1
|
Tecedor L, Chen YH, Leib DE, Ranum PT, Keiser MS, Lewandowski BC, Carrell EM, Lysenko E, Huerta-Ocampo I, Arora S, Cheng C, Liu X, Davidson BL. An AAV variant selected through NHP screens robustly transduces the brain and drives secreted protein expression in NHPs and mice. Sci Transl Med 2025; 17:eadr2531. [PMID: 40367194 DOI: 10.1126/scitranslmed.adr2531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/08/2024] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
Recent work has shown that prolonged expression of recombinant proteins after adeno-associated virus (AAV)-mediated delivery of gene therapy to long-lived, ventricle-lining ependymal cells can profoundly affect disease phenotypes in animal models of neurodegenerative diseases. Here, we performed in vivo screens of millions of peptide-modified capsid variants of AAV1, AAV2, and AAV9 parental serotypes in adult nonhuman primates (NHPs) to identify capsids with potent transduction of key brain tissues, including ependyma, after intracerebroventricular injection. Through these screens, we identified an AAV capsid, AAV-Ep+, with markedly increased potency in transducing ependymal cells and cerebral neurons in NHPs. AAV-Ep+'s potency was conserved in three species of NHP, two mouse strains, and human neurons derived from induced pluripotent stem cells. To apply AAV-Ep+ to the treatment of ceroid lipofuscinosis type 2 disease, a lysosomal storage disorder caused by loss-of-function mutations in tripeptidyl-peptidase 1 (TPP1), we used the capsid to package the human TPP1 transgene (AAV-Ep+.hTPP1) and delivered the construct by intracerebroventricular injection into mice lacking TPP1 activity. AAV-Ep+ provided robust and therapeutically relevant TPP1 protein concentrations in these mice, significantly improving tremor and life span. In NHPs, high cerebrospinal fluid (CSF) TPP1 concentrations were achieved after intracerebroventricular delivery of AAV-Ep+.hTPP1 at a total dose of 1 × 1012 viral genomes, which was more than 30× lower than previously reported doses in NHPs. These results suggest that AAV-Ep+ may be a potent vector for gene therapy applications where CSF protein expression is required.
Collapse
Affiliation(s)
- Luis Tecedor
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yong Hong Chen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David E Leib
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Latus Bio, Philadelphia, PA 19104, USA
| | - Paul T Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Latus Bio, Philadelphia, PA 19104, USA
| | - Megan S Keiser
- Department of Neurological Surgery, NeuroTech Institute, Ohio State University, Columbus, OH 43210 USA
| | - Brian C Lewandowski
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elli M Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elena Lysenko
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Icnelia Huerta-Ocampo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sakshi Arora
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Congsheng Cheng
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xueyuan Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Kowsalya K, Vidya N, Halka J, Preetha JSY, Saradhadevi M, Sahayarayan JJ, Gurusaravanan P, Arun M. Plant glycosides and glycosidases: classification, sources, and therapeutic insights in current medicine. Glycoconj J 2025; 42:107-124. [PMID: 39992582 DOI: 10.1007/s10719-025-10180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Plant glycosides have a broad spectrum of pharmaceutical activities primarily due to the glycosidic residues present in their structure. Especially, the therapeutic glycosides can be classified into many compounds based on the sugar moiety, chains/ saccharide units, glycosidic linkages, and aglycones. Among many classes, the widely used pharmacological classification is based on the aglycones linked to the glycoside molecule. Based on these non-sugar moiety (aglycones), plant glycosides are further classified into twelve different types of glycosides along with the recent discovery of novel (cannabinoid) glycosides. They are called alcoholic, anthraquinone, coumarin, chromone, cyanogenic, flavonoid, phenolic, cardiac, saponin, thio, steviol, iridoid, and cannabinoid glycosides. Each of the plant glycosides has been discussed in this paper with, origin, structure, and abundant presence in a specific family of plants. Besides, the therapeutic roles of these plant glycosides are further described in detail to validate their efficacies in the human health care system. On the other hand, glycosides are inactive until enzymatic hydrolysis releases their active aglycone, enabling targeted drug delivery. This process enhances aglycone solubility and stability, improving bioavailability and therapeutic efficacy. They target specific receptors or enzymes, minimizing off-target effects and enhancing pharmacological outcomes. Derived from plants, glycosides offer diverse chemical structures for drug development. They are integral to traditional medicine and modern pharmaceuticals, utilized in therapies ranging from cardiology to antimicrobial treatments.
