1
|
Pakkhesal S, Shakouri M, Mosaddeghi-Heris R, Kiani Nasab S, Salehi N, Sharafi A, Ahmadalipour A. Bridging the gap: The endocannabinoid system as a functional fulcrum for benzodiazepines in a novel frontier of anxiety pharmacotherapy. Pharmacol Ther 2025; 267:108799. [PMID: 39862927 DOI: 10.1016/j.pharmthera.2025.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
While benzodiazepines have been a mainstay of the pharmacotherapy of anxiety disorders, their short-term efficacy and risk of abuse have driven the exploration of alternative treatment approaches. The endocannabinoid (eCB) system has emerged as a key modulator of anxiety-related processes, with evidence suggesting dynamic interactions between the eCB system and the GABAergic system, the primary target of benzodiazepines. According to the existing literature, the activation of the cannabinoid receptors has been shown to exert anxiolytic effects, while their blockade or genetic deletion results in heightened anxiety-like responses. Moreover, studies have provided evidence of interactions between the eCB system and benzodiazepines in anxiety modulation. For instance, the attenuation of benzodiazepine-induced anxiolysis by cannabinoid receptor antagonism or genetic variations in the eCB system components in animal studies, have been associated with variations in benzodiazepine response and susceptibility to anxiety disorders. The combined use of cannabinoid-based medications, such as cannabinoid receptor agonists and benzodiazepine co-administration, has shown promise in augmenting anxiolytic effects and reducing benzodiazepine dosage requirements. This article aims to comprehensively review and discuss the current evidence on the involvement of the eCB system as a key modulator of benzodiazepine-related anxiolytic effects, and further, the possible mechanisms by which the region-specific eCB system-GABAergic connectivity modulates the neuro-endocrine/behavioral stress response, providing an inclusive understanding of the complex interplay between the eCB system and benzodiazepines in the context of anxiety regulation, to inform future research and clinical practice.
Collapse
Affiliation(s)
- Sina Pakkhesal
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Shakouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mosaddeghi-Heris
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Kiani Nasab
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Salehi
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - AmirMohammad Sharafi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
2
|
Xue C, Li XH, Ding HQ, Qian X, Zhang MY, Chen K, Wei ZW, Li Y, Jia JH, Zhang WN. Pyridoxine supplementation before puberty ameliorates MAM-induced cognitive and sensorimotor gating impairments. Metab Brain Dis 2024; 40:71. [PMID: 39699742 DOI: 10.1007/s11011-024-01505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Schizophrenia is a kind of neurodevelopmental mental disorder in which patients begin to experience changes early in their development, typically manifesting around or after puberty and has a fluctuating course. Environmental disturbances during adolescence may be a risk factor for schizophrenia-like deficits. As a better treatment option, preventive intervention prior to schizophrenia may be more beneficial than direct treatment. More effective stress-relieving interventions during the critical puberty period may prevent schizophrenia-like neuronal changes and the transition to schizophrenia in adulthood. Pyridoxine deficiency alters the function of NMDA (n-methyl-D-aspartic acid) receptors and plays a key role in learning and memory. In this study, we prepared a progeny model of schizophrenia by exposing pregnant rats to methoxymethanol acetate (MAM) on gestational day 17. The offspring rats were injected intraperitoneally with pyridoxine daily from birth to prepuberty PND12-PND21), and behavioral changes in the offspring rats were observed in adulthood. Cannabinoid receptor interacting protein 1 (CNRIP1) and cannabinoid receptor-1 (CB1R), which regulate memory, cognitive and motor activity, were detected in the prefrontal cortex (PFC) and hippocampus of the offspring rats, and the cell proliferation in the hippocampal dentate gyrus (DG) was also observed. The results showed that the MAM rats spent less time the open arm in the elevated plus maze test, decreased discrimination coefficient in novel object recognition test, and decreased prepulse inhibition, while the MAM rats supplemented with pyridoxine in prepuberty did not show any of the above abnormal behavioral changes in adulthood. By examining related proteins in the PFC and hippocampus, we found that only CB1R protein expression was downregulated in the PFC, whereas CNRIP1 expression was not only elevated in the hippocampus, but also significantly increased in pyridoxine- supplemented MAM rats. Meanwhile, pyridoxine supplementation alleviated the reduction of doublecortin (DCX)-positive cells and Ki67-positive cells in MAM rats. These results indicate that prepuberty pyridoxine supplementation has a positive effect on the prevention of cognitive deficits and sensorimotor gating impairment in MAM-induced schizophrenia-like rats, accompanied by changes in the CB1R and CNRIP1 expression in PFC and hippocampus, as well as the regeneration of neurons in the DG region.
