1
|
Ma L, Yin K, Zhu W, Wang Y, Zhang L, Yang N. Allelopathic inhibitory of thymol on Arabidopsis thaliana primary root growth is mediated by ABA signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112453. [PMID: 40057048 DOI: 10.1016/j.plantsci.2025.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
Abscisic acid (ABA) is a sesquiterpenoid phytohormone involved in controlling plant root growth and development. Thymol, a monoterpene allelochemical, showed a potent phytotoxic effect in plants. It can rapidly inhibit seed germination and seedling growth. In this study, we employed a combination of transcriptome sequencing and validation methods from plant genetics and physiology to investigate the allelopathic inhibitory effects of thymol on the primary roots of Arabidopsis. We found that thymol affected the growth of Arabidopsis thaliana primary root in a dose-dependent manner, low concentration (10 μM) generally enhances, and high concentration (150 μM) inhibits. RNA sequencing analysis showed that a high concentration of thymol affected a series of biological processes and signaling transduction, including ABA biosynthesis, auxin polar transport, oxidative stress, root growth, and development. Exogenous ABA (10 μM) enhanced the inhibitory effect of thymol on the primary root and the application of the ABA biosynthesis inhibitor Na2WO4 rescued this inhibitory effect. During this process, the content and distribution of auxin in the roots were significantly altered. The lengths of primary root and meristem of mutant abi1, abi2, and abi1 abi2, showed that ABI1 and ABI2 positively regulate the process of thymol inhibition of root growth. In summary, the allelopathic inhibitory of thymol on Arabidopsis thaliana primary root growth is mediated by ABA signaling pathway.
Collapse
Affiliation(s)
- Liai Ma
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Kai Yin
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Wenhui Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yuanbo Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Lina Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Ning Yang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Yang QQ, Fan JD, Liu CY, Zhao YQ, Xu ZS, Lu XJ, Ge J, Zhang BW, Li MQ, Yang Y, Yang F. Physiological and transcriptome analysis of changes in endogenous hormone contents and related synthesis and signaling genes during the heat stress in garlic (Allium sativum L.). BMC PLANT BIOLOGY 2025; 25:464. [PMID: 40217156 PMCID: PMC11987441 DOI: 10.1186/s12870-025-06346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 04/15/2025]
Abstract
High-temperature stress severely limits the growth, development, yield, and quality of garlic (Allium sativum L.), but the role of hormone signaling in its heat stress response remains unclear. This study examined changes in seven plant hormones and the expression of related genes in garlic leaves ('Xusuan No. 6') under heat stress (38 °C for 0, 2, 4, and 24 h). Growth-promoting hormones, auxin and gibberellic acid, significantly decreased within 2 h of heat stress, while stress-response hormones, including abscisic acid, jasmonic acid, salicylic acid, and ethylene, increased. KEGG pathway analysis revealed significant changes in genes related to hormone biosynthesis and signal transduction, such as NCED and PYR/PYL in the ABA pathway, LOX and OPR in JA biosynthesis, AUX and ARF in IAA signaling, and ERT and ERF in ethylene signaling. A protein-protein interaction network identified 15 hub genes potentially coordinating hormone regulation under heat stress. These findings provide a basis for functional validation of key hormone-related genes in the garlic heat-stress response and suggest potential genetic targets for the development of heat-tolerant garlic varieties.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, China
| | - Ji-De Fan
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, China
| | - Can-Yu Liu
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, China
| | - Yong-Qiang Zhao
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin-Juan Lu
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, China
| | - Jie Ge
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, China
| | - Bi-Wei Zhang
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, China
| | - Meng-Qian Li
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, China
| | - Yan Yang
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, China
| | - Feng Yang
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, China.
| |
Collapse
|
3
|
Song X, Lu J, Wang H, Tang L, Li S, Zang Z, Wu G, Zhang J. Identification and Characterization of WOX Gene Family in Flax ( Linum usitatissimum L.) and Its Role Under Abiotic Stress. Int J Mol Sci 2025; 26:3571. [PMID: 40332111 DOI: 10.3390/ijms26083571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The WOX (WUSCHEL-related homeobox) gene family plays pivotal roles in plant growth, development, and responses to biotic/abiotic stresses. Flax (Linum usitatissimum L.), a globally important oilseed and fiber crop, lacks a comprehensive characterization of its WOX family. Here, 18 LuWOX genes were systematically identified in the flax genome through bioinformatics analyses. Phylogenetic classification grouped these genes into three clades: Ancient, Intermediate, and WUS Clades, with members within the same clade exhibiting conserved exon-intron structures and motif compositions. Promoter analysis revealed abundant cis-acting elements associated with hormone responses (MeJA, abscisic acid) and abiotic stress adaptation (anaerobic induction, drought, low temperature). Segmental duplication events (nine gene pairs) contributed significantly to LuWOX family expansion. Protein-protein interaction networks implicated several LuWOX proteins in stress-responsive pathways. Expression profiling demonstrated that most LuWOX genes were highly expressed in 5-day-post-anthesis (DPA) flowers and embryonic tissues. qRT-PCR validation further uncovered distinct expression patterns of LuWOX genes under cold, drought, and salt stresses. This study established a foundational framework for leveraging LuWOX genes to enhance stress tolerance in flax breeding and functional genomics.
Collapse
Affiliation(s)
- Xixia Song
- Heilongjiang Academy of Agricultural Sciences, Harbing 150086, China
| | - Jianyu Lu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Hang Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Lili Tang
- Heilongjiang Academy of Agricultural Sciences, Harbing 150086, China
| | - Shuyao Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Zhenyuan Zang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Guangwen Wu
- Heilongjiang Academy of Agricultural Sciences, Harbing 150086, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Department of Biology, University of British Columbia, Kelowna, BC V1CIV7, Canada
| |
Collapse
|
4
|
Sun Y, Sun S, Zahid MS, Qiu Q, Wang L, Wang S. Root-applied brassinosteroid and salicylic acid enhance thermotolerance and fruit quality in heat-stressed 'Kyoho' grapevines. FRONTIERS IN PLANT SCIENCE 2025; 16:1563270. [PMID: 40247944 PMCID: PMC12003391 DOI: 10.3389/fpls.2025.1563270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Introduction The increasingly severe global greenhouse effect has become an irreversible trend, significantly impacting viticulture regions through heat stress during various grape growth stages, especially under protected cultivation conditions where high temperatures frequently occur. Therefore, studying the impact of heat stress on grapevine growth and fruit quality across the entire growth and development period, along with effective mitigation measures, is crucial. Methods In this study, three-year-old 'Kyoho' grapevines were used as experimental materials, with four treatment groups: a control group, a hightemperature group (heat stress, HT), a high-temperature + brassinolide group (BR), and a high-temperature + salicylic acid group (SA). During the flowering, young berry swelling, and veraison stages, BR and SA were applied via nutrient solutions every seven days. Results The results demonstrated that BR restored the maximum photosynthetic rate (Amax) to 96.14% of CK by the 18th day of flowering, significantly outperforming SA's recovery rate of 86.64%. Both treatments maintained light saturation points (1200 μmol•m⁻²•s⁻¹) and CO2 saturation thresholds equivalent to CK. The decline in PSII photochemical efficiency (Fv/Fm) was reduced from 18% in HT to 5-8% in BR/SA-treated groups, with BR showing minimal deviation (2.3%) from CK during veraison, effectively mitigating PSII photoinhibition caused by heat stress. Furthermore, both treatments reduced leaf malondialdehyde (MDA) content, minimizing membrane lipid peroxidation, while increasing soluble protein (SP) content to protect leaves. Under heat stress, BR notably improved the fruit set rate by 22.67% compared to HT (SA: 13%), promoted berry expansion, and enhanced the accumulation of sugars and anthocyanins in the fruit skin, with SA showing similar, though slightly less pronounced, effects. Discussion These findings provide valuable theoretical insights into the use of exogenous hormones in root nutrient solutions as a strategy to mitigate the adverse effects of heat stress in grape production.
Collapse
Affiliation(s)
- Yanli Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sijie Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Salman Zahid
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Microbial Ecology and Truffle Innovation, Mycorrhizal Systems Ltd., Lancashire, United Kingdom
| | - Qian Qiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Chakraborty R, Rehman RU, Siddiqui MW, Liu H, Seth CS. Phytohormones: Heart of plants' signaling network under biotic, abiotic, and climate change stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109839. [PMID: 40194506 DOI: 10.1016/j.plaphy.2025.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
Industrialization has made the world increasingly unstable, subjecting plants to various constraints. As a consequence, plants are constantly experiencing biological, environmental, and climatic constraints, necessitating defense mechanisms to ensure their survival. Plants are vulnerable to various biotic factors, including insects, pathogens (bacterial, fungal, viral, and nematodes), weeds, and herbivores. They also face different abiotic and climate change challenges such as drought (regulated by genes like GH3, DREB, ZIFL1;3, etc), salinity, heavy metals, metalloids, ultraviolet radiations (UV), ozone (O3), low and high temperature (chilling/cold/freezing/heat), carbon dioxide (CO2), chlorofluorocarbons (CFCs), and flooding/hypoxia/anoxia. Different transcriptional factors, such as KNOX1, PYK10, and NRP1, regulate these abiotic and climate change stresses. Different phytohormones such as auxin (regulated by components AUX/IAA3, PIN, indole-glucosinolate, indole-3-acetaldoxine), gibberellin (key elements involved in the synthesis and signaling such as DELLA, GA3ox, RhHB1), cytokinin (signaling through ARR5), ethylene (involved transcription factors like AP2/ERF), abscisic acid (signaling regulated through SnRK2), salicylic acid, jasmonic acid (regulated by JAZ1/TIFYIOA), brassinosteroids, nitric oxide, and strigolactones (synthetic precursor being GR24) control plants' maturation in normal and stressed conditions by regulating various metabolic and physiological plant activities. Phytohormonal interactions and their synergy are often assessed by different techniques and assays such as CRISPR/Cas9, ELISA, RIA, luciferase, GAL4, and mEmerald GFP. Their synthesis and signaling are regulated by various genes (such as YUCCA1, YUCCA5, GA3ox, etc), transporters (PIN, such as PIN, ABCB, NPF, etc), and receptors (such as PLY4, PLY5, BZR1/BES1, MYC2, etc) and have different precursors such as L-arginine, L-tryptophan, phenylalanine, linolenic acid, S-adenosylmethionine, geranylgeranyl diphosphate. This review comprehensively analyses the breakthrough in phytohormones and their signaling in regulating plants' growth and maturation. Their significance in combating the biotic, abiotic, and climate change stresses, improving stress adaptation to identify novel strategies enhancing plant resilience, sustainable agriculture, and ensuring food security.
Collapse
Affiliation(s)
- Ritika Chakraborty
- Department of Botany, University of Delhi, New Delhi, 110007, Delhi, India.
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Post-Harvest Technology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India.