Collapse
Affiliation(s)
- Kumaresan Kowsalya
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Nandakumar Vidya
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Jayachandran Halka
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | | | | | | | | | - Muthukrishnan Arun
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| |
Collapse
|
3
|
Corazolla EM, Langeveld M, Brands MMMG, Sjouke B, Hollak CEM. Treatment Beliefs Reflect Unmet Clinical Needs in Lysosomal Storage Diseases: An Opportunity for a Patient-Centered Approach. JIMD Rep 2025; 66:e70003. [PMID: 40017528 PMCID: PMC11864875 DOI: 10.1002/jmd2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025] Open
Abstract
Despite life-long pharmacotherapy for many people affected by lysosomal storage diseases, no data are available on their beliefs about their treatments. Therapeutic options range from disease-specific, with varying levels of effectiveness, to purely supportive. This spectrum is illustrated by the three diseases Gaucher disease type 1 (effective disease-specific therapies), Fabry disease (disease-specific therapies with variable effectiveness), and mucopolysaccharidosis type III A/B (supportive care only). Employing the Necessity-Concerns Framework of the Beliefs in Medicine Questionnaire, we investigated intra- and intergroup variability in adults with Gaucher disease type 1, Fabry disease, and parents of children with mucopolysaccharidosis type III A/B. Participants rated necessity and concern items on a Likert scale, leading to categorization as accepting, skeptical, indifferent, or ambivalent. Self-reported demographic, disease-, and therapy-related data were also obtained. Eighty-one surveys were completed. Gaucher disease respondents (n = 15) were overwhelmingly categorized as accepting (high necessity, low concern). Female Fabry disease respondents (n = 43) were almost equally distributed over all categories except accepting. Male Fabry disease respondents (n = 16) were mostly ambivalent or accepting, indicating overall high necessity scores but varying concern. All mucopolysaccharidosis type III participants (n = 7) were categorized as indifferent (low necessity, low concern). The Beliefs in Medicine Questionnaire emerged as a valuable and feasibly employable tool for individual and group assessments in these populations. It reveals differences in beliefs aligned with current unmet medical needs. Expansion of this approach is warranted to optimize personalized counseling on therapeutic choices and to align drug development with the needs and beliefs of potential recipients.
Collapse
Affiliation(s)
- Eleonore M. Corazolla
- Endocrinology and MetabolismAmsterdam UMC Location University of AmsterdamAmsterdamthe Netherlands
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC Location University of AmsterdamAmsterdamthe Netherlands
- Inborn Errors of MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdamthe Netherlands
| | - Mirjam Langeveld
- Endocrinology and MetabolismAmsterdam UMC Location University of AmsterdamAmsterdamthe Netherlands
- Inborn Errors of MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdamthe Netherlands
| | - Marion M. M. G. Brands
- Inborn Errors of MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdamthe Netherlands
- Department of Paediatrics, Division of Metabolic DiseasesAmsterdam UMC, Location University of Amsterdam, Emma Children's HospitalAmsterdamthe Netherlands
| | - Barbara Sjouke
- Department of Internal MedicineRadboudumcNijmegenthe Netherlands
| | - Carla E. M. Hollak
- Endocrinology and MetabolismAmsterdam UMC Location University of AmsterdamAmsterdamthe Netherlands
- Inborn Errors of MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdamthe Netherlands
| |
Collapse
|
4
|