Collapse
Affiliation(s)
- Cheng Xue
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
- Department of Clinical Laboratory, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, PR China
| | - Xiao-Hui Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
- Department of Clinical Laboratory, Xiangyang First People's Hospital, Hubei University of Medicine, Xiangyang, 441000, PR China
| | - Hong-Qun Ding
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Xin Qian
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Meng-Yu Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Kai Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Zi-Wei Wei
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Ying Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Jun-Hai Jia
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China.
| | - Wei-Ning Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China.
| |
Collapse
|
3
|
Serrano M, Saumell-Esnaola M, Ocerin G, García del Caño G, Puente N, Sallés J, Rodríguez de Fonseca F, Rodríguez-Arias M, Gerrikagoitia I, Grandes P. Impact of Omega-3 on Endocannabinoid System Expression and Function, Enhancing Cognition and Behavior in Male Mice. Nutrients 2024; 16:4344. [PMID: 39770965 PMCID: PMC11676180 DOI: 10.3390/nu16244344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/03/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on the ECS, cognition, and behavior in a healthy brain remain unclear. Methods and Results: Here, we demonstrate that hippocampal synaptosomes from male mice fed an omega-3-rich diet exhibit increased levels of cannabinoid CB1 receptors (~30%), phospholipase C β1 (PLCβ1, ~30%), monoacylglycerol lipase (MAGL, ~30%), and cannabinoid receptor-interacting protein 1a (Crip1a, ~60%). Conversely, these synaptosomes show decreased levels of diacylglycerol lipase α (DAGLα, ~40%), synaptosomal-associated protein 25kDa (SNAP-25, ~30%), and postsynaptic density protein 95 (PSD-95, ~40%). Omega-3 intake also reduces Gαo and Gαi3 levels, though receptor-stimulated [35S]GTPγS binding remains unaffected. Stimulation of the medial perforant path (MPP) induced long-term potentiation (LTP) in omega-3-fed mice. This LTP was dependent on group I metabotropic glutamate receptors (mGluR), 2 arachidonoylglycerol (2-AG), CB1 receptors, N-type Ca2+ channels, and actin filaments. Behaviorally, omega-3-fed mice displayed reduced exploratory behavior and significantly improved object discrimination in the novel object recognition test (NORT). They also spent more time in open arms and exhibited reduced freezing time in the elevated plus maze (EPM), indicative of reduced anxiety-like behavior. Conclusions: Our findings suggest that omega-3 leverages the ECS to enhance brain function under normal conditions.
Collapse
Affiliation(s)
- Maitane Serrano
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (M.S.); (G.O.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Miquel Saumell-Esnaola
- Bioaraba, Neurofarmacología Celular y Molecular, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (G.G.d.C.); (J.S.)
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Garazi Ocerin
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (M.S.); (G.O.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Gontzal García del Caño
- Bioaraba, Neurofarmacología Celular y Molecular, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (G.G.d.C.); (J.S.)
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (M.S.); (G.O.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Joan Sallés
- Bioaraba, Neurofarmacología Celular y Molecular, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (G.G.d.C.); (J.S.)
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, 28029 Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Málaga-IBIMA, Regional University Hospital of Málaga, 29010 Málaga, Spain;
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, 46010 Valencia, Spain;
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (M.S.); (G.O.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (M.S.); (G.O.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
4
|
Gupta A, Gomes I, Osman A, Fujita W, Devi LA. Regulation of Cannabinoid and Opioid Receptor Levels by Endogenous and Pharmacological Chaperones. J Pharmacol Exp Ther 2024; 391:279-288. [PMID: 39103231 PMCID: PMC11493451 DOI: 10.1124/jpet.124.002187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Cannabinoid and opioid receptor activities can be modulated by a variety of post-translational mechanisms including the formation of interacting complexes. This study examines the involvement of endogenous and exogenous chaperones in modulating the abundance and activity of cannabinoid CB1 receptor (CB1R), δ opioid receptor (DOR), and CB1R-DOR interacting complexes. Focusing on endogenous protein chaperones, namely receptor transporter proteins (RTPs), we examined relative mRNA expression in the mouse spinal cord and found RTP4 to be expressed at higher levels compared with other RTPs. Next, we assessed the effect of RTP4 on receptor abundance by manipulating RTP4 expression in cell lines. Overexpression of RTP4 causes an increase and knock-down causes a decrease in the levels of CB1R, DOR, and CB1R-DOR interacting complexes; this is accompanied by parallel changes in signaling. The ability of small molecule lipophilic ligands to function as exogenous chaperones was examined using receptor-selective antagonists. Long-term treatment leads to increases in receptor abundance and activity with no changes in mRNA supporting a role as pharmacological chaperones. Finally, the effect of cannabidiol (CBD), a small molecule ligand and a major active component of cannabis, on receptor abundance and activity in mice was examined. We find that CBD administration leads to increases in receptor abundance and activity in mouse spinal cord. Together, these results highlight a role for chaperones (proteins and small molecules) in modulating levels and activity of CB1R, DOR, and their interacting complexes potentially through mechanisms including receptor maturation and trafficking. SIGNIFICANCE STATEMENT: This study highlights a role for chaperones (endogenous and small membrane-permeable molecules) in modulating levels of cannabinoid CB1 receptor, delta opioid receptor, and their interacting complexes. These chaperones could be developed as therapeutics for pathologies involving these receptors.