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China.
| | | |
Collapse
|
6
|
Zampieri E, Cucu MA, Franchi E, Fusini D, Pietrini I, Centritto M, Balestrini R. Characterization of Different Soil Bacterial Strains and Assessment of Their Impact on the Growth of Triticum turgidum spp. durum and Lens culinaris spp. culinaris. Curr Microbiol 2025; 82:199. [PMID: 40097641 DOI: 10.1007/s00284-025-04171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
Plant growth-promoting bacteria (PGPB) are vital for enhancing plant growth, productivity, and sustainability in agriculture, also addressing food security challenges. The plant growth-promoting (PGP) potential of ten bacterial strains, isolated from a cultivated field in southern Italy, was characterized with biochemical and molecular analyses and plant growth-promoting activity was tested on two durum wheat varieties (RGT Aventadur and Farah) and a lentil one (Altamura Lentil) under semi-controlled conditions. The isolated strains were classified using 16S rRNA gene sequencing. Results showed that they belonged to Pseudomonaceae, Rhizobiaceae, Bacillaceae and Micrococcaceae families. They exhibited typical features of PGPB, such as inorganic phosphate solubilization, production of indole acetic acid, ammonia, and biofilm formation. Bacterial inoculation of wheat plants led to the identification of potentially interesting strains that positively affected biometric parameters (i.e., shoot height, tiller number and spike weight) in a genotype-dependent way. The contrasting effect of some bacterial strains on the two wheat genotypes supports the necessity to accurately formulate synthetic microbial consortia characterized by long-term PGP traits, taking into account that the application under field conditions might also be influenced by native soil microbiota.
Collapse
Affiliation(s)
- Elisa Zampieri
- Institute for Sustainable Plant Protection (CNR-IPSP), National Research Council of Italy, Turin, Italy
| | - Maria Alexandra Cucu
- Institute for Sustainable Plant Protection (CNR-IPSP), National Research Council of Italy, Turin, Italy
| | - Elisabetta Franchi
- R&D Environmental & Biological Laboratories, Eni S.P.A, San Donato Milanese, Italy
| | - Danilo Fusini
- R&D Environmental & Biological Laboratories, Eni S.P.A, San Donato Milanese, Italy
| | - Ilaria Pietrini
- R&D Environmental & Biological Laboratories, Eni S.P.A, San Donato Milanese, Italy
| | - Mauro Centritto
- Institute for Sustainable Plant Protection (CNR-IPSP), National Research Council of Italy, Turin, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, National Research Council of Italy, CNR-IBBR), Bari, Italy.
| |
Collapse
|
7
|
Wang X, Li Y, Li Z, Gu X, Wang Z, Qin X, Li Q. Investigating the Mechanisms of Adventitious Root Formation in Semi-Tender Cuttings of Prunus mume: Phenotypic, Phytohormone, and Transcriptomic Insights. Int J Mol Sci 2025; 26:2416. [PMID: 40141060 PMCID: PMC11941866 DOI: 10.3390/ijms26062416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Mei (Prunus mume Sieb. et Zucc.) is a rare woody species that flowers in winter, yet its large-scale propagation is limited by the variable ability of cuttings to form adventitious roots (ARs). In this study, two cultivars were compared: P. mume 'Xiangxue Gongfen' (GF), which roots readily, and P. mume 'Zhusha Wanzhaoshui' (ZS), which is more recalcitrant. Detailed anatomical observations revealed that following cutting, the basal region expanded within 7 days, callus tissues had appeared by 14 days, and AR primordia emerged between 28 and 35 days. Notably, compared to the recalcitrant cultivar ZS, the experimental cultivar GF exhibited significantly enhanced callus tissue formation and AR primordia differentiation. Physiological analyses showed that the initial IAA concentration was highest at day 0, whereas cytokinin (tZR) and gibberellin (GA1) levels peaked at 14 days, with ABA gradually decreasing over time, resulting in increased IAA/tZR and IAA/GA1 ratios during the rooting process. Transcriptomic profiling across these time points identified significant upregulation of key genes (e.g., PmPIN3, PmLOG2, PmCKX5, PmIAA13, PmLAX2, and PmGA2OX1) and transcription factors (PmWOX4, PmSHR, and PmNAC071) in GF compared to ZS. Moreover, correlation analyses revealed that PmSHR expression is closely associated with IAA and tZR levels. Overexpression of PmSHR in tobacco further validated its role in enhancing lateral root formation. Together, these findings provide comprehensive insights into the temporal, hormonal, and genetic regulation of AR formation in P. mume, offering valuable strategies for improving its propagation.
Collapse
Affiliation(s)
- Xiujun Wang
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Yue Li
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
| | - Zihang Li
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Xiaowen Gu
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
| | - Zixu Wang
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
| | - Xiaotian Qin
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
| | - Qingwei Li
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| |
Collapse
|
8
|
Ma X, Wang J, Zhang H, Yao L, Si E, Li B, Meng Y, Wang H. Genetic Basis of Seedling Root Traits in Common Wheat ( Triticum aestivum L.) Identified by Genome-Wide Linkage Mapping. PLANTS (BASEL, SWITZERLAND) 2025; 14:490. [PMID: 39943052 PMCID: PMC11820154 DOI: 10.3390/plants14030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Common wheat production is significantly influenced by abiotic stresses. Identifying the genetic loci for seedling root traits and developing the available molecular markers are crucial for breeding high yielding and stable varieties. In this study, five wheat seedling root traits, including root length (RL), root surface area (RA), root volume (RV), number of root tips (RT), and root dry weight (RW), were measured in the Wp-072/Wp-119 recombinant inbred line (RIL) population. Genotyping was conducted for the RIL population and their parents using the wheat 90K single-nucleotide polymorphism (SNP) chip. In total, three quantitative trait loci (QTLs) for RL (QRL.gau-1DS, QRL.gau-1DL and QRL.gau-4AL), two QTLs for RA (QRA.gau-1D and QRA.gau-2DL), one locus for RV (QRV.gau-6AS), two loci for RW (QRW.gau-2DL and QRW.gau-2AS), and two loci for RT (QRT.gau-3AS and QRT.gau-6DL) were identified, with each explaining 4.5-8.4% of the phenotypic variances, respectively. Among these, QRT.gau-3AS, QRL.gau-4AL, and QRV.gau-6AS overlapped with the previous reports, whereas the other seven QTLs were novel. The favorable alleles of QRL.gau-1DS, QRL.gau-1DL, QRL.gau-4AL, QRA.gau-1D, QRW.gau-2AS, QRV.gau-6AS, QRT.gau-3AS, and QRT.gau-6DL were contributed by Wp-072, whereas the other two loci originated from Wp-119. Additionally, five kompetitive allele-specific PCR (KASP) markers, KASP-RL-1DL for RL, KASP-RA-1D and KASP-RA-2DL for RA, KASP-RW-2AS and KASP-RW-2DL for RW, were developed and validated successfully in 149 wheat accessions. Furthermore, seven candidate genes mainly for plant hormones were selected and validated by quantitative real-time PCR (qRT-PCR). This study provides new loci, new candidate genes, available KASP markers, and varieties for optimizing wheat root system architecture.
Collapse
Affiliation(s)
- Xiaole Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Juncheng Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Hong Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Lirong Yao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Erjing Si
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Baochun Li
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Yaxiong Meng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Huajun Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| |
Collapse
|
9
|
Korsukova AV, Lyubushkina IV, Zabanova NS, Berezhnaya EV, Polyakova EA, Pobezhimova TP, Kirichenko KA, Dorofeev NV, Dudareva LV, Grabelnych OI. Mechanisms of Increase of Winter Wheat Frost Resistance Under Tebuconazole Treatment at Early Stage of Growth: Role of Hormone- and Reactive Oxygen Species-Mediated Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2025; 14:314. [PMID: 39942876 PMCID: PMC11821118 DOI: 10.3390/plants14030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
1, 2, 4-triazole derivatives, including tebuconazole, have been reported to show positive physiological effects in cereals apart from fungicidal activity and to increase plants' tolerance against temperature stress. This study investigates the mechanisms of increasing frost resistance of etiolated winter wheat (Triticum aestivum L., "Irkutskaya" variety) seedlings by tebuconazole-based seed dresser "Bunker" (1.5 μL g-1 of seeds) and tebuconazole (30 μg g-1 of seeds). To identify ABA-dependent and ABA-independent pathways of frost resistance, we used fluridone (FLD, 5 mg L-1), an inhibitor of endogenous abscisic acid (ABA) synthesis. FLD effectively inhibited the accumulation of carotenoids in the shoots and prevented the formation of carotenoids caused by the "Bunker" and tebuconazole. In non-hardened seedlings, FLD stimulated coleoptile and first leaf growth, but did not suppress the growth inhibitory effects of "Bunker" and tebuconazole. In shoots of hardened seedlings, FLD reduced the retarding effect of tebuconazole. Regardless of seedling age, temperature, and the protectant treatment, FLD had no effect on the sugar content in the shoots. FLD did not essentially influence frost resistance induced by "Bunker" and tebuconazole in cold-hardened seedlings. Fluridone increased H2O2 content and guaiacol peroxidase activity under control conditions (both with tebuconazole and without tebuconazole) and during cold hardening (in seedlings from seeds treated with tebuconazole). ABA levels in cold-hardened seedlings treated with FLD alone, tebuconazole alone, or a combination of the two were two to three times lower than in untreated hardened seedlings. Changes in indole-3-acetic and salicylic acids in response to FLD and tebuconazole treatment indicate complex interactions with signaling cellular systems. Our results suggest that tebuconazole activates ABA-independent pathways more strongly than ABA-dependent pathways in enhancing frost resistance. The potential mechanisms of tebuconazole action in plant cells are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Olga I. Grabelnych
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia; (A.V.K.); (I.V.L.); (N.S.Z.); (E.V.B.); (E.A.P.); (T.P.P.); (K.A.K.); (N.V.D.); (L.V.D.)
| |
Collapse
|
10
|
Huang S, Jin S. Enhancing drought tolerance in horticultural plants through plant hormones: a strategic coping mechanism. FRONTIERS IN PLANT SCIENCE 2025; 15:1502438. [PMID: 39902215 PMCID: PMC11788359 DOI: 10.3389/fpls.2024.1502438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025]
Abstract
Abiotic stresses are considered as a significant factor restricting horticultural crop productivity and quality. Drought stress is a major environmental constraint among the emerging concerns. Plants have significant susceptibility to drought stress, resulting in a marked decline in production during the last several decades. The development of effective strategies to mitigate drought stress is essential for sustainable agriculture and food security, especially considering the continuous growth of the world population. Several studies suggested that exogenous application of phytohormone to plants can improve drought stress tolerance by activating molecular and physiological defense systems. Phytohormone pretreatment is considered a potential approach for alleviating drought stress in horticultural plants. In addition, melatonin, salicylic acid, jasmonates, strigolactones, brassinosteroids, and gamma-aminobutyric acid are essential phytohormones that function as growth regulators and mitigate the effects of drought stress. These hormones frequently interact with one another to improve the survival of plants in drought-stressed environments. To sum up, this review will predominantly elucidate the role of phytohormones and related mechanisms in drought tolerance across various horticulture crop species.