Priglinger C, Courage C, Maier EM. Enzyme Replacement Therapy in CLN2-Associated Retinopathy. Klin Monbl Augenheilkd 2025; 242:213-218. [PMID: 40127655 DOI: 10.1055/a-2528-7886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Neuronal ceroid lipofuscinoses, also known as Batten disease, are comprised of a group of genetically heterogenous neurodegenerative conditions, characterized by dementia, epilepsy, motor deterioration, and blindness. The underlying pathology is a dysregulation of lysosomal catabolic protein metabolism, resulting in an accumulation of lipofuscein-like material within the lysosomes in neuronal tissue, which ultimately leads to atrophy in the central nervous system and in the retina. Ceroid lipofuscinosis type 2 (CLN2) is caused by biallelic pathogenic variants in the TPP1 gene, encoding lysosomal tripeptidyl peptidase 1 (TPP-1). The classic late-infantile phenotype of CLN2 disease has an age of onset between 2 and 4 years and manifests with seizures and speech delay, followed by progressive cognitive and motor decline, vision loss, and early death. Vision loss occurs secondary to retinal degeneration and begins in the perifoveal ellipsoid zone, leading to bull's eye maculopathy, followed by generalized retinal thinning. In 2017, an intracerebroventricular enzyme replacement therapy (ERT) using recombinant human TPP1 (rhTPP1), cerliponase alfa, was approved as a disease-modifying treatment for CLN2 disease. The therapy slows psychomotor decline but fails to prevent loss of vision. In a canine model of CLN2 disease, intravitreal rhTPP1 was shown to halt retinal degeneration. A prospective, interventional, controlled, open-label compassionate-use study evidenced safety of 0.2 mg intravitreal rhTPP1 every 8 weeks in humans and its efficacy in reducing the rate of macular volume loss in patients who were still in the degenerative phase. One ongoing clinical phase I/II study is investigating the safety and efficacy of intravitreal rhTPP1 at 4 weekly intervals over 24 months (NCT05152914); another clinical phase II dose escalation trial is planned. In this review, we summarize the current knowledge on ERT for CLN2 retinopathy, complemented with our own experience from an individual treatment. The treatment now appears to be safe and markedly delays retinal degeneration, thereby preserving visual function and increasing the quality of life of the patient. This could be particularly relevant for those patients who were started on intracerebroventricular ERT early and still have good motor and language function. For this patient population, intravitreal ERT could be a valuable bridging therapy until other therapies such as gene therapy become available.
Collapse
Affiliation(s)
- Claudia Priglinger
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Esther M Maier
- Dr. von Hauner Children's Hospital, Section of Inborn Errors of Metabolism, Munich, Germany
- Labor Becker MVZ eGbR, Newborn Screening Unit, Munich, Germany
| |
Collapse
|
5
|
Alhowyan AA, Harisa GI. From Molecular Therapies to Lysosomal Transplantation and Targeted Drug Strategies: Present Applications, Limitations, and Future Prospects of Lysosomal Medications. Biomolecules 2025; 15:327. [PMID: 40149863 PMCID: PMC11940627 DOI: 10.3390/biom15030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Lysosomes are essential intracellular organelles involved in plentiful cellular processes such as cell signaling, metabolism, growth, apoptosis, autophagy, protein processing, and maintaining cellular homeostasis. Their dysfunction is linked to various diseases, including lysosomal storage disorders, inflammation, cancer, cardiovascular diseases, neurodegenerative conditions, and aging. This review focuses on current and emerging therapies for lysosomal diseases (LDs), including small medicines, enzyme replacement therapy (ERT), gene therapy, transplantation, and lysosomal drug targeting (LDT). This study was conducted through databases like PubMed, Google Scholar, Science Direct, and other research engines. To treat LDs, medicines target the lysosomal membrane, acidification processes, cathepsins, calcium signaling, mTOR, and autophagy. Moreover, small-molecule therapies using chaperones, macro-therapies like ERT, gene therapy, and gene editing technologies are used as therapy for LDs. Additionally, endosymbiotic therapy, artificial lysosomes, and lysosomal transplantation are promising options for LD management. LDT enhances the therapeutic outcomes in LDs. Extracellular vesicles and mannose-6-phosphate-tagged nanocarriers display promising approaches for improving LDT. This study concluded that lysosomes play a crucial role in the pathophysiology of numerous diseases. Thus, restoring lysosomal function is essential for treating a wide range of conditions. Despite endosymbiotic therapy, artificial lysosomes, lysosomal transplantation, and LDT offering significant potential for LD control, there are ample challenges regarding safety and ethical implications.