Collapse
MESH Headings
- Animals
- Mice
- Molecular Chaperones/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Mice, Inbred C57BL
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Humans
- Cannabidiol/pharmacology
- Receptors, Opioid, delta/metabolism
- Male
- Receptors, Opioid/metabolism
- Receptors, Opioid/genetics
- HEK293 Cells
- Receptors, Cannabinoid/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aya Osman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wakako Fujita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Maiorov SA, Laryushkin DP, Kritskaya KA, Zinchenko VP, Gaidin SG, Kosenkov AM. The Role of Ion Channels and Intracellular Signaling Cascades in the Inhibitory Action of WIN 55,212-2 upon Hyperexcitation. Brain Sci 2024; 14:668. [PMID: 39061409 PMCID: PMC11274798 DOI: 10.3390/brainsci14070668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Gi-coupled receptors, particularly cannabinoid receptors (CBRs), are considered perspective targets for treating brain pathologies, including epilepsy. However, the precise mechanism of the anticonvulsant effect of the CBR agonists remains unknown. We have found that WIN 55,212-2 (a CBR agonist) suppresses the synchronous oscillations of the intracellular concentration of Ca2+ ions (epileptiform activity) induced in the neurons of rat hippocampal neuron-glial cultures by bicuculline or NH4Cl. As we have demonstrated, the WIN 55,212-2 effect is mediated by CB1R receptors. The agonist suppresses Ca2+ inflow mediated by the voltage-gated calcium channels but does not alter the inflow mediated by NMDA, AMPA, and kainate receptors. We have also found that phospholipase C (PLC), protein kinase C (PKC), and G-protein-coupled inwardly rectifying K+ channels (GIRK channels) are involved in the molecular mechanism underlying the inhibitory action of CB1R activation against epileptiform activity. Thus, our results demonstrate that the antiepileptic action of CB1R agonists is mediated by different intracellular signaling cascades, including non-canonical PLC/PKC-associated pathways.
Collapse
Affiliation(s)
| | | | | | | | - Sergei G. Gaidin
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia (A.M.K.)
| | | |
Collapse
|
6
|
Ji MT, Pashankar N, Harter AM, Nemesh M, Przybyl KJ, Mulligan MK, Chen H, Redei EE. Limited WKY chromosomal regions confer increases in anxiety and fear memory in a F344 congenic rat strain. Physiol Genomics 2024; 56:327-342. [PMID: 38314698 PMCID: PMC11283897 DOI: 10.1152/physiolgenomics.00114.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
This study investigated the interaction between genetic differences in stress reactivity/coping and environmental challenges, such as acute stress during adolescence on adult contextual fear memory and anxiety-like behaviors. Fischer 344 (F344) and the inbred F344;WKY-Stresp3/Eer congenic strain (congenic), in which chromosomal regions from the Wistar-Kyoto (WKY) strain were introgressed into the F344 background, were exposed to a modified forced swim test during adolescence, while controls were undisturbed. In adulthood, fear learning and memory, assessed by contextual fear conditioning, were significantly greater in congenic animals compared with F344 animals, and stress during adolescence increased them even further in males of both strains. Anxiety-like behavior, measured by the open field test, was also greater in congenic than F344 animals, and stress during adolescence increased it further in both strains of adult males. Whole genome sequencing of the F344;WKY-Stresp3/Eer strain revealed an enrichment of WKY genotypes in chromosomes 9, 14, and 15. An example of functional WKY sequence variations in the congenic strain, cannabinoid receptor interacting protein 1 (Cnrip1) had a Cnrip1 transcript isoform that lacked two exons. Although the original hypothesis that the genetic predisposition to increased anxiety of the WKY donor strain would exaggerate fear memory relative to the background strain was confirmed, the consequences of adolescent stress were strain independent but sex dependent in adulthood. Molecular genomic approaches combined with genetic mapping of WKY sequence variations in chromosomes 9, 14, and 15 could aid in finding quantitative trait genes contributing to the variation in fear memory.NEW & NOTEWORTHY This study found that 1) whole genome sequencing of congenic strains should be a criterion for their recognition; 2) sequence variations between Wistar-Kyoto and Fischer 344 strains at regions of chromosomes 9, 14, and 15 contribute to differences in contextual fear memory and anxiety-like behaviors; and 3) stress during adolescence affects these behaviors in males, but not females, and is independent of strain.