Collapse
Affiliation(s)
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji, China
| |
Collapse
|
11
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
12
|
Zhao B, Liu Q, Luo L, Zhou H, Zhang X, Ma F, Gong X. Suppression of MdPRP6 enhances adaptation of apple plants to long-term drought. PHYSIOLOGIA PLANTARUM 2025; 177:e70099. [PMID: 39921481 DOI: 10.1111/ppl.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/10/2025]
Abstract
Apples are one of the world's four most economically significant fruits, and drought stress is an important factor limiting the development of the global apple industry. Here, we demonstrate that a proline-rich protein (PRP), MdPRP6, is an important factor regulating the long-term drought adaptation of apple plants. Suppression of MdPRP6 in apple plants (MdPRP6-Ri) enhances their adaptation to long-term moderate drought conditions, as indicated by their significantly higher biomass and relative water content (RWC) compared with wild-type (WT) plants. Under drought stress, the net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs), and transpiration rate (Tr) were higher, and photosystem II (PSII) damage was lower in MdPRP6-Ri plants than in WT plants. Suppression of MdPRP6 increased the activity of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), which reduced oxidative damage to apple leaves under drought stress. The stomatal openings of MdPRP6-Ri plants were larger than those of WT plants; the WUEI and WUEL were thus higher in MdPRP6-Ri plants than in WT plants under long-term moderate drought stress. We also found that suppression of MdPRP6 increased the wax content of the leaf epidermis, which limits water evaporation caused by non-stomatal factors under drought stress. In sum, our findings suggest that MdPRP6 negatively affects the long-term drought adaptation of apple plants, possibly by modulating both stomatal and non-stomatal water loss.
Collapse
Affiliation(s)
- Benzhou Zhao
- State Key Laboratory for Crop Stress Tolerance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianwei Liu
- State Key Laboratory for Crop Stress Tolerance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lin Luo
- State Key Laboratory for Crop Stress Tolerance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Zhou
- State Key Laboratory for Crop Stress Tolerance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Zhang
- State Key Laboratory for Crop Stress Tolerance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Tolerance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory for Crop Stress Tolerance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Morales Orellana RJ, Rath T, Druege U, Tandrón Moya YA, von Wirén N, Winkelmann T. Laser-wound stimulated adventitious root formation of Rosa canina cuttings involves a complex response at plant hormonal and metabolic level. FRONTIERS IN PLANT SCIENCE 2024; 15:1515990. [PMID: 39737379 PMCID: PMC11682910 DOI: 10.3389/fpls.2024.1515990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025]
Abstract
Introduction The presence of wounds in addition to the excision-induced wounds after severance from the stock plants is known to positively influence adventitious root formation of woody plant cuttings. Previous morphological studies highlighted laser wounding as a technique allowing to precisely control the decisive ablation depth. However, the biochemical processes involved in the response of rooting to the additional wounding remained unexplored. Methods The present study analyzed changes in the plant hormone and carbohydrate profiles in response to laser treatments of rose leafy single-node stem cuttings (Rosa canina 'Pfänder'). Concentrations of four groups of plant hormones and of carbohydrates were monitored in three different stem sections of the cutting base during the first eight days after excision of cuttings. In addition, histology was employed to investigate anatomical changes at the basal wound and the laser wounds at the start and the end of the experiment after 40 days. Results Laser ablation caused an increase of vascular tissue dimension directly in the laser wound, and increased the quantity and quality of rooting compared to control cuttings. A clear early local rise of jasmonic acid (JA) was detected directly in wounded areas after laser marking, as well as an increase in abscisic acid (ABA) that persisted for the subsequent days. Indole-3-acetic acid (IAA) levels were relatively high on day zero, but decreased thereafter. Interestingly, higher IAA levels were maintained in the stem section below the axillary bud compared with the opposite section. Laser-treated cuttings presented a clear increase in contents of IAA-amino acid conjugates (IAAGlu and IAAsp) and the oxidation product OxIAA. Differences in concentration of these IAA metabolites were related to the position of the laser wound relative to the axillary bud and leaf. Additionally, laser treatments caused gradually increased levels of the cytokinin N6-isopentenyladenine (iP) in laser-treated zones, and of zeatin riboside specifically when the laser wound was placed on the leaf-bud side. Additional laser wounding reduced starch and sucrose levels in all wounded sections at the end of the evaluation period, independently of the wounding location. Discussion The results of this study indicate that presence of additional injured tissue triggers a complex biochemical adjustment at the base of the cutting responsible of inducing vascular tissue growth and capable of generating a positive response to adventitious root formation.
Collapse
Affiliation(s)
- Raul Javier Morales Orellana
- Hochschule Osnabrück - University of Applied Sciences, Biosystem Engineering Laboratory (BLab), Osnabrück, Germany
- Leibniz University Hannover, Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Hannover, Germany
| | - Thomas Rath
- Hochschule Osnabrück - University of Applied Sciences, Biosystem Engineering Laboratory (BLab), Osnabrück, Germany
| | - Uwe Druege
- Erfurt Research Centre for Horticultural Crops, University of Applied Sciences Erfurt, Erfurt, Germany
| | - Yudelsy A. Tandrón Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research, Department of Physiology and Cell Biology, Gatersleben, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research, Department of Physiology and Cell Biology, Gatersleben, Germany
| | - Traud Winkelmann
- Leibniz University Hannover, Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Hannover, Germany
| |
Collapse
|
14
|
Zhang Y, Yang T, Han J, Su X, Cong Y, Zhou M, Wang Y, Lin T. Genome-Wide Identification of the ClpB Gene Family in Tomato and Expression Analysis Under Heat Stress. Int J Mol Sci 2024; 25:12325. [PMID: 39596389 PMCID: PMC11595012 DOI: 10.3390/ijms252212325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Tomato is a widely grown horticultural crop, and its growth process is often affected by high temperatures. Caseinolytic Protease B (ClpB), a homologous protein to heat shock protein 101 (HSP101), plays a vital role in plant heat adaptation and development. In this study, we identified six SlClpB genes in tomatoes, distributed across four chromosomes. Collinearity analysis revealed that the gene pairs SlClpB-2 and SlClpB-3A, as well as SlClpB-3C and SlClpB-12, resulted from segmental duplication events. Phylogenetic and motif analyses showed that ClpB proteins possess highly conserved domains across different species. We used RNA-seq data to analyze the expression patterns of the ClpB family. Among them, SlClpB-3A and SlClpB-12 exhibited increased expression in multiple tissues under heat stress. Specifically, SlClpB-2, SlClpB-3A, and SlClpB-3C were highly expressed in the fruit orange stage and in flower buds under heat treatment, while in seedlings, SlClpB-2 and SlClpB-3A exhibited heat-induced expression. Real-time quantitative fluorescent PCR (qRT-PCR) results showed that the expression of SlClpB-2 and SlClpB-3A was significantly increased under heat stress in the leaves and buds of Ailsa Craig, Micro-Tom, and M82. Overall, our findings provide valuable insights into the regulatory mechanisms of SlClpB genes in response to heat stress.
Collapse
Affiliation(s)
- Yuemei Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Tailai Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Jiaxi Han
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Xiao Su
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Yanqing Cong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Yan Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Tao Lin
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| |
Collapse
|
15
|
Xu K, Zeng H, Lin F, Yumoto E, Asahina M, Hayashi KI, Fukaki H, Ito H, Watahiki MK. Exogenous application of the apocarotenoid retinaldehyde negatively regulates auxin-mediated root growth. PLANT PHYSIOLOGY 2024; 196:1659-1673. [PMID: 39117340 PMCID: PMC11483604 DOI: 10.1093/plphys/kiae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Root development is essential for plant survival. The lack of carotenoid biosynthesis in the phytoene desaturase 3 (pds3) mutant results in short primary roots (PRs) and reduced lateral root formation. In this study, we showed that short-term inhibition of PDS by fluridone suppresses PR growth in wild type, but to a lesser extent in auxin mutants of Arabidopsis (Arabidopsis thaliana). Such an inhibition of PDS activity increased endogenous indole-3-acetic acid levels, promoted auxin signaling, and partially complemented the PR growth of an auxin-deficient mutant, the YUCCA 3 5 7 8 9 quadruple mutant (yucQ). The exogenous application of retinaldehyde (retinal), an apocarotenoid derived from β-carotene, complemented the fluridone-induced suppression of root growth, as well as the short roots of the pds3 mutant. Retinal also partially complemented the auxin-induced suppression of root growth. These results suggest that retinal may play a role in regulating root growth by modulating endogenous auxin levels.
Collapse
Affiliation(s)
- Kang Xu
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Haoran Zeng
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Feiyang Lin
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
| | - Masashi Asahina
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
- Department of Biosciences, Teikyo University, Utsunomiya 320-8551, Japan
| | - Ken-ichiro Hayashi
- Department of Bioscience, Okayama University of Science, Okayama 700-0005, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Masaaki K Watahiki
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Division of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
16
|
Meethangdee M, Pathom-aree W. Unraveling growth-promoting potential of plant beneficial actinobacteria on tropical bryophytes. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100284. [PMID: 39957781 PMCID: PMC11827090 DOI: 10.1016/j.crmicr.2024.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
Bryophytes are non-vascular plants with dominant gametophyte stage that play vital ecological roles in natural ecosystems. Unfortunately, their populations are currently in decline due to habitat destruction and various anthropogenic activities. The conservation efforts for bryophytes are hampered by their slow growth rates. This study aims to investigate the potential of actinobacteria to promote the growth of bryophytes. In this study, three plant growth-promoting actinobacteria, Dermacoccus abyssi MT1.1T, Micromonospora chalcea CMU55-4 and Streptomyces thermocarboxydus S3 were cultured in International Streptomyces Project medium 2 (ISP2) broth to obtain culture filtrates containing bioactive compounds for enhancing the growth of two bryophyte species, Physcomotrium sphaericum (C. Ludw.) Fürnr and Sphagnum cuspidatulum C. Müll. Interestingly, the incorporation of actinobacterial culture filtrates into 1/16 Murashige and Skoog (MS) medium yielded superior growth performance of P. sphaericum (C. Ludw.) Fürnr and S. cuspidatulum C. Müll, as observed from the thallus height, fresh weight, total chlorophyll contents, and total carotenoid contents compared to control groups. In addition, the inoculation of M. chalcea CMU55-4 on S. cuspidatulum C. Müll grown in sterile peat moss demonstrated the highest values for thallus height, fresh weight, dry weight, total chlorophyll content, and total carotenoid content. All actinobacteria successfully colonized the moss seedlings without any observable negative impacts, indicating beneficial interactions between actinobacteria and bryophytes. This research sheds light on the potential of harnessing plant beneficial actinobacteria to enhance the growth of bryophytes for conservation purposes.