Collapse
Affiliation(s)
- Adel A. Alhowyan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Gamaleldin I. Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| |
Collapse
|
6
|
Simonaro CM, Yasuda M, Schuchman EH. Endocannabinoid receptor 2 is a potential biomarker and therapeutic target for the lysosomal storage disorders. J Inherit Metab Dis 2025; 48:e12813. [PMID: 39569490 PMCID: PMC11670223 DOI: 10.1002/jimd.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Herein, we studied the expression of endocannabinoid receptor 2 (CB2R), a known inflammation mediator, in several lysosomal storage disorder (LSD) animal models and evaluated it as a potential biomarker and therapeutic target for these diseases. CB2R was highly elevated in the plasma of Farber disease and mucopolysaccharidosis (MPS) type IIIA mice, followed by Fabry disease and MPS type I mice. Mice with acid sphingomyelinase-deficient Niemann-Pick disease (ASMD) and rats with MPS type VI exhibited little or no plasma CB2R elevation. High-level expression of CB2R was also observed in tissues of Farber and MPS IIIA mice. Treatment of MPS IIIIA patient cells with CB2R agonists led to a reduction of CB2R and monocyte chemoattractant protein-1 (MCP-1), a chemotactic factor that is elevated in this LSD. Treatment of MPS IIIA mice with one of these agonists (JWH133) led to a reduction of plasma and tissue CB2R and MCP-1, a reduction of glial fibrillary acidic protein (GFAP) in the brain, and an improvement in hanging test performance. JWH133 treatment of Farber disease mice also led to a reduction of MCP-1 in tissues and plasma, and treatment of these mice by enzyme replacement therapy (ERT) led to a reduction of plasma CB2R, indicating its potential to monitor treatment response. Overall, these findings suggest that CB2R should be further examined as a potential therapeutic target for the LSDs and may also be a useful biomarker to monitor the impact of therapies.
Collapse
Affiliation(s)
- Calogera M. Simonaro
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Makiko Yasuda
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Edward H. Schuchman
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
7
|
Tang YH, Liu YS, Fujita M. Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain. Glycoconj J 2024; 41:395-405. [PMID: 39382616 PMCID: PMC11735522 DOI: 10.1007/s10719-024-10169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Lysosomal storage diseases (LSDs) are genetic disorders caused by mutations in lysosomal enzymes, lysosomal membrane proteins or genes related to intracellular transport that result in impaired lysosomal function. Currently, the primary treatment for several LSDs is enzyme replacement therapy (ERT), which involves intravenous administration of the deficient lysosomal enzymes to ameliorate symptoms. The efficacy of ERT largely depends on the mannose-6-phosphate (M6P) modification of the N-glycans associated with the enzyme, as M6P is a marker for the recognition and trafficking of lysosomal enzymes. In cells, N-glycan processing and M6P modification occur in the endoplasmic reticulum and Golgi apparatus. This is a complex process involving multiple enzymes. In the trans-Golgi network (TGN), M6P-modified enzymes are recognized by the cation-independent mannose-6-phosphate receptor (CIMPR) and transported to the lysosome to exert their activities. In this study, we used the 9th domain of CIMPR, which exhibits a high affinity for M6P binding, and fused it with the Fc domain of human immunoglobulin G1 (IgG1). The resulting fusion protein specifically binds to M6P-modified proteins. This provides a tool for the rapid detection and concentration of M6P-containing recombinant enzymes to assess the effectiveness of ERT. The advantages of this approach include its high specificity and sensitivity and may lead to the development of new treatments for LSDs.