Collapse
Affiliation(s)
- Michelle T Ji
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Neha Pashankar
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Aspen M Harter
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Mariya Nemesh
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Katherine J Przybyl
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Megan K Mulligan
- Department of Genetics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
7
|
Buneeva OA, Kapitsa IG, Kazieva LS, Vavilov NE, Zgoda VG, Medvedev AE. The delayed effect of rotenone on the relative content of brain isatin-binding proteins of rats with experimental parkinsonism. BIOMEDITSINSKAIA KHIMIIA 2024; 70:25-32. [PMID: 38450678 DOI: 10.18097/pbmc20247001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Isatin (indoldione-2,3) is an endogenous biological regulator found in the brain, peripheral tissues, and biological fluids of humans and animals. Its biological activity is realized via isatin-binding proteins, many of which were identified during proteomic profiling of the brain of mice and rats. A number of these proteins are related to the development of neurodegenerative diseases. Previously, using a model of experimental Parkinsonism induced by a seven-day course of rotenone injections, we have observed behavioral disturbances, as well as changes in the profile and relative content of brain isatin-binding proteins. In this study, we have investigated behavioral responses and the relative content of brain isatin-binding proteins in rats with rotenone-induced Parkinsonism 5 days after the last administration of this neurotoxin. Despite the elimination of rotenone, animals exhibited motor and coordination impairments. Proteomic profiling of isatin-binding proteins revealed changes in the relative content of 120 proteins (the relative content of 83 proteins increased and that of 37 proteins decreased). Comparison of isatin-binding proteins characterized by the changes in the relative content observed in the brain right after the last injection of rotenone (n=16) and 5 days later (n=11) revealed only two common proteins (glyceraldehyde-3-phosphate dehydrogenase and subunit B of V-type proton ATPase). However, most of these proteins are associated with neurodegeneration, including Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - I G Kapitsa
- Institute of Biomedical Chemistry, Moscow, Russia; Zakusov Institute of Pharmacology, Moscow, Russia
| | - L Sh Kazieva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - N E Vavilov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
8
|
Maroto IB, Moreno E, Costas-Insua C, Merino-Gracia J, Diez-Alarcia R, Álvaro-Blázquez A, Canales Á, Canela EI, Casadó V, Urigüen L, Rodríguez-Crespo I, Guzmán M. Selective inhibition of cannabinoid CB 1 receptor-evoked signalling by the interacting protein GAP43. Neuropharmacology 2023; 240:109712. [PMID: 37689260 DOI: 10.1016/j.neuropharm.2023.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Cannabinoids exert pleiotropic effects on the brain by engaging the cannabinoid CB1 receptor (CB1R), a presynaptic metabotropic receptor that regulates key neuronal functions in a highly context-dependent manner. We have previously shown that CB1R interacts with growth-associated protein of 43 kDa (GAP43) and that this interaction inhibits CB1R function on hippocampal excitatory synaptic transmission, thereby impairing the therapeutic effect of cannabinoids on epileptic seizures in vivo. However, the underlying molecular features of this interaction remain unexplored. Here, we conducted mechanistic experiments on HEK293T cells co-expressing CB1R and GAP43 and show that GAP43 modulates CB1R signalling in a strikingly selective manner. Specifically, GAP43 did not affect the archetypical agonist-evoked (i) CB1R/Gi/o protein-coupled signalling pathways, such as cAMP/PKA and ERK, or (ii) CB1R internalization and intracellular trafficking. In contrast, GAP43 blocked an alternative agonist-evoked CB1R-mediated activation of the cytoskeleton-associated ROCK signalling pathway, which relied on the GAP43-mediated impairment of CB1R/Gq/11 protein coupling. GAP43 also abrogated CB1R-mediated ROCK activation in mouse hippocampal neurons, and this process led in turn to a blockade of cannabinoid-evoked neurite collapse. An NMR-based characterization of the CB1R-GAP43 interaction supported that GAP43 binds directly and specifically through multiple amino acid stretches to the C-terminal domain of the receptor. Taken together, our findings unveil a CB1R-Gq/11-ROCK signalling axis that is selectively impaired by GAP43 and may ultimately control neurite outgrowth.