Collapse
Affiliation(s)
- Mathurin Meethangdee
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-aree
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
17
|
Yang X, Huang Y, Xia P. The property and function of proteins undergoing liquid-liquid phase separation in plants. PLANT, CELL & ENVIRONMENT 2024; 47:3671-3684. [PMID: 38808958 DOI: 10.1111/pce.14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
A wide variety of membrane-less organelles in cells play an essential role in regulating gene expression, RNA processing, plant growth and development, and helping organisms cope with changing external environments. In biology, liquid-liquid phase separation (LLPS) usually refers to a reversible process in which one or more specific molecular components are spontaneously separated from the bulk environment, producing two distinct liquid phases: concentrated and dilute. LLPS may be a powerful cellular compartmentalisation mechanism whereby biocondensates formed via LLPS when biomolecules exceed critical or saturating concentrations in the environment where they are found will be generated. It has been widely used to explain the formation of membrane-less organelles in organisms. LLPS studies in the context of plant physiology are now widespread, but most of the research is still focused on non-plant systems; the study of phase separation in plants needs to be more thorough. Proteins and nucleic acids are the main components involved in LLPS. This review summarises the specific features and properties of biomolecules undergoing LLPS in plants. We describe in detail these biomolecules' structural characteristics, the mechanism of formation of condensates, and the functions of these condensates. Finally, We summarised the phase separation mechanisms in plant growth, development, and stress adaptation.
Collapse
Affiliation(s)
- Xuejiao Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
18
|
Thabet SG, Safhi FA, Börner A, Alqudah AM. Genome-wide association scan reveals the reinforcing effect of nano-potassium in improving the yield and quality of salt-stressed barley via enhancing the antioxidant defense system. PLANT MOLECULAR BIOLOGY 2024; 114:97. [PMID: 39249621 DOI: 10.1007/s11103-024-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 09/10/2024]
Abstract
Salinity is one of the major environmental factor that can greatly impact the growth, development, and productivity of barley. Our study aims to detect the natural phenotypic variation of morphological and physiological traits under both salinity and potassium nanoparticles (n-K) treatment. In addition to understanding the genetic basis of salt tolerance in barley is a critical aspect of plant breeding for stress resilience. Therefore, a foliar application of n-K was applied at the vegetative stage for 138 barley accessions to enhance salt stress resilience. Interestingly, barley accessions showed high significant increment under n-K treatment compared to saline soil. Based on genome-wide association studies (GWAS) analysis, causative alleles /reliable genomic regions were discovered underlying improved salt resilience through the application of potassium nanoparticles. On chromosome 2H, a highly significant QTN marker (A:C) was located at position 36,665,559 bp which is associated with APX, AsA, GSH, GS, WGS, and TKW under n-K treatment. Inside this region, our candidate gene is HORVU.MOREX.r3.2HG0111480 that annotated as NAC domain protein. Allelic variation detected that the accessions carrying C allele showed higher antioxidants (APX, AsA, and GSH) and barley yield traits (GS, WGS, and TKW) than the accessions carrying A allele, suggesting a positive selection of the accessions carrying C allele that could be used to develop barley varieties with improved salt stress resilience.
Collapse
Affiliation(s)
- Samar G Thabet
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr 3, D-06466, Seeland, Germany
| | - Ahmad M Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
19
|
Abbey L, Asiedu SK, Chada S, Ofoe R, Amoako PO, Owusu-Nketia S, Ajeethan N, Kumar AP, Nutsukpo EB. Photosynthetic Activities, Phytohormones, and Secondary Metabolites Induction in Plants by Prevailing Compost Residue. Metabolites 2024; 14:400. [PMID: 39195496 DOI: 10.3390/metabo14080400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Compost residue enriches soil health with the potential to enhance plant metabolism and hormonal balance, but has not yet been studied. A study was performed to determine how prevailing compost residue induces tomato (Solanum lycopersicum 'Scotia') plant morpho-physiology, phytohormones, and secondary metabolites. Plants were grown in soils with a previous history of annual (AN) and biennial (BI) compost amendments. The controls were soil without compost (C) amendment and municipal solid waste compost (MSWC) alone. The MSWC- and AN-plants had similar and significantly (p < 0.05) highest growth and photosynthetic activities compared to the BI- or C-plants. Total phenolics and lipid peroxidase activity were significantly (p < 0.001) high in BI-plants, while hydrogen peroxide and antioxidant capacity were significantly (p < 0.001) high in AN-plants. MSWC-plants recorded the highest cis-abscisic acid, followed by AN-, and then BI- and C-plants. Cis-zeatin, trans-zeatin, and isopentenyladenine ribosides were detected in the MSWC- and AN-plants but not in the BI- or C-plants. Furthermore, gibberellins GA53, GA19, and GA8 were high in the MSWC-plants, but only GA8 was detected in the AN plants and none in the others. Besides, MSWC plants exhibited the highest content of 1-aminocyclopropane-1-carboxylic acid. Conjugated salicylic acid was highest in the BI-plants, while jasmonic acid-isoleucine was highest in MSWC-plants and C plants. In conclusion, prevailing compost chemical residues upregulate plant growth, phytohormones, and metabolic compounds that can potentially increase plant growth and abiotic stress defense. Future work should investigate the flow of these compounds in plants under abiotic stress.
Collapse
Affiliation(s)
- Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Samuel Kwaku Asiedu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Sparsha Chada
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Peter Ofori Amoako
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Stella Owusu-Nketia
- Biotechnology Centre, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25 Legon, Ghana
| | - Nivethika Ajeethan
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Anagha Pradeep Kumar
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Efoo Bawa Nutsukpo
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| |
Collapse
|
20
|
Wang XT, Yan K, Yu TH, Yang ZN, Luo SQ. A Single Latent Plant Growth-Promoting Endophyte BH46 Enhances Houttuynia cordata Thunb. Yield and Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12057-12071. [PMID: 38753758 DOI: 10.1021/acs.jafc.3c08177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Plant growth-promoting endophytes (PGPE) can effectively regulate plant growth and metabolism. The regulation is modulated by metabolic signals, and the resulting metabolites can have considerable effects on the plant yield and quality. Here, tissue culture Houttuynia cordata Thunb., was inoculated with Rhizobium sp. (BH46) to determine the effect of BH46 on H. cordata growth and metabolism, and elucidate associated regulatory mechanisms. The results revealed that BH46 metabolized indole-3-acetic acid and induced 1-aminocyclopropane-1-carboxylate deaminase to decrease ethylene metabolism. Host peroxidase synthesis MPK3/MPK6 genes were significantly downregulated, whereas eight genes associated with auxins, cytokinins, abscisic acid, jasmonic acid, and antioxidant enzymes were significantly upregulated. Eight genes associated with flavonoid biosynthesis were significantly upregulated, with the CPY75B1 gene regulating the production of rutin and quercitrin and the HCT gene directly regulating the production of chlorogenic acid. Therefore, BH46 influences metabolic signals in H. cordata to modulate its growth and metabolism, in turn, enhancing yield and quality of H. cordata.
Collapse
Affiliation(s)
- Xi-Tao Wang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Kai Yan
- Liupanshui Normal University, Liupanshui 553004, Guizhou, China
| | - Tian-Hua Yu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Zhan-Nan Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Shi-Qiong Luo
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, Guizhou, China
| |
Collapse
|
21
|
Haelterman L, Louvieaux J, Chiodi C, Bouchet AS, Kupcsik L, Stahl A, Rousseau-Gueutin M, Snowdon R, Laperche A, Nesi N, Hermans C. Genetic control of root morphology in response to nitrogen across rapeseed diversity. PHYSIOLOGIA PLANTARUM 2024; 176:e14315. [PMID: 38693794 DOI: 10.1111/ppl.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Rapeseed (Brassica napus L.) is an oil-containing crop of great economic value but with considerable nitrogen requirement. Breeding root systems that efficiently absorb nitrogen from the soil could be a driver to ensure genetic gains for more sustainable rapeseed production. The aim of this study is to identify genomic regions that regulate root morphology in response to nitrate availability. The natural variability offered by 300 inbred lines was screened at two experimental locations. Seedlings grew hydroponically with low or elevated nitrate levels. Fifteen traits related to biomass production and root morphology were measured. On average across the panel, a low nitrate level increased the root-to-shoot biomass ratio and the lateral root length. A large phenotypic variation was observed, along with important heritability values and genotypic effects, but low genotype-by-nitrogen interactions. Genome-wide association study and bulk segregant analysis were used to identify loci regulating phenotypic traits. The first approach nominated 319 SNPs that were combined into 80 QTLs. Three QTLs identified on the A07 and C07 chromosomes were stable across nitrate levels and/or experimental locations. The second approach involved genotyping two groups of individuals from an experimental F2 population created by crossing two accessions with contrasting lateral root lengths. These individuals were found in the tails of the phenotypic distribution. Co-localized QTLs found in both mapping approaches covered a chromosomal region on the A06 chromosome. The QTL regions contained some genes putatively involved in root organogenesis and represent selection targets for redesigning the root morphology of rapeseed.
Collapse
Affiliation(s)
- Loïc Haelterman
- Crop Production and Biostimulation Laboratory (CPBL), Brussels Bioengineering School, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Julien Louvieaux
- Crop Production and Biostimulation Laboratory (CPBL), Brussels Bioengineering School, Université libre de Bruxelles (ULB), Brussels, Belgium
- Laboratory of Applied Plant Ecophysiology, Haute Ecole Provinciale de Hainaut Condorcet, Centre pour l'Agronomie et l'Agro-industrie de la Province de Hainaut (CARAH), Belgium
| | - Claudia Chiodi
- Crop Production and Biostimulation Laboratory (CPBL), Brussels Bioengineering School, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Anne-Sophie Bouchet
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Université de Rennes, Le Rheu, France
| | - Laszlo Kupcsik
- Crop Production and Biostimulation Laboratory (CPBL), Brussels Bioengineering School, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Andreas Stahl
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Mathieu Rousseau-Gueutin
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Université de Rennes, Le Rheu, France
| | - Rod Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Germany
| | - Anne Laperche
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Université de Rennes, Le Rheu, France
| | - Nathalie Nesi
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Université de Rennes, Le Rheu, France
| | - Christian Hermans
- Crop Production and Biostimulation Laboratory (CPBL), Brussels Bioengineering School, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
22
|
Zhang J, Li S, Gao X, Liu Y, Fu B. Genome-wide identification and expression pattern analysis of the Aux/IAA (auxin/indole-3-acetic acid) gene family in alfalfa (Medicago sativa) and the potential functions under drought stress. BMC Genomics 2024; 25:382. [PMID: 38637768 PMCID: PMC11025244 DOI: 10.1186/s12864-024-10313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Auxin/induced-3-acetic acid (Aux/IAA) is an important plant hormone that affects plant growth and resistance to abiotic stresses. Drought stress is a vital factor in reducing plant biomass yield and production quality. Alfalfa (Medicago sativa L.) is the most widely planted leguminous forage and one of the most economically valuable crops in the world. Aux/IAA is one of the early responsive gene families of auxin, playing a crucial role in response to drought stress. However, the characteristics of the Aux/IAA gene family in alfalfa and its potential function in response to drought stress are still unknown. RESULT A total of 41 Aux/IAA gene members were identified in alfalfa genome. The physicochemical, peptide structure, secondary and tertiary structure analysis of proteins encoded by these genes revealed functional diversity of the MsIAA gene. A phylogenetic analysis classified the MsIAA genes into I-X classes in two subgroups. And according to the gene domain structure, these genes were classified into typical MsIAA and atypical MsIAA. Gene structure analysis showed that the MsIAA genes contained 1-4 related motifs, and except for the third chromosome without MsIAAs, they were all located on 7 chromosomes. The gene duplication analysis revealed that segmental duplication and tandem duplication greatly affected the amplification of the MsIAA genes. Analysis of the Ka/Ks ratio of duplicated MsAux/IAA genes suggested purification selection pressure was high and functional differences were limited. In addition, identification and classification of promoter cis-elements elucidated that MsIAA genes contained numerous elements associated to phytohormone response and abiotic stress response. The prediction protein-protein interaction network showed that there was a complex interaction between the MsAux/IAA genes. Gene expression profiles were tissue-specific, and MsAux/IAA had a broad response to both common abiotic stress (ABA, salt, drought and cold) and heavy metal stress (Al and Pb). Furthermore, the expression patterns analysis of 41 Aux/IAA genes by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that Aux/IAA genes can act as positive or negative factors to regulate the drought resistance in alfalfa. CONCLUSION This study provides useful information for the alfalfa auxin signaling gene families and candidate evidence for further investigation on the role of Aux/IAA under drought stress. Future studies could further elucidate the functional mechanism of the MsIAA genes response to drought stress.