Collapse
Affiliation(s)
- Yu-He Tang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
8
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
9
|
Singh N, Singh AK. Phytoconstituents of Withania somnifera (L.) Dunal (Ashwagandha) unveiled potential cerebroside sulfotransferase inhibitors: insight through virtual screening, molecular dynamics, toxicity, and reverse pharmacophore analysis. J Biol Eng 2024; 18:59. [PMID: 39444022 PMCID: PMC11515467 DOI: 10.1186/s13036-024-00456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Cerebroside sulfotransferase (CST) is considered as therapeutic target for substrate reduction therapy (SRT) for metachromatic leukodystrophy (MLD). The present study evaluates the therapeutic potential of 57 phytoconstituents of Withania somnifera against CST. Using binding score cutoff ≤-7.0 kcal/mol, top 10 compounds were screened and after ADME and toxicity-based screening, Withasomidienone, 2,4-methylene-cholesterol, and 2,3-Didehydrosomnifericin were identified as safe and potent drug candidates for CST inhibition. Key substrate binding site residues involved in interaction were LYS82, LYS85, SER89, TYR176, PHE170, PHE177. Four steroidal Lactone-based withanolide backbone of these compounds played a critical role in stabilizing their position in the active site pocket. 100 ns molecular dynamics simulation and subsequent trajectory analysis through structural deviation and compactness, principal components, free energy landscape and correlation matrix confirmed the stability of CST-2,3-Didehydrosomnifericin complex throughout the simulation and therefore is considered as the most potent drug candidate for CST inhibition and Withasomidienone as the second most potent drug candidate. The reverse pharmacophore analysis further confirmed the specificity of these two compounds towards CST as no major cross targets were identified. Thus, identified compounds in this study strongly present their candidature for oral drug and provide route for further development of more specific CST inhibitors.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Anil Kumar Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
10
|
Singh N, Singh AK. Exploration of phytoconstituents of Medhya Rasayana herbs to identify potential inhibitors for cerebroside sulfotransferase through high-throughput screening. Front Mol Biosci 2024; 11:1476482. [PMID: 39450315 PMCID: PMC11500077 DOI: 10.3389/fmolb.2024.1476482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Cerebroside sulfotransferase (CST) is a key enzyme in sulfatide biosynthesis and regulation of the myelin sheath in the nervous system. To counter sulfatide accumulation with the deficiency of aryl sulfatase A, CST is considered a target protein in substrate reduction therapy in metachromatic leukodystrophy. In this study, 461 phytoconstituents from four herbs of Medhya Rasayana were screened using multi-pronged virtual screening methods including molecular docking, molecular dynamics (MD) simulation, and reverse pharmacophore analysis. The initial screening of the top 15 hits was based on the binding affinity of the compounds toward the CST substrate-binding site using the lowest free energy of a binding score cutoff of ≤ -7.5 kcal/mol, with the number of conformations in the largest cluster more than 75. The absorption, distribution, metabolism, and excretion (ADME) and toxicity-based pharmacokinetic analysis delivered the top four hits: 18alpha-glycyrrhetinic acid, lupeol, alpha carotene, and beta-carotene, with high blood-brain barrier permeability and negligible toxicity. Furthermore, a 100-ns simulation of protein-ligand complexes with a trajectory analysis of structural deviation, compactness, intramolecular interactions, principal component analysis, free energy landscape, and dynamic cross-correlation analysis showed the binding potential and positioning of the four hits in the binding pocket. Thus, an in-depth analysis of protein-ligand interactions from pre- and post-molecular dynamics simulation, along with reverse pharmacophore mapping, suggests that 18alpha-glycyrrhetinic acid is the most potent and specific CST inhibitor, while beta-carotene could be considered the second most potent compound for CST inhibition as it also exhibited overall stability throughout the simulation. Therefore, the computational drug screening approach applied in this study may contribute to the development of oral drugs as a therapeutic option for metachromatic leukodystrophy.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | |
Collapse
|
11
|
Lin S, Robson AG, Thompson DA, Stepien KM, Lachmann R, Footitt E, Czyz O, Chandrasekhar S, Schiff E, Iosifidis C, Black GC, Michaelides M, Mahroo OA, Arno G, Webster AR. Non-syndromic retinal dystrophy associated with biallelic variation of SUMF1 and reduced leukocyte sulfatase activity. Clin Genet 2024; 106:505-511. [PMID: 38863195 PMCID: PMC7616411 DOI: 10.1111/cge.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Biallelic variants in SUMF1 are associated with multiple sulfatase deficiency (MSD), a rare lysosomal storage disorder typically diagnosed in early infancy or childhood, marked by severe neurodegeneration and early mortality. We present clinical and molecular characterisation of three unrelated patients aged 13 to 58 years with milder clinical manifestations due to SUMF1 disease variants, including two adult patients presenting with apparent non-syndromic retinal dystrophy. Whole genome sequencing identified biallelic SUMF1 variants in all three patients; Patient 1 homozygous for a complex allele c.[290G>T;293T>A]; p.[(Gly97Val);(Val98Glu)], Patient 2 homozygous for c.866A>G; p.(Tyr289Cys), and Patient 3 compound heterozygous for c.726-1G>C and p.(Tyr289Cys). Electroretinography indicated a rod-cone dystrophy with additional possible inner retinal dysfunction in all three patients. Biochemical studies confirmed reduced, but not absent, sulfatase enzyme activity in the absence of extra-ocular disease (Patient 1) or only mild systemic disease (Patients 2, 3). These cases are suggestive that non-null SUMF1 genotypes can cause an attenuated clinical phenotype, including retinal dystrophy without systemic complications, in adulthood.