Collapse
Affiliation(s)
- Irene B Maroto
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Carlos Costas-Insua
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Javier Merino-Gracia
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country/Euskal Herriko Unibertsitatea, 48940, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain; Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Alicia Álvaro-Blázquez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Ángeles Canales
- Department of Organic Chemistry, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
| | - Enric I Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country/Euskal Herriko Unibertsitatea, 48940, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain; Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Ignacio Rodríguez-Crespo
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
| |
Collapse
|
9
|
Dandapath I, Gupta R, Singh J, Shukla N, Jha P, Sharma V, Suri A, Sharma MC, Suri V, Sarkar C, Kulshreshtha R. Long Non-coding RNA and mRNA Co-expression Network Reveals Novel Players in Pleomorphic Xanthoastrocytoma. Mol Neurobiol 2022; 59:5149-5167. [PMID: 35674862 DOI: 10.1007/s12035-022-02893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
Histological interpretation of the rare pleomorphic xanthoastrocytoma (PXA) has been the holy grail for treatment options. However, no stand-alone clinical interventions have been developed owing to the lack of gene expression profiling data in PXA/APXA patients. We first time report the comprehensive analyses of the coding as well as long non-coding RNA (lncRNA) signatures of PXA/APXA patients. Several genes such as IGFBP2, NF1, FOS, ERBB2, and lncRNAs such as NEAT1, HOTAIRM1, and GAS5 known to play crucial roles in glioma patients were also deregulated in PXA patients suggesting the commonality in the molecular signatures. PPI network, co-expression, and lncRNA-mRNA interaction studies unraveled hub genes (such as ERBB2, FOS, RPA1) and networks that may play a critical role in PXA biology. The most enriched pathways based on gene profiles were related to TLR, chemokine, MAPK, Rb, and PI3K-Akt signaling pathways. The lncRNA targets were enriched in glucuronidation, adipogenesis, TGF-beta signaling, EGF/EGFR signaling, and cell cycle pathways. Interestingly, several mRNAs like PARVG, and ABI2 were found to be targeted by multiple lncRNAs suggesting a tight control of their levels. Some of the most prominent lncRNA-mRNA pairs were LOC728730: MRPL9, XLOC_l2_011987: ASIC2, lnc-C1QTNF5-1: RNF26. Notably, several lncRNAs such as lnc-CETP-1, lnc-XRCC3-1, lnc-RPL31-1, lnc-USP13-1, and MAPKAPK5-AS1, and genes such as RPA1, NTRK3, and CNRP1 showed strong correlation to the progression-free survival of PXA patients suggesting their potential as novel biomarkers. Overall, the findings of this study may facilitate the development of a new realm of RNA biology in PXA that may have clinical significance in the future.
Collapse
Affiliation(s)
- Iman Dandapath
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Rahul Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Jyotsna Singh
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Nidhi Shukla
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Prerana Jha
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Vikas Sharma
- All India Institute of Medical Sciences, CCRF, New Delhi, 110029, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - M C Sharma
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Vaishali Suri
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India.
