IL-9 expression, cell apoptosis efficiency, and cell migration, whereas cell proliferation was suppressed significantly depending on the concentration. Our findings illustrated that rHcEPH protein is linked to modulate the host immune cells and could enhance protective immunity by inducing Th9 cells secreted IL-9 in vitro. Abstract Ephrin domain containing protein (EPH), a significant excreted and secreted product (ESPs) of Haemonchus contortus, has been identified to have antigenic functions. Over the past years, a new subset of CD4 + T named as T helper 9 cells that secrete interleukin-9 (IL-9) as a signature cytokine is associated with tumor immunity and allergy. Nonetheless, the understanding of immunomodulatory roles of EPH on goat Th9 and other immune cells remains limited. Herein, EPH from H. contortus (HcEPH) was cloned and expressed in pET-28a. Immunofluorescence assay (IFA) was carried-out to localize rHcEPH within H. contortus adult worms and to bind with goat peripheral blood mononuclear cells (PBMCs). Besides, the impact of rHcEPH on signature cytokine IL-9 expression in goat PBMCs was evaluated. Flow cytometry was employed to examine Th9 cells production and cell apoptosis. The results revealed success in the expression and localization of rHcEPH in surface of adult H. contortus gut sections. According to IFA analysis, the rHcEPH protein was capable to react precisely with anti-H. contortus antibodies. Further functional analysis showed that correlation between rHcEPH and host PBMCs significantly enhanced Th9 cell differentiation, IL-9 expression, cell apoptosis efficiency, and cell migration, whereas cell proliferation was suppressed significantly depending on the concentration. Our observations indicated that rHcEPH protein is linked to modulate the host immune cells and could enhance protective immunity by inducing Th9 responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ruofeng Yan
- Correspondence: ; Tel.: +86-25-84395904; Fax: +86-25-84399000
| |
Collapse
|
17
|
Naqvi MAUH, Li H, Gao W, Naqvi SZ, Jamil T, Aimulajiang K, Xu L, Song X, Li X, Yan R. Haemonchus contortus: siRNA mediated knockdown of matrix metalloproteinase 12A (MMP-12) results in reduction of infectivity. Parasit Vectors 2020; 13:151. [PMID: 32204731 PMCID: PMC7092576 DOI: 10.1186/s13071-020-04025-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) is an important tool to determine the role of genes. RNAi has been widely used to downregulate target molecules, resulting in the reduction of mRNA for protein expression. Matrix metalloprotease 12A (MMP-12) is known to have important roles during embryonic development, organ morphogenesis and pathological processes in animals. However, MMP-12 from Haemonchus contortus has not been characterized. METHODS Haemonchus contortus MMP-12 gene was cloned and recombinant protein of MMP-12 (rHc-MMP-12) was expressed. Binding activities of rHc-MMP-12 to goat peripheral blood mononuclear cells (PBMCs) were assessed by immunofluorescence assay (IFA) and the immuno-regulatory effects of rHc-MMP-12 on cell proliferation and nitric oxide production were observed by co-incubation of rHc-MMP-12 with goat PBMCs. Furthermore, a soaking method was used to knockdown the expression of Hc-MMP12 gene using three siRNA, targeting different regions of the gene and infectivity of effective siRNA on the development of H. contortus was evaluated in goat. RESULTS rHc-MMP-12 was successfully expressed in an expression vector as well as the tissues of the cuticle of adult H. contortus worms and a successful binding with PBMCs surface were observed. Increased cellular proliferation and nitric oxide production by goat PBMCs was observed in a dose-dependent manner. Quantitative real time PCR (qRT-PCR) results confirmed the successful silencing of Hc-MMP-12 gene in siRNA of 1, 2 and 3 treated third-stage larvae (L3) of H. contortus in vitro. The most efficient qRT-PCR-identified siRNA template was siRNA-2, with a 69% suppression rate compared to the control groups. Moreover, in an in vivo study, silencing of the Hc-MMP-12 gene by siRNA-2 reduced the number of eggs (54.02%), hatchability (16.84%) and worm burden (51.47%) as compared to snRNA-treated control group. In addition, a shorter length of worms in siRNA-2-treated group was observed as compared to control groups. CONCLUSIONS Our results indicate that siRNA-mediated silencing of Hc-MMP-12 gene in H. contortus significantly reduce the egg counts, larval hatchability, and adult worm counts and sizes. The findings of the present study demonstrate important roles of Hc-MMP-12 in the development of H. contortus.