Collapse
Affiliation(s)
- Jinqing Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
| | - Shuxia Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Xixia District, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, 750021, China
| | - Xueqin Gao
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Xixia District, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, 750021, China
| | - Yaling Liu
- Inner Mongolia Pratacultural Technology Innovation Center Co, Ltd, Hohhot, 010000, China
| | - BingZhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China.
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Xixia District, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, 750021, China.
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, 750021, China.
| |
Collapse
|
23
|
Nouraei S, Mia MS, Liu H, Turner NC, Khan JM, Yan G. Proteomic analysis of near-isogenic lines reveals key biomarkers on wheat chromosome 4B conferring drought tolerance. THE PLANT GENOME 2024; 17:e20343. [PMID: 37199103 DOI: 10.1002/tpg2.20343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/05/2023] [Accepted: 03/27/2023] [Indexed: 05/19/2023]
Abstract
Drought is a major constraint for wheat production that is receiving increased attention due to global climate change. This study conducted isobaric tags for relative and absolute quantitation proteomic analysis on near-isogenic lines to shed light on the underlying mechanism of qDSI.4B.1 quantitative trait loci (QTL) on the short arm of chromosome 4B conferring drought tolerance in wheat. Comparing tolerant with susceptible isolines, 41 differentially expressed proteins were identified to be responsible for drought tolerance with a p-value of < 0.05 and fold change >1.3 or <0.7. These proteins were mainly enriched in hydrogen peroxide metabolic activity, reactive oxygen species metabolic activity, photosynthetic activity, intracellular protein transport, cellular macromolecule localization, and response to oxidative stress. Prediction of protein interactions and pathways analysis revealed the interaction between transcription, translation, protein export, photosynthesis, and carbohydrate metabolism as the most important pathways responsible for drought tolerance. The five proteins, including 30S ribosomal protein S15, SRP54 domain-containing protein, auxin-repressed protein, serine hydroxymethyltransferase, and an uncharacterized protein with encoding genes on 4BS, were suggested as candidate proteins responsible for drought tolerance in qDSI.4B.1 QTL. The gene coding SRP54 protein was also one of the differentially expressed genes in our previous transcriptomic study.
Collapse
Affiliation(s)
- Sina Nouraei
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Md Sultan Mia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Neil C Turner
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Javed M Khan
- Proteomics International, Crawley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Crawley, Western Australia, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
24
|
Hakeem MK, Elangovan S, Rafi M, George S, Shah I, Amiri KMA. Advancing Antibiotic Residue Analysis: LC-MS/MS Methodology for Ticarcillin Degradation Products in Tomato Leaves. Antibiotics (Basel) 2024; 13:133. [PMID: 38391519 PMCID: PMC10886401 DOI: 10.3390/antibiotics13020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The indiscriminate use of antibiotics in agriculture has raised concerns about antibiotic residues in food products, necessitating robust analytical methods for detection and quantification. In this study, our primary aim was to develop a robust and advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology specifically designed for the accurate quantification of ticarcillin degradation products in tomato leaves. The choice of ticarcillin as the target analyte stems from its frequent use in agriculture and the potential formation of degradation products, which can pose a threat to food safety. The use of tomatoes as the target sample matrix in this study is justified by their significance in human diets, their widespread cultivation, and their suitability as a model for assessing antibiotic residue dynamics in diverse agricultural environments. By optimizing the MS/MS parameters, the study successfully demonstrates the practicality and reliability of the employed LC-MS/MS method in accurately assessing ticarcillin degradation product (Thiophene-2-Acetic acid and Thiophene-3-Acetic acid) levels. The chromatographic separation was achieved using a specialized column, ensuring high resolution and sensitivity in detecting analytes. Multiple reaction monitoring (MRM) data acquisition was employed to enhance the selectivity and accuracy of the analysis. The developed method exhibited excellent linearity and precision, meeting the stringent requirements for antibiotic residue analysis in complex matrices. Key outcomes of this study include the successful identification and quantification of ticarcillin and its degradation products in tomato leaves, providing crucial insights into the fate of this antibiotic in agricultural settings. The methodology's applicability was further demonstrated by analyzing real-world samples, highlighting its potential for routine monitoring and ensuring food safety compliance. In summary, our study constitutes a noteworthy advancement in the domain of antibiotic residue analysis, offering a reliable method for quantifying ticarcillin degradation products in tomato leaves. The optimized parameters and MRM-based LC-MS/MS approach enhance the precision and sensitivity of the analysis, opening up opportunities for further studies in the assessment of antibiotic residues in agricultural ecosystems.
Collapse
Affiliation(s)
- Muhammad K Hakeem
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Sampathkumar Elangovan
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Suja George
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Iltaf Shah
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Khaled M A Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
25
|
Tian Y, Yang W, Wan S, Fang S. Insights into the Hormone-Regulating Mechanism of Adventitious Root Formation in Softwood Cuttings of Cyclocarya paliurus and Optimization of the Hormone-Based Formula for Promoting Rooting. Int J Mol Sci 2024; 25:1343. [PMID: 38279343 PMCID: PMC10816064 DOI: 10.3390/ijms25021343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Adventitious root (AR) formation is vital for successful cutting propagation in plants, while the dynamic regulation of phytohormones is viewed as one of the most important factors affecting AR formation. Cyclocarya paliurus, a hard-to-root plant, is faced with the bottleneck of cloning its superior varieties in practice. In this study, ten treatments were designed to figure out the best hormone-based formula for promoting AR formation in softwood cuttings and explore their hormone-regulating mechanisms. Both the rooting process and the rooting parameters of the softwood cuttings were significantly affected by different hormone-based formulas (p < 0.05), while the greatest rooting rate (93%) and root quality index were achieved in the H3 formula (SR3:IR3 = 1:1). Significant differences in the measured phytohormone concentrations, as well as in their ratios, were detected among the cuttings sampled at various AR formation stages (p < 0.05), whereas the dynamics for each phytohormone varied greatly during AR formation. The transcriptome analysis showed 12,028 differentially expressed genes (DEGs) identified during the rooting process of C. paliurus cuttings, while the KEGG enrichment analysis indicated that a total of 20 KEGG terms were significantly enriched in all the comparison samples, with 253 DEGs detected in signal transduction. Furthermore, 19 genes with vital functions in regulating the hormone signaling pathway were identified by means of a WGCNA analysis. Our results not only optimize a hormone-based formula for improving the rooting of C. paliurus cuttings but also provide an insight into the hormonal regulatory network during AR formation in softwood C. paliurus cuttings.
Collapse
Affiliation(s)
- Yuan Tian
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; (Y.T.); (W.Y.); (S.W.)
| | - Wanxia Yang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; (Y.T.); (W.Y.); (S.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shiying Wan
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; (Y.T.); (W.Y.); (S.W.)
| | - Shengzuo Fang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; (Y.T.); (W.Y.); (S.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
26
|
Manan S, Bilal S. Editorial: Molecular regulation of seed development and storage reserve metabolism in crops. FRONTIERS IN PLANT SCIENCE 2024; 14:1348252. [PMID: 38269135 PMCID: PMC10807039 DOI: 10.3389/fpls.2023.1348252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Affiliation(s)
- Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
27
|
Zheng R, Peng Y, Chen J, Zhu X, Xie K, Ahmad S, Zhao K, Peng D, Liu ZJ, Zhou Y. The Genome-Level Survey of the WOX Gene Family in Melastoma dodecandrum Lour. Int J Mol Sci 2023; 24:17349. [PMID: 38139178 PMCID: PMC10743900 DOI: 10.3390/ijms242417349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Though conserved in higher plants, the WOX transcription factors play crucial roles in plant growth and development of Melastoma dodecandrum Lour., which shows pioneer position in land ecosystem formation and produces nutritional fruits. Identifying the WOX family genes in M. dodecandrum is imperative for elucidating its growth and development mechanisms. However, the WOX genes in M. dodecandrum have not yet been characterized. In this study, by identification 22 WOX genes in M. dodecandrum based on current genome data, we classified family genes into three clades and nine types with homeodomains. We highlighted gene duplications of MedWOX4, which offered evidences of whole-genome duplication events. Promoter analysis illustrated that cis-regulatory elements related to light and stress responses and plant growth were enriched. Expression pattern and RT-qPCR results demonstrated that the majority of WOX genes exhibited expression in the stem. MedWOX13s displayed highest expression across various tissues. MedWOX4s displayed a specific expression in the stem. Collectively, our study provided foundations for elucidating WOX gene functions and further molecular design breeding in M. dodecandrum.
Collapse
Affiliation(s)
- Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Kai Xie
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Sagheer Ahmad
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| |
Collapse
|
28
|
Emenecker RJ, Cammarata J, Yuan I, Howard C, Ebrahimi Naghani S, Robert HS, Nambara E, Strader LC. Abscisic acid biosynthesis is necessary for full auxin effects on hypocotyl elongation. Development 2023; 150:dev202106. [PMID: 37846593 PMCID: PMC10730017 DOI: 10.1242/dev.202106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
In concert with other phytohormones, auxin regulates plant growth and development. However, how auxin and other phytohormones coordinately regulate distinct processes is not fully understood. In this work, we uncover an auxin-abscisic acid (ABA) interaction module in Arabidopsis that is specific to coordinating activities of these hormones in the hypocotyl. From our forward genetics screen, we determine that ABA biosynthesis is required for the full effects of auxin on hypocotyl elongation. Our data also suggest that ABA biosynthesis is not required for the inhibitory effects of auxin treatment on root elongation. Our transcriptome analysis identified distinct auxin-responsive genes in root and shoot tissues, which is consistent with differential regulation of growth in these tissues. Further, our data suggest that many gene targets repressed upon auxin treatment require an intact ABA pathway for full repression. Our results support a model in which auxin stimulates ABA biosynthesis to fully regulate hypocotyl elongation.