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
10
|
Cuddihey H, MacNaughton WK, Sharkey KA. Role of the Endocannabinoid System in the Regulation of Intestinal Homeostasis. Cell Mol Gastroenterol Hepatol 2022; 14:947-963. [PMID: 35750314 PMCID: PMC9500439 DOI: 10.1016/j.jcmgh.2022.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
The maintenance of intestinal homeostasis is fundamentally important to health. Intestinal barrier function and immune regulation are key determinants of intestinal homeostasis and are therefore tightly regulated by a variety of signaling mechanisms. The endocannabinoid system is a lipid mediator signaling system widely expressed in the gastrointestinal tract. Accumulating evidence suggests the endocannabinoid system is a critical nexus involved in the physiological processes that underlie the control of intestinal homeostasis. In this review we will illustrate how the endocannabinoid system is involved in regulation of intestinal permeability, fluid secretion, and immune regulation. We will also demonstrate a reciprocal regulation between the endocannabinoid system and the gut microbiome. The role of the endocannabinoid system is complex and multifaceted, responding to both internal and external factors while also serving as an effector system for the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Hailey Cuddihey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Correspondence Address correspondence to: Keith Sharkey, PhD, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
11
|
Kolb P, Kenakin T, Alexander SPH, Bermudez M, Bohn LM, Breinholt CS, Bouvier M, Hill SJ, Kostenis E, Martemyanov K, Neubig RR, Onaran HO, Rajagopal S, Roth BL, Selent J, Shukla AK, Sommer ME, Gloriam DE. Community Guidelines for GPCR Ligand Bias: IUPHAR Review XX. Br J Pharmacol 2022; 179:3651-3674. [PMID: 35106752 PMCID: PMC7612872 DOI: 10.1111/bph.15811] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptors modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This 'biased signaling' paradigm requires that we now characterize physiological signaling not just by receptors but by ligand-receptor pairs. Ligands eliciting biased signaling may constitute better drugs with higher efficacy and fewer adverse effects. However, ligand bias is very complex, making reproducibility and description challenging. Here, we provide guidelines and terminology for any scientists to design and report ligand bias experiments. The guidelines will aid consistency and clarity, as the basic receptor research and drug discovery communities continue to advance our understanding and exploitation of ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and should benefit from and contribute to the implementation of the guidelines, together improving translation from in vitro to disease-relevant in vivo models.
Collapse
Affiliation(s)
- Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, North, Carolina, USA
| | | | - Marcel Bermudez
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Laura M Bohn
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Christian S Breinholt
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| | - Stephen J Hill
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Kirill Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Rick R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - H Ongun Onaran
- Molecular Biology and Technology Development Unit, Department of Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, North, Carolina, USA
| | - Jana Selent
- Research Programme on Biomedical Informatics, Hospital Del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Martha E Sommer
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Current affiliation: ISAR Bioscience Institute, Munich-Planegg, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
De Sa Nogueira D, Bourdy R, Alcala-Vida R, Filliol D, Andry V, Goumon Y, Zwiller J, Romieu P, Merienne K, Olmstead MC, Befort K. Hippocampal Cannabinoid 1 Receptors Are Modulated Following Cocaine Self-administration in Male Rats. Mol Neurobiol 2022; 59:1896-1911. [PMID: 35032317 DOI: 10.1007/s12035-022-02722-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
Cocaine addiction is a complex pathology inducing long-term neuroplastic changes that, in turn, contribute to maladaptive behaviors. This behavioral dysregulation is associated with transcriptional reprogramming in brain reward circuitry, although the mechanisms underlying this modulation remain poorly understood. The endogenous cannabinoid system may play a role in this process in that cannabinoid mechanisms modulate drug reward and contribute to cocaine-induced neural adaptations. In this study, we investigated whether cocaine self-administration induces long-term adaptations, including transcriptional modifications and associated epigenetic processes. We first examined endocannabinoid gene expression in reward-related brain regions of the rat following self-administered (0.33 mg/kg intravenous, FR1, 10 days) cocaine injections. Interestingly, we found increased Cnr1 expression in several structures, including prefrontal cortex, nucleus accumbens, dorsal striatum, hippocampus, habenula, amygdala, lateral hypothalamus, ventral tegmental area, and rostromedial tegmental nucleus, with most pronounced effects in the hippocampus. Endocannabinoid levels, measured by mass spectrometry, were also altered in this structure. Chromatin immunoprecipitation followed by qPCR in the hippocampus revealed that two activating histone marks, H3K4Me3 and H3K27Ac, were enriched at specific endocannabinoid genes following cocaine intake. Targeting CB1 receptors using chromosome conformation capture, we highlighted spatial chromatin re-organization in the hippocampus, as well as in the nucleus accumbens, suggesting that destabilization of the chromatin may contribute to neuronal responses to cocaine. Overall, our results highlight a key role for the hippocampus in cocaine-induced plasticity and broaden the understanding of neuronal alterations associated with endocannabinoid signaling. The latter suggests that epigenetic modifications contribute to maladaptive behaviors associated with chronic drug use.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France.,Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Romain Bourdy
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Rafael Alcala-Vida
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Dominique Filliol
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Virginie Andry
- Institut Des Neurosciences Cellulaires Et Intégratives (INCI), UPR 3212, CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France
| | - Yannick Goumon
- Institut Des Neurosciences Cellulaires Et Intégratives (INCI), UPR 3212, CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Pascal Romieu
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Mary C Olmstead
- Department of Psychology, Center for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France.