Collapse
Affiliation(s)
- Muhammad Ali-ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenxiang Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sana Zahra Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tahseen Jamil
- Sindh Agriculture University, Tandojam, Sindh 70050 Pakistan
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
18
|
Characterization of Haemonchus contortus Excretory/Secretory Antigen (ES-15) and Its Modulatory Functions on Goat Immune Cells In Vitro. Pathogens 2020; 9:pathogens9030162. [PMID: 32120801 PMCID: PMC7157690 DOI: 10.3390/pathogens9030162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/11/2023] Open
Abstract
Small size excretory/secretory (ES) antigens of the Haemonchus contortus parasite have intense interest among researchers for understanding the molecular basis of helminths immune regulation in term of control strategies. Immunomodulatory roles of H. contortus ES-15 kDa (HcES-15) on host immune cells during host–parasite interactions are unknown. In this study, the HcES-15 gene was cloned and expression of recombinant protein (rHcES-15) was induced by isopropyl-ß-d-thiogalactopyranoside (IPTG). Binding activity of rHcES-15 to goat peripheral blood mononuclear cells (PBMCs) was confirmed by immunofluorescence assay (IFA) and immunohistochemical analysis showed that H. contortus 15 kDa protein localized in the outer and inner structure of the adult worm, clearly indicated as the parasite’s ES antigen. The immunoregulatory role on cytokines production, cell proliferation, cell migration, nitric oxide (NO) production, apoptosis, and phagocytosis were observed by co-incubation of rHcES-15 with goat PBMCs. The results showed that cytokines IL-4, IL-10, IL-17, the production of nitric oxide (NO), PBMCs apoptosis, and monocytes phagocytosis were all elevated after cells incubated with rHcES-15 at differential protein concentrations. We also found that IFN-γ, TGF-β1, cells proliferation and migration were significantly suppressed with the interaction of rHcES-15 protein. Our findings indicated that low molecular ES antigens of H. contortus possessed discrete immunoregulatory roles, which will help to understand the mechanisms involved in immune evasion by the parasite during host–parasite interactions.
Collapse
|
19
|
Naqvi MAUH, Aimulajiang K, Memon MA, Hasan MW, Naqvi SZ, Lakho SA, Chu W, Xu L, Song X, Li X, Yan R. Recombinant cold shock domain containing protein is a potential antigen to detect specific antibody during early and late infections of Haemonchus contortus in goat. BMC Vet Res 2020; 16:36. [PMID: 32013987 PMCID: PMC6998305 DOI: 10.1186/s12917-020-2261-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Haemonchus contortus (H. contortus) is one of the most important parasites that cause huge economic losses to small ruminant industry worldwide. Effective prognosis and treatment depend upon the early diagnosis of H. contortus infection. To date, no widely-approved methods for the identification of prepatent H. contortus infection are available to identify prepatent H. contortus infection properly. The aim of this study was to evaluate the diagnostic potential of recombinant cold shock H. contortus protein (rHc-CS) during early and late infections of H. contortus in goat. RESULTS Purified rHc-CS exhibited a clear band, with a molecular weight about 38 kDa. H. contortus eggs were not detected by fecal egg count technique from feces collected at 0 to 14 days post infection (D.P.I). However, eggs were detected at 21, 28 and 35 D.P.I. Hence, results of immunoblotting assay showed specific anti rHc-CS antibody detection in all goat sera collected at early stage (14 D.P.I) and late stage (21-103 D.P.I) of H. contortus infection. Furthermore, no cross reactivity was observed against Trichinella spiralis, Fasciola hepatica and Toxoplasma gondii or uninfected goats. Among several evaluated rHc-CS indirect-ELISA format variables, favorable antigen coating concentration was found 0.28 μg/well at 37 °C 1 h and overnight at 4 °C. Moreover, optimum dilution ratio of serum and rabbit anti-goat IgG was recorded as 1:100 and 1:4000, respectively. The best blocking buffer was 5% Bovine Serum Albumin (BSA) while the best time for blocking, serum incubation and TMB reaction were recorded as 60, 120 and 10 min, respectively. The cut-off value for positive and negative interpretation was determined as 0.352 (OD450). The diagnostic specificity and sensitivity of the rHc-CS, both were recorded as 100%. CONCLUSION These results validated that rHc-CS is a potential immunodiagnostic antigen to detect the specific antibodies during early and late H. contortus infections in goat.
Collapse
Affiliation(s)
- Muhammad Ali-ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Sana Zahra Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Wen Chu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| |
Collapse
|