Collapse
Affiliation(s)
- Ryan J. Emenecker
- Department of Biology, Washington University, St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, Washington University, St. Louis, MO 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | | | - Irene Yuan
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Caroline Howard
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Shekufeh Ebrahimi Naghani
- Mendel Centre for Genomics and Proteomics of Plant Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czechia
| | - Helene S. Robert
- Mendel Centre for Genomics and Proteomics of Plant Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Lucia C. Strader
- Center for Biomolecular Condensates, Washington University, St. Louis, MO 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
29
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
30
|
Liu S, Yang S, Liu H, Hu Q, Liu X, Wang J, Wang J, Xin W, Chen Q. Physiological and transcriptomic analysis of the mangrove species Kandelia obovata in response to flooding stress. MARINE POLLUTION BULLETIN 2023; 196:115598. [PMID: 37839131 DOI: 10.1016/j.marpolbul.2023.115598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Flooding stress on mangroves is growing continually with rising sea level. In this study, the physiology and transcriptome of the mangrove species Kandelia obovata under flooding stress were analyzed. With increasing inundation time, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), soluble sugar (SS), soluble protein (SP), and proline (Pro) content declined, while peroxidase (POD) and ascorbate peroxidase (APX) activity rose significantly. According to the KEGG pathway enrichment analysis, upregulated differentially expressed genes (DEGs) were enriched in the plant hormone signaling pathway. Furthermore, MYB44 and MYB108 genes from the MYB transcription factor family and RAP2.12, DREB2B, and ERF4 genes from the AP2/ERF family were up-regulated under flooding conditions. A strong correlation was established between the expression levels of 12 DEGs under flooding stress and RNA sequencing data and was verified by qRT-PCR. These results provide new insights into the molecular mechanism of K. obovata in response to flooding stress.
Collapse
Affiliation(s)
- Shuangshuang Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Sheng Yang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Huizi Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Qingdi Hu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Xing Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Jinwang Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Jiayu Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Wenzhen Xin
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Qiuxia Chen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China.
| |
Collapse
|
31
|
Sharma A, Gupta A, Ramakrishnan M, Ha CV, Zheng B, Bhardwaj M, Tran LSP. Roles of abscisic acid and auxin in plants during drought: A molecular point of view. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108129. [PMID: 37897894 DOI: 10.1016/j.plaphy.2023.108129] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Plant responses to drought are mediated by hormones like ABA (abscisic acid) and auxin. These hormones regulate plant drought responses by modulating various physiological and biological processes via cell signaling. ABA accumulation and signaling are central to plant drought responses. Auxin also regulates plant adaptive responses to drought, especially via signal transduction mediated by the interaction between ABA and auxin. In this review, we explored the interactive roles of ABA and auxin in the modulation of stomatal movement, root traits and accumulation of reactive oxygen species associated with drought tolerance.
Collapse
Affiliation(s)
- Anket Sharma
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Aarti Gupta
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Mamta Bhardwaj
- Department of Botany, Hindu Girls College, Maharshi Dayanand University, Sonipat, 131001, India
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
32
|
Shao Z, Yang S, Gu Y, Guo Y, Zhou H, Yang Y. Ubiquitin negatively regulates ABA responses by inhibiting SnRK2.2 and SnRK2.3 kinase activity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5394-5404. [PMID: 37326597 DOI: 10.1093/jxb/erad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
Abscisic acid (ABA) is an essential phytohormone for plant responses to complex and variable environmental conditions. The molecular basis of the ABA signaling pathway has been well elucidated. SnRK2.2 and SnRK2.3 are key protein kinases participating in ABA responses, and the regulation of their activity plays an important role in signaling. Previous mass spectroscopy analysis of SnRK2.3 suggested that ubiquitin and homologous proteins may bind directly to the kinase. Ubiquitin typically recruits E3 ubiquitin ligase complexes to target proteins, marking them for degradation by the 26S proteasome. Here, we show that SnRK2.2 and SnRK2.3 interact with ubiquitin but are not covalently attached to the protein, resulting in the suppression of their kinase activity. The binding between SnRK2.2, SnRK2.3, and ubiquitin is weakened under prolonged ABA treatment. Overexpression of ubiquitin positively regulated the growth of seedlings exposed to ABA. Our results thus demonstrate a novel function for ubiquitin, which negatively regulates ABA responses by directly inhibiting SnRK2.2 and SnRK2.3 kinase activity.
Collapse
Affiliation(s)
- Zhengyu Shao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yinghui Gu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yongqing Yang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
33
|
Zhang J, Zhao P, Chen S, Sun L, Mao J, Tan S, Xiang C. The ABI3-ERF1 module mediates ABA-auxin crosstalk to regulate lateral root emergence. Cell Rep 2023; 42:112809. [PMID: 37450369 DOI: 10.1016/j.celrep.2023.112809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Abscisic acid (ABA) is involved in lateral root (LR) development, but how ABA signaling interacts with auxin signaling to regulate LR formation is not well understood. Here, we report that ABA-responsive ERF1 mediates the crosstalk between ABA and auxin signaling to regulate Arabidopsis LR emergence. ABI3 is a negative factor in LR emergence and transcriptionally activates ERF1 by binding to its promoter, and reciprocally, ERF1 activates ABI3, which forms a regulatory loop that enables rapid signal amplification. Notably, ABI3 physically interacts with ERF1, reducing the cis element-binding activities of both ERF1 and ABI3 and thus attenuating the expression of ERF1-/ABI3-regulated genes involved in LR emergence and ABA signaling, such as PIN1, AUX1, ARF7, and ABI5, which may provide a molecular rheostat to avoid overamplification of auxin and ABA signaling. Taken together, our findings identify the role of the ABI3-ERF1 module in mediating crosstalk between ABA and auxin signaling in LR emergence.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Pingxia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Siyan Chen
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Liangqi Sun
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jieli Mao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Shutang Tan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
34
|
Johnson N, Zhang G, Soble A, Johnson S, Baucom RS. The consequences of synthetic auxin herbicide on plant-herbivore interactions. TRENDS IN PLANT SCIENCE 2023; 28:765-775. [PMID: 36842859 DOI: 10.1016/j.tplants.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/17/2023]
Abstract
Although herbicide drift is a common side effect of herbicide application in agroecosystems, its effects on the ecology and evolution of natural communities are rarely studied. A recent shift to dicamba, a synthetic auxin herbicide known for 'drifting' to nontarget areas, necessitates the examination of drift effects on the plant-insect interactions that drive eco-evo dynamics in weed communities. We review current knowledge of direct effects of synthetic auxin herbicides on plant-insect interactions, focusing on plant herbivory, and discuss potential indirect effects, which are cascading effects on organisms that interact with herbicide-exposed plants. We end by developing a framework for the study of plant-insect interactions given drift, highlighting potential changes to plant developmental timing, resource quantity, quality, and cues.
Collapse
Affiliation(s)
- Nia Johnson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grace Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anah Soble
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen Johnson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Xu H, Liu Y, Zhang S, Shui D, Xia Z, Sun J. Genome-wide identification and expression analysis of the AUX/IAA gene family in turnip (Brassica rapa ssp. rapa). BMC PLANT BIOLOGY 2023; 23:342. [PMID: 37370022 DOI: 10.1186/s12870-023-04356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Auxin/indoleacetic acid (AUX/IAA) genes encoding short-lived proteins participate in AUX signaling transduction and play crucial roles in plant growth and development. Although the AUX/IAA gene family has been identified in many plants, a systematic analysis of AUX/IAA genes in Brassica rapa ssp. rapa has not yet been reported. RESULTS We performed a comprehensive genome-wide analysis and found 89 AUX/IAA genes in turnip based on the conserved AUX/IAA domain (pfam02309). Phylogenetic analysis of AUX/IAA genes from turnip, Arabidopsis, and cabbage revealed that these genes cluster into six subgroups (A1, A2, A3, A4, B1, and B2). The motif distribution was also conservative among the internal members of the clade. Enhanced yellow fluorescent protein (EYFP) signals of BrrIAA-EYFPs showed that BrrIAA members functioned as nucleoproteins. Moreover, transcriptional analysis revealed that the expression patterns of AUX/IAA genes in turnip were tissue-dependent. Because orthologs have similar biological functions and interaction networks in plant growth and development, BrrIAA66 in turnip possibly played a role in embryo axis formation, vascular development, lateral root formation, and floral organ development by interacting with BrrARF19 and BrrTIR1. CONCLUSION These results provide a theoretical basis for further investigation of BrrAUX/IAA genes and lay the foundation for functional analysis of BrrIAA66 in turnip.
Collapse
Affiliation(s)
- Huanwen Xu
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou, Zhejiang, 325006, China
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou, Zhejiang, 325006, China
| | - Yu Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, 325005, China
| | - Shengmei Zhang
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou, Zhejiang, 325006, China
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou, Zhejiang, 325006, China
| | - Deju Shui
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou, Zhejiang, 325006, China
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou, Zhejiang, 325006, China
| | - Zhewen Xia
- Wenzhou Lucheng District Agricultural Industry Institute, Wenzhou, Zhejiang, 325000, China
| | - Ji Sun
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou, Zhejiang, 325006, China.
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou, Zhejiang, 325006, China.
| |
Collapse
|
36
|
Korek M, Marzec M. Strigolactones and abscisic acid interactions affect plant development and response to abiotic stresses. BMC PLANT BIOLOGY 2023; 23:314. [PMID: 37308831 DOI: 10.1186/s12870-023-04332-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Strigolactones (SL) are the youngest group of plant hormones responsible for shaping plant architecture, especially the branching of shoots. However, recent studies provided new insights into the functioning of SL, confirming their participation in regulating the plant response to various types of abiotic stresses, including water deficit, soil salinity and osmotic stress. On the other hand, abscisic acid (ABA), commonly referred as a stress hormone, is the molecule that crucially controls the plant response to adverse environmental conditions. Since the SL and ABA share a common precursor in their biosynthetic pathways, the interaction between both phytohormones has been largely studied in the literature. Under optimal growth conditions, the balance between ABA and SL content is maintained to ensure proper plant development. At the same time, the water deficit tends to inhibit SL accumulation in the roots, which serves as a sensing mechanism for drought, and empowers the ABA production, which is necessary for plant defense responses. The SL-ABA cross-talk at the signaling level, especially regarding the closing of the stomata under drought conditions, still remains poorly understood. Enhanced SL content in shoots is likely to stimulate the plant sensitivity to ABA, thus reducing the stomatal conductance and improving the plant survival rate. Besides, it was proposed that SL might promote the closing of stomata in an ABA-independent way. Here, we summarize the current knowledge regarding the SL and ABA interactions by providing new insights into the function, perception and regulation of both phytohormones during abiotic stress response of plants, as well as revealing the gaps in the current knowledge of SL-ABA cross-talk.