| |
Collapse
|
13
|
BiP Heterozigosity Aggravates Pathological Deterioration in Experimental Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms222212533. [PMID: 34830414 PMCID: PMC8621319 DOI: 10.3390/ijms222212533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
In the present study, we investigated the involvement of the chaperone protein BiP (also known as GRP78 or Hspa5), a master regulator of intracellular proteostasis, in two mouse models of neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD). To this end, we used mice bearing partial genetic deletion of the BiP gene (BiP+/− mice), which, for the ALS model, were crossed with mutant SOD1 (mSOD1) transgenic mice to generate mSOD1/BiP+/− double mutant mice. Our data revealed a more intense neurological decline in the double mutants, reflected in a greater deterioration of the neurological score and rotarod performance, with also a reduced animal survival, compared to mSOD1 transgenic mice. Such worsening was associated with higher microglial (labelled with Iba-1 immunostaining) and, to a lesser extent, astroglial (labelled with GFAP immunostaining) immunoreactivities found in the double mutants, but not with a higher loss of spinal motor neurons (labelled with Nissl staining) in the spinal cord. The morphological analysis of Iba-1 and GFAP-positive cells revealed a higher presence of activated cells, characterized by elevated cell body size and shorter processes, in double mutants compared to mSOD1 mice with normal BiP expression. In the case of the PD model, BiP+/− mice were unilaterally lesioned with the parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA). In this case, however, we did not detect a greater susceptibility to damage in mutant mice, as the motor defects caused by 6-OHDA in the pole test and the cylinder rearing test, as well as the losses in tyrosine hydroxylase-containing neurons and the elevated glial reactivity (labelled with CD68 and GFAP immunostaining) detected in the substantia nigra were of similar magnitude in BiP+/− mice compared with wildtype animals. Therefore, our findings support the view that a dysregulation of the protein BiP may contribute to ALS pathogenesis. As BiP has been recently related to cannabinoid type-1 (CB1) receptor function, our work also opens the door to future studies on a possible link between BiP and the neuroprotective effects of cannabinoids that have been widely reported in this neuropathological context. In support of this possibility, preliminary data indicate that CB1 receptor levels are significantly reduced in mSOD1 mice having partial deletion of BiP gene.
Collapse
|
14
|
de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, Andrade-da-Costa BLDS, Trevenzoli IH. Quality of Life and a Surveillant Endocannabinoid System. Front Neurosci 2021; 15:747229. [PMID: 34776851 PMCID: PMC8581450 DOI: 10.3389/fnins.2021.747229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.
Collapse
Affiliation(s)
- Ricardo Augusto de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hércules Rezende Freitas
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Macedo de Almeida
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Fernanda Schuck
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Booth WT, Clodfelter JE, Leone-Kabler S, Hughes EK, Eldeeb K, Howlett AC, Lowther WT. Cannabinoid receptor interacting protein 1a interacts with myristoylated Gα i N terminus via a unique gapped β-barrel structure. J Biol Chem 2021; 297:101099. [PMID: 34418434 PMCID: PMC8446797 DOI: 10.1016/j.jbc.2021.101099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/15/2022] Open
Abstract
Cannabinoid receptor interacting protein 1a (CRIP1a) modulates CB1 cannabinoid receptor G-protein coupling in part by altering the selectivity for Gαi subtype activation, but the molecular basis for this function of CRIP1a is not known. We report herein the first structure of CRIP1a at a resolution of 1.55 Å. CRIP1a exhibits a 10-stranded and antiparallel β-barrel with an interior comprised of conserved hydrophobic residues and loops at the bottom and a short helical cap at the top to exclude solvent. The β-barrel has a gap between strands β8 and β10, which deviates from β-sandwich fatty acid–binding proteins that carry endocannabinoid compounds and the Rho-guanine nucleotide dissociation inhibitor predicted by computational threading algorithms. The structural homology search program DALI identified CRIP1a as homologous to a family of lipidated-protein carriers that includes phosphodiesterase 6 delta subunit and Unc119. Comparison with these proteins suggests that CRIP1a may carry two possible types of cargo: either (i) like phosphodiesterase 6 delta subunit, cargo with a farnesyl moiety that enters from the top of the β-barrel to occupy the hydrophobic interior or (ii) like Unc119, cargo with a palmitoyl or a myristoyl moiety that enters from the side where the missing β-strand creates an opening to the hydrophobic pocket. Fluorescence polarization analysis demonstrated CRIP1a binding of an N-terminally myristoylated 9-mer peptide mimicking the Gαi N terminus. However, CRIP1a could not bind the nonmyristolyated Gαi peptide or cargo of homologs. Thus, binding of CRIP1a to Gαi proteins represents a novel mechanism to regulate cell signaling initiated by the CB1 receptor.