Collapse
Affiliation(s)
- Siying Lin
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Anthony G Robson
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Dorothy A Thompson
- Tony Kriss Visual Electrophysiology Unit, Department of Clinical and Academic Department of Ophthalmology, Sight and Sound Centre, Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Karolina M Stepien
- Adult Inherited Metabolic Disorders, Salford Royal Organisation, Northern Care Alliance NHS Foundation Trust, London, UK
| | - Robin Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Emma Footitt
- Department of Metabolic Paediatrics, Great Ormond Street Hospital, London, UK
| | - Ola Czyz
- Department of Metabolic Paediatrics, Great Ormond Street Hospital, London, UK
| | | | - Elena Schiff
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Christos Iosifidis
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Graeme C Black
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Michel Michaelides
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Omar A Mahroo
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, St Thomas' Hospital, London, UK
| | - Gavin Arno
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Division of Research, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Andrew R Webster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
12
|
Vernet Machado Bressan Wilke M, Goldstein J, Groopman E, Mohan S, Waddell A, Fernandez R, Chen H, Bali D, Baudet H, Clarke L, Hung C, Mao R, Yuzyuk T, Craigen WJ, Pinto E Vairo F. Developing a scoring system for gene curation prioritization in lysosomal diseases. Mol Genet Metab 2024; 143:108572. [PMID: 39265286 PMCID: PMC11473227 DOI: 10.1016/j.ymgme.2024.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
INTRODUCTION Diseases caused by lysosomal dysfunction often exhibit multisystemic involvement, resulting in substantial morbidity and mortality. Ensuring accurate diagnoses for individuals with lysosomal diseases (LD) is of great importance, especially with the increasing prominence of genetic testing as a primary diagnostic method. As the list of genes associated with LD continues to expand due to the use of more comprehensive tests such as exome and genome sequencing, it is imperative to understand the clinical validity of the genes, as well as identify appropriate genes for inclusion in multi-gene testing and sequencing panels. The Clinical Genome Resource (ClinGen) works to determine the clinical importance of genes and variants to support precision medicine. As part of this work, ClinGen has developed a semi-quantitative framework to assess the strength of evidence for the role of a gene in a disease. Given the diversity in gene composition across LD panels offered by various laboratories and the evolving comprehension of genetic variants affecting secondary lysosomal functions, we developed a scoring system to define LD (Lysosomal Disease Scoring System - LDSS). This system sought to aid in the prioritization of genes for clinical validity curation and assess their suitability for LD-targeted sequencing panels. METHODS Through literature review encompassing terms associated with both classically designated LD and LFRD, we identified 14 criteria grouped into "Overall Definition," "Phenotype," and "Pathophysiology." These criteria included concepts such as the "accumulation of undigested or partially digested macromolecules within the lysosome" and being "associated with a wide spectrum of clinical manifestations impacting multiple organs and systems." The criteria, along with their respective weighted values, underwent refinement through expert panel evaluation differentiating them between "major" and "minor" criteria. Subsequently, the LDSS underwent validation on 12 widely acknowledged LD and was later tested by applying these criteria to the Lysosomal Disease Network's (LDN) official Gene List. RESULTS The final LDSS comprised 4 major criteria and 10 minor criteria, with a cutoff of 2 major or 1 major and 3 minor criteria established to define LD. Interestingly, when applied to both the LDN list and a comprehensive gene list encompassing genes included in