Collapse
Affiliation(s)
- Magdalena Korek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland.
| | - Marek Marzec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland
| |
Collapse
|
37
|
He W, Luo L, Xie R, Chai J, Wang H, Wang Y, Chen Q, Wu Z, Yang S, Li M, Lin Y, Zhang Y, Luo Y, Zhang Y, Tang H, Wang X. Transcriptome sequencing analyses uncover mechanisms of citrus rootstock seedlings under waterlogging stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1198930. [PMID: 37324702 PMCID: PMC10264899 DOI: 10.3389/fpls.2023.1198930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Citrus plants are sensitive to waterlogging, which can cause yield reduction. Their production heavily depends on the rootstock being used for grafting of scion cultivars, and the rootstock is the first organ to be affected by waterlogging stress. However, the underlying molecular mechanisms of waterlogging stress tolerance remain elusive. In this study we investigated the stress response of two waterlogging-tolerant citrus varieties (Citrus junos Sieb ex Tanaka cv. Pujiang Xiangcheng and Ziyang Xiangcheng), and one waterlogging-sensitive variety (red tangerine) at the morphological, physiological, and genetic levels in leaf and root tissues of partially submerged plants. The results showed that waterlogging stress significantly decreased the SPAD value and root length but did not obviously affect the stem length and new root numbers. The malondialdehyde (MDA) content and the enzyme activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), and catalase (CAT) were enhanced in the roots. The RNA-seq analysis revealed that the differentially expressed genes (DEGs) were mainly linked to 'cutin, suberine, and wax biosynthesis', 'diterpenoid biosynthesis', and 'glycerophospholipid metabolism' in the leaves, whereas were linked to 'flavonoid biosynthesis', 'biosynthesis of secondary metabolites and metabolic pathways' in the roots. Finally, we developed a working model based on our results to elucidate the molecular basis of waterlogging-responsive in citrus. Therefore, our data obtained in this study provided valuable genetic resources that will facilitate the breeding of citrus varieties with improved waterlogging tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Xu X, Huang B, Fang X, Zhang Q, Qi T, Gong M, Zheng X, Wu M, Jian Y, Deng J, Cheng Y, Li Z, Deng W. SlMYB99-mediated auxin and abscisic acid antagonistically regulate ascorbic acids biosynthesis in tomato. THE NEW PHYTOLOGIST 2023. [PMID: 37247338 DOI: 10.1111/nph.18988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Ascorbic acid (AsA) is a water-soluble antioxidant that plays important roles in plant development and human health. Understanding the regulatory mechanism underlying AsA biosynthesis is imperative to the development of high AsA plants. In this study, we reveal that the auxin response factor SlARF4 transcriptionally inhibits SlMYB99, which subsequently modulates AsA accumulation via transcriptional activation of AsA biosynthesis genes GPP, GLDH, and DHAR. The auxin-dependent transcriptional cascade of SlARF4-SlMYB99-GPP/GLDH/DHAR modulates AsA synthesis, while mitogen-activated protein kinase SlMAPK8 not only phosphorylates SlMYB99, but also activates its transcriptional activity. Both SlMYB99 and SlMYB11 proteins physically interact with each other, thereby synergistically regulating AsA biosynthesis by upregulating the expression of GPP, GLDH, and DHAR genes. Collectively, these results demonstrate that auxin and abscisic acid antagonistically regulate AsA biosynthesis during development and drought tolerance in tomato via the SlMAPK8-SlARF4-SlMYB99/11 module. These findings provide new insights into the mechanism underlying phytohormone regulation of AsA biosynthesis and provide a theoretical basis for the future development of high AsA plants via molecular breeding.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xu Fang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Tiancheng Qi
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Min Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yongfei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Jie Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
39
|
Singh A, Roychoudhury A. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. PLANT CELL REPORTS 2023; 42:961-974. [PMID: 37079058 DOI: 10.1007/s00299-023-03013-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Extensive crosstalk exists among ABA and different phytohormones that modulate plant tolerance against different abiotic stress. Being sessile, plants are exposed to a wide range of abiotic stress (drought, heat, cold, salinity and metal toxicity) that exert unwarranted threat to plant life and drastically affect growth, development, metabolism, and yield of crops. To cope with such harsh conditions, plants have developed a wide range of protective phytohormones of which abscisic acid plays a pivotal role. It controls various physiological processes of plants such as leaf senescence, seed dormancy, stomatal closure, fruit ripening, and other stress-related functions. Under challenging situations, physiological responses of ABA manifested in the form of morphological, cytological, and anatomical alterations arise as a result of synergistic or antagonistic interaction with multiple phytohormones. This review provides new insight into ABA homeostasis and its perception and signaling crosstalk with other phytohormones at both molecular and physiological level under critical conditions including drought, salinity, heavy metal toxicity, and extreme temperature. The review also reveals the role of ABA in the regulation of various physiological processes via its positive or negative crosstalk with phytohormones, viz., gibberellin, melatonin, cytokinin, auxin, salicylic acid, jasmonic acid, ethylene, brassinosteroids, and strigolactone in response to alteration of environmental conditions. This review forms a basis for designing of plants that will have an enhanced tolerance capability against different abiotic stress.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
40
|
Yin C, Sun A, Zhou Y, Liu K, Wang P, Ye W, Fang Y. The dynamics of Arabidopsis H2A.Z on SMALL AUXIN UP RNAs regulates abscisic acid-auxin signaling crosstalk. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad131. [PMID: 37022978 DOI: 10.1093/jxb/erad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Extreme environmental changes threaten plant survival and worldwide food production. In response to osmotic stresses, plant hormone ABA activates stress responses and restricts plant growth. However, the epigenetic regulation of the ABA signaling and ABA-auxin crosstalk are not well known. Here we report that the histone variant H2A.Z knockdown mutant in Arabidopsis Col-0 ecotype, h2a.z-kd, has altered ABA signaling and stress performances. RNA-sequencing data showed that a majority of stress related genes are activated in h2a.z-kd. In addition, we revealed that ABA directly promotes the deposition of H2A.Z on SMALL AUXIN UP RNAs (SAURs), which is involved in ABA-repressed SAUR expression. Moreover, we found that ABA represses the transcription of H2A.Z genes through suppressing ARF7/19-HB22/25 module. Our results shed light on a dynamic and reciprocal regulation hub through H2A.Z deposition on SAURs and ARF7/19-HB22/25-mediated H2A.Z transcription to integrate ABA/auxin signaling and regulate stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Chunmei Yin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aiqing Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhou
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Kunpeng Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjing Ye
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Zhao Y, Wang J, Huang W, Zhang D, Wu J, Li B, Li M, Liu L, Yan M. Abscisic-Acid-Regulated Responses to Alleviate Cadmium Toxicity in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1023. [PMID: 36903884 PMCID: PMC10005406 DOI: 10.3390/plants12051023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
High levels of cadmium (Cd) in soil can cause crop yield reduction or death. Cadmium accumulation in crops affects human and animal health as it passes through the food chain. Therefore, a strategy is needed to enhance the tolerance of crops to this heavy metal or reduce its accumulation in crops. Abscisic acid (ABA) plays an active role in plants' response to abiotic stress. The application of exogenous ABA can reduce Cd accumulation in shoots of some plants and enhance the tolerance of plants to Cd; therefore, ABA may have good application prospects. In this paper, we reviewed the synthesis and decomposition of ABA, ABA-mediated signal transduction, and ABA-mediated regulation of Cd-responsive genes in plants. We also introduced physiological mechanism underlying Cd tolerance because of ABA. Specifically, ABA affects metal ion uptake and transport by influencing transpiration and antioxidant systems, as well as by affecting the expression of metal transporter and metal chelator protein genes. This study may provide a reference for further research on the physiological mechanism of heavy metal tolerance in plants.
Collapse
Affiliation(s)
- Yuquan Zhao
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiaqi Wang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Huang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Dawei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinfeng Wu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lili Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
42
|
Baud S, Corso M, Debeaujon I, Dubreucq B, Job D, Marion-Poll A, Miquel M, North H, Rajjou L, Lepiniec L. Recent progress in molecular genetics and omics-driven research in seed biology. C R Biol 2023; 345:61-110. [PMID: 36847120 DOI: 10.5802/crbiol.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.
Collapse
|
43
|
Kruasuwan W, Lohmaneeratana K, Munnoch JT, Vongsangnak W, Jantrasuriyarat C, Hoskisson PA, Thamchaipenet A. Transcriptome Landscapes of Salt-Susceptible Rice Cultivar IR29 Associated with a Plant Growth Promoting Endophytic Streptomyces. RICE (NEW YORK, N.Y.) 2023; 16:6. [PMID: 36739313 PMCID: PMC9899303 DOI: 10.1186/s12284-023-00622-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Plant growth-promoting endophytic (PGPE) actinomycetes have been known to enhance plant growth and mitigate plant from abiotic stresses via their PGP-traits. In this study, PGPE Streptomyces sp. GKU 895 promoted growth and alleviated salt tolerance of salt-susceptible rice cultivar IR29 by augmentation of plant weight and declined ROS after irrigation with 150 mM NaCl in a pot experiment. Transcriptome analysis of IR29 exposed to the combination of strain GKU 895 and salinity demonstrated up and downregulated differentially expressed genes (DEGs) classified by gene ontology and plant reactome. Streptomyces sp. GKU 895 induced changes in expression of rice genes including transcription factors under salt treatment which involved in growth and development, photosynthesis, plant hormones, ROS scavenging, ion transport and homeostasis, and plant-microbe interactions regarding pathogenesis- and symbiosis-related proteins. Taken together, these data demonstrate that PGPE Streptomyces sp. GKU 895 colonized and enhanced growth of rice IR29 and triggered salt tolerance phenotype. Our findings suggest that utilisation of beneficial endophytes in the saline fields could allow for the use of such marginal soils for growing rice and possibly other crops.
Collapse
Affiliation(s)
- Worarat Kruasuwan
- Department of Genetics, Faculty of Sciences, Kasetsart University, Bangkok, Thailand
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Siriraj Long-Read Lab (Si-LoL), Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Karan Lohmaneeratana
- Department of Genetics, Faculty of Sciences, Kasetsart University, Bangkok, Thailand
| | - John T Munnoch
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Sciences, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | | | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Sciences, Kasetsart University, Bangkok, Thailand.
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand.
| |
Collapse
|
44
|
Ortiz-García P, González Ortega-Villaizán A, Onejeme FC, Müller M, Pollmann S. Do Opposites Attract? Auxin-Abscisic Acid Crosstalk: New Perspectives. Int J Mol Sci 2023; 24:ijms24043090. [PMID: 36834499 PMCID: PMC9960826 DOI: 10.3390/ijms24043090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Plants are constantly exposed to a variety of different environmental stresses, including drought, salinity, and elevated temperatures. These stress cues are assumed to intensify in the future driven by the global climate change scenario which we are currently experiencing. These stressors have largely detrimental effects on plant growth and development and, therefore, put global food security in jeopardy. For this reason, it is necessary to expand our understanding of the underlying mechanisms by which plants respond to abiotic stresses. Especially boosting our insight into the ways by which plants balance their growth and their defense programs appear to be of paramount importance, as this may lead to novel perspectives that can pave the way to increase agricultural productivity in a sustainable manner. In this review, our aim was to present a detailed overview of different facets of the crosstalk between the antagonistic plant hormones abscisic acid (ABA) and auxin, two phytohormones that are the main drivers of plant stress responses, on the one hand, and plant growth, on the other.
Collapse
Affiliation(s)
- Paloma Ortiz-García
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Adrián González Ortega-Villaizán
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Francis Chukwuma Onejeme
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (M.M.); (S.P.); Tel.: +34-934033718 (M.M.); +34-910679183 (S.P.)