Collapse
Affiliation(s)
- William T Booth
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jill E Clodfelter
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Erin K Hughes
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Khalil Eldeeb
- Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina, USA.
| | - W Todd Lowther
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina, USA.
| |
Collapse
|
16
|
Oyagawa CRM, Grimsey NL. Cannabinoid receptor CB 1 and CB 2 interacting proteins: Techniques, progress and perspectives. Methods Cell Biol 2021; 166:83-132. [PMID: 34752341 DOI: 10.1016/bs.mcb.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cannabinoid receptors 1 and 2 (CB1 and CB2) are implicated in a range of physiological processes and have gained attention as promising therapeutic targets for a number of diseases. Protein-protein interactions play an integral role in modulating G protein-coupled receptor (GPCR) expression, subcellular distribution and signaling, and the identification and characterization of these will not only improve our understanding of GPCR function and biology, but may provide a novel avenue for therapeutic intervention. A variety of techniques are currently being used to investigate GPCR protein-protein interactions, including Förster/fluorescence and bioluminescence resonance energy transfer (FRET and BRET), proximity ligation assay (PLA), and bimolecular fluorescence complementation (BiFC). However, the reliable application of these methodologies is dependent on the use of appropriate controls and the consideration of the physiological context. Though not as extensively characterized as some other GPCRs, the investigation of CB1 and CB2 interacting proteins is a growing area of interest, and a range of interacting partners have been identified to date. This review summarizes the current state of the literature regarding the cannabinoid receptor interactome, provides commentary on the methodologies and techniques utilized, and discusses future perspectives.
Collapse
Affiliation(s)
- Caitlin R M Oyagawa
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
17
|
Egaña-Huguet J, Saumell-Esnaola M, Achicallende S, Soria-Gomez E, Bonilla-Del Río I, García Del Caño G, Barrondo S, Sallés J, Gerrikagoitia I, Puente N, Elezgarai I, Grandes P. Lack of the Transient Receptor Potential Vanilloid 1 Shifts Cannabinoid-Dependent Excitatory Synaptic Plasticity in the Dentate Gyrus of the Mouse Brain Hippocampus. Front Neuroanat 2021; 15:701573. [PMID: 34305539 PMCID: PMC8294191 DOI: 10.3389/fnana.2021.701573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) participates in synaptic functions in the brain. In the dentate gyrus, post-synaptic TRPV1 in the granule cell (GC) dendritic spines mediates a type of long-term depression (LTD) of the excitatory medial perforant path (MPP) synapses independent of pre-synaptic cannabinoid CB1 receptors. As CB1 receptors also mediate LTD at these synapses, both CB1 and TRPV1 might be influencing the activity of each other acting from opposite synaptic sites. We tested this hypothesis in the MPP–GC synapses of mice lacking TRPV1 (TRPV1-/-). Unlike wild-type (WT) mice, low-frequency stimulation (10 min at 10 Hz) of TRPV1-/- MPP fibers elicited a form of long-term potentiation (LTP) that was dependent on (1) CB1 receptors, (2) the endocannabinoid 2-arachidonoylglycerol (2-AG), (3) rearrangement of actin filaments, and (4) nitric oxide signaling. These functional changes were associated with an increase in the maximum binding efficacy of guanosine-5′-O-(3-[35S]thiotriphosphate) ([35S]GTPγS) stimulated by the CB1 receptor agonist CP 55,940, and a significant decrease in receptor basal activation in the TRPV1-/- hippocampus. Finally, TRPV1-/- hippocampal synaptosomes showed an augmented level of the guanine nucleotide-binding (G) Gαi1, Gαi2, and Gαi3 protein alpha subunits. Altogether, the lack of TRPV1 modifies CB1 receptor signaling in the dentate gyrus and causes the shift from CB1 receptor-mediated LTD to LTP at the MPP–GC synapses.
Collapse
Affiliation(s)
- Jon Egaña-Huguet
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, Centro de Investigación Biomédica en Red de Salud Mental, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
| | - Svein Achicallende
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Edgar Soria-Gomez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Gontzal García Del Caño
- Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain.,Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, Centro de Investigación Biomédica en Red de Salud Mental, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, Centro de Investigación Biomédica en Red de Salud Mental, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|