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
- Correspondence: (M.M.); (S.P.); Tel.: +34-934033718 (M.M.); +34-910679183 (S.P.)
| |
Collapse
|
45
|
Root ABA Accumulation Delays Lateral Root Emergence in Osmotically Stressed Barley Plants by Decreasing Root Primordial IAA Accumulation. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Increased auxin levels in root primordia are important in controlling root branching, while their interaction with abscisic acid (ABA) likely regulates lateral root development in water-deficient plants. The role of ABA accumulation in regulating root branching was investigated using immunolocalization to detect auxin (indoleacetic acid, IAA) and ABA (abscisic acid) in root primordia of the ABA-deficient barley mutant Az34 and its parental genotype (cv. Steptoe) barley plants. Osmotic stress strongly inhibited lateral root branching in Steptoe plants, but hardly affected Az34. Root primordial cells of Steptoe plants had increased immunostaining for ABA but diminished staining for IAA. ABA did not accumulate in root primordia of the Az34, and IAA levels and distribution were unaltered. Treating Az34 plants with exogenous ABA decreased root IAA concentration, while increasing root primordial ABA accumulation and decreasing root primordial IAA concentration. Although ABA treatment of Az34 plants increased the root primordial number, it decreased the number of visible emerged lateral roots. These effects were qualitatively similar to that of osmotic stress on the number of lateral root primordia and emerged lateral roots in Steptoe. Thus ABA accumulation (and its crosstalk with auxin) in root primordia seems important in regulating lateral root branching in response to water stress.
Collapse
|
46
|
Sun N, Li C, Jiang X, Gai Y. Transcriptomic Insights into Functions of LkABCG36 and LkABCG40 in Nicotiana tabacum. PLANTS (BASEL, SWITZERLAND) 2023; 12:227. [PMID: 36678941 PMCID: PMC9860546 DOI: 10.3390/plants12020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
ATP-binding cassette transporters (ABC transporters) play crucial physiological roles in plants, such as being involved in the growth and development of organs, nutrient acquisition, response to biotic and abiotic stress, disease resistance, and the interaction of the plant with its environment. The ABCG subfamily of proteins are involved in the process of plant vegetative organ development. In contrast, the functions of the ABCG36 and ABCG40 transporters have received considerably less attention. Here, we investigated changes in the transcriptomic data of the stem tissue of transgenic tobacco (Nicotiana tabacum) with LkABCG36 and LkABCG40 (Larix kaempferi) overexpression, and compared them with those of the wild type (WT). Compared with the WT, we identified 1120 and 318 differentially expressed genes (DEGs) in the LkABCG36 and LkABCG40 groups, respectively. We then annotated the function of the DEGs against the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The results showed enrichment in cell wall biogenesis and hormone signal transduction functional classes in transgenic LkABCG36 tobacco. In transgenic LkABCG40 tobacco, the enrichment was involved in metabolic and biosynthetic processes, mainly those related to environmental adaptation. In addition, among these DEGs, many auxin-related genes were significantly upregulated in the LkABCG36 group, and we found key genes involved in environmental adaptation in the LkABCG40 group, including an encoding resistance protein and a WRKY transcription factor. These results suggest that LkABCG36 and LkABCG40 play important roles in plant development and environmental adaptation. LkABCG36 may promote plant organ growth and development by increasing auxin transport, whereas LkABCG40 may inhibit the expression of WRKY to improve the resistance of transgenic tobacco. Our results are beneficial to researchers pursuing further study of the functions of ABCG36 and ABCG40.
Collapse
Affiliation(s)
- Nan Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Can Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| |
Collapse
|
47
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. Integrated metabolomic and transcriptomic analysis reveals the role of phenylpropanoid biosynthesis pathway in tomato roots during salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1023696. [PMID: 36570882 PMCID: PMC9773889 DOI: 10.3389/fpls.2022.1023696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As global soil salinization continues to intensify, there is a need to enhance salt tolerance in crops. Understanding the molecular mechanisms of tomato (Solanum lycopersicum) roots' adaptation to salt stress is of great significance to enhance its salt tolerance and promote its planting in saline soils. A combined analysis of the metabolome and transcriptome of S. lycopersicum roots under different periods of salt stress according to changes in phenotypic and root physiological indices revealed that different accumulated metabolites and differentially expressed genes (DEGs) associated with phenylpropanoid biosynthesis were significantly altered. The levels of phenylpropanoids increased and showed a dynamic trend with the duration of salt stress. Ferulic acid (FA) and spermidine (Spd) levels were substantially up-regulated at the initial and mid-late stages of salt stress, respectively, and were significantly correlated with the expression of the corresponding synthetic genes. The results of canonical correlation analysis screening of highly correlated DEGs and construction of regulatory relationship networks with transcription factors (TFs) for FA and Spd, respectively, showed that the obtained target genes were regulated by most of the TFs, and TFs such as MYB, Dof, BPC, GRAS, and AP2/ERF might contribute to the regulation of FA and Spd content levels. Ultimately, FA and Spd attenuated the harm caused by salt stress in S. lycopersicum, and they may be key regulators of its salt tolerance. These findings uncover the dynamics and possible molecular mechanisms of phenylpropanoids during different salt stress periods, providing a basis for future studies and crop improvement.
Collapse
Affiliation(s)
- Chunping Jia
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Qinghui Yu
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| |
Collapse
|
48
|
do Nascimento SV, Herrera H, Costa PHDO, Trindade FC, da Costa IRC, Caldeira CF, Gastauer M, Ramos SJ, Oliveira G, Valadares RBDS. Molecular Mechanisms Underlying Mimosa acutistipula Success in Amazonian Rehabilitating Minelands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14441. [PMID: 36361325 PMCID: PMC9654444 DOI: 10.3390/ijerph192114441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Mimosa acutistipula is endemic to Brazil and grows in ferruginous outcrops (canga) in Serra dos Carajás, eastern Amazon, where one of the largest iron ore deposits in the world is located. Plants that develop in these ecosystems are subject to severe environmental conditions and must have adaptive mechanisms to grow and thrive in cangas. Mimosa acutistipula is a native species used to restore biodiversity in post-mining areas in canga. Understanding the molecular mechanisms involved in the adaptation of M. acutistipula in canga is essential to deduce the ability of native species to adapt to possible stressors in rehabilitating minelands over time. In this study, the root proteomic profiles of M. acutistipula grown in a native canga ecosystem and rehabilitating minelands were compared to identify essential proteins involved in the adaptation of this species in its native environment and that should enable its establishment in rehabilitating minelands. The results showed differentially abundant proteins, where 436 proteins with significant values (p < 0.05) and fold change ≥ 2 were more abundant in canga and 145 in roots from the rehabilitating minelands. Among them, a representative amount and diversity of proteins were related to responses to water deficit, heat, and responses to metal ions. Other identified proteins are involved in biocontrol activity against phytopathogens and symbiosis. This research provides insights into proteins involved in M. acutistipula responses to environmental stimuli, suggesting critical mechanisms to support the establishment of native canga plants in rehabilitating minelands over time.
Collapse
Affiliation(s)
- Sidney Vasconcelos do Nascimento
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Belém 66050-090, PA, Brazil
- Programa de Pos-Graduacão em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Héctor Herrera
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Felipe Costa Trindade
- Programa de Pos-Graduacão em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Isa Rebecca Chagas da Costa
- Programa de Pos-Graduacão em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | | | - Markus Gastauer
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Belém 66050-090, PA, Brazil
| | - Silvio Junio Ramos
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Belém 66050-090, PA, Brazil
| | - Guilherme Oliveira
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Belém 66050-090, PA, Brazil
| | | |
Collapse
|
49
|
Rolón-Cárdenas GA, Arvizu-Gómez JL, Soria-Guerra RE, Pacheco-Aguilar JR, Alatorre-Cobos F, Hernández-Morales A. The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3743-3764. [PMID: 35022877 DOI: 10.1007/s10653-021-01179-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/05/2021] [Indexed: 05/16/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals for plant physiology and development. This review discusses Cd effects on auxin biosynthesis and homeostasis, and the strategies for restoring plant growth based on exogenous auxin application. First, the two well-characterized auxin biosynthesis pathways in plants are described, as well as the effect of exogenous auxin application on plant growth. Then, review describes the impacts of Cd on the content, biosynthesis, conjugation, and oxidation of endogenous auxins, which are related to a decrease in root development, photosynthesis, and biomass production. Finally, compelling evidence of the beneficial effects of auxin-producing rhizobacteria in plants exposed to Cd is showed, focusing on photosynthesis, oxidative stress, and production of antioxidant compounds and osmolytes that counteract Cd toxicity, favoring plant growth and improve phytoremediation efficiency. Expanding our understanding of the positive effects of exogenous auxins application and the interactions between bacteria and plants growing in Cd-polluted environments will allow us to propose phytoremediation strategies for restoring environments contaminated with this metal.
Collapse
Affiliation(s)
- Gisela Adelina Rolón-Cárdenas
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México
| | - Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Ruth Elena Soria-Guerra
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
| | | | | | - Alejandro Hernández-Morales
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México.
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México.
| |
Collapse
|
50
|
Xu X, Zhang Q, Gao X, Wu G, Wu M, Yuan Y, Zheng X, Gong Z, Hu X, Gong M, Qi T, Li H, Luo Z, Li Z, Deng W. Auxin and abscisic acid antagonistically regulate ascorbic acid production via the SlMAPK8-SlARF4-SlMYB11 module in tomato. THE PLANT CELL 2022; 34:4409-4427. [PMID: 36000899 PMCID: PMC9614483 DOI: 10.1093/plcell/koac262] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 06/01/2023]
Abstract
Ascorbic acid (AsA) is a multifunctional phytonutrient that is essential for the human diet as well as plant development. While much is known about AsA biosynthesis in plants, how this process is regulated in tomato (Solanum lycopersicum) fruits remains unclear. Here, we found that auxin treatment inhibited AsA accumulation in the leaves and pericarps of tomato. The auxin response factor gene SlARF4 is induced by auxin to mediate auxin-induced inhibition of AsA accumulation. Specifically, SlARF4 transcriptionally inhibits the transcription factor gene SlMYB11, thereby modulating AsA accumulation by regulating the transcription of the AsA biosynthesis genes l-galactose-1-phosphate phosphatase, l-galactono-1,4-lactone dehydrogenase, and dehydroascorbate. By contrast, abscisic acid (ABA) treatment increased AsA accumulation in tomato under drought stress. ABA induced the expression of the mitogen-activated protein kinase gene SlMAPK8. We demonstrate that SlMAPK8 phosphorylates SlARF4 and inhibits its transcriptional activity, whereas SlMAPK8 phosphorylates SlMYB11 and activates its transcriptional activity. SlMAPK8 functions in ABA-induced AsA accumulation and drought stress tolerance. Moreover, ABA antagonizes the effects of auxin on AsA biosynthesis. Therefore, auxin- and ABA-induced regulation of AsA accumulation is mediated by the SlMAPK8-SlARF4-SlMYB11 module in tomato during fruit development and drought stress responses, shedding light on the roles of phytohormones in regulating AsA accumulation to mediate stress tolerance.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Xueli Gao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Guanle Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Zehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Xiaowei Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Min Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Tiancheng Qi
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Honghai Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| |
Collapse
|