clinical panels and published as LFRD genes, we identified four genes (GRN, SLC29A3, CLN7 and VPS33A) absent from the LDN list, that were deemed associated with LD. Conversely, a subset of non-classic genes included in the LDN list, such as MTOR, OCRL, and SLC9A6, received lower LDSS scores for their associated disease entities. While these genes may not be suitable for inclusion in clinical LD multi-gene panels, they could be considered for inclusion on other, non-LD gene panels. DISCUSSION The LDSS offers a systematic approach to prioritize genes for clinical validity assessment. By identifying genes with high scores on the LDSS, this method enhanced the efficiency of gene curation by the ClinGen LD GCEP. CONCLUSION The LDSS not only serves as a tool for gene prioritization prior to clinical validity curation, but also contributes to the ongoing discussion on the definition of LD. Moreover, the LDSS provides a flexible framework adaptable to future discoveries, ensuring its relevance in the ever-expanding landscape of LD research.
Collapse
Affiliation(s)
| | - Jennifer Goldstein
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Emily Groopman
- Children's National Hospital, Washington, DC, United States of America
| | - Shruthi Mohan
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Amber Waddell
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Raquel Fernandez
- American College of Genetics and Genomics, Bethesda, MD, United States of America
| | - Hongjie Chen
- Prevention Genetics, part of Exact Sciences, Marshfield, WI, United States of America
| | - Deeksha Bali
- Duke University Health System, Durham, NC, United States of America
| | - Heather Baudet
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Lorne Clarke
- University of British Columbia, Vancouver, Canada
| | | | - Rong Mao
- ARUP Laboratories, Salt Lake City, UT, United States of America; University of Utah, Salt Lake City, UT, United States of America
| | - Tatiana Yuzyuk
- ARUP Laboratories, Salt Lake City, UT, United States of America; University of Utah, Salt Lake City, UT, United States of America
| | | | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
13
|
Beraza-Millor M, Rodríguez-Castejón J, Del Pozo-Rodríguez A, Rodríguez-Gascón A, Solinís MÁ. Systematic Review of Genetic Substrate Reduction Therapy in Lysosomal Storage Diseases: Opportunities, Challenges and Delivery Systems. BioDrugs 2024; 38:657-680. [PMID: 39177875 PMCID: PMC11358353 DOI: 10.1007/s40259-024-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Genetic substrate reduction therapy (gSRT), which involves the use of nucleic acids to downregulate the genes involved in the biosynthesis of storage substances, has been investigated in the treatment of lysosomal storage diseases (LSDs). OBJECTIVE To analyze the application of gSRT to the treatment of LSDs, identifying the silencing tools and delivery systems used, and the main challenges for its development and clinical translation, highlighting the contribution of nanotechnology to overcome them. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines was performed. PubMed, Scopus, and Web of Science databases were used for searching terms related to LSDs and gene-silencing strategies and tools. RESULTS Fabry, Gaucher, and Pompe diseases and mucopolysaccharidoses I and III are the only LSDs for which gSRT has been studied, siRNA and lipid nanoparticles being the silencing strategy and the delivery system most frequently employed, respectively. Only in one recently published study was CRISPR/Cas9 applied to treat Fabry disease. Specific tissue targeting, availability of relevant cell and animal LSD models, and the rare disease condition are the main challenges with gSRT for the treatment of these diseases. Out of the 11 studies identified, only two gSRT studies were evaluated in animal models. CONCLUSIONS Nucleic acid therapies are expanding the clinical tools and therapies currently available for LSDs. Recent advances in CRISPR/Cas9 technology and the growing impact of nanotechnology are expected to boost the clinical translation of gSRT in the near future, and not only for LSDs.
Collapse
Affiliation(s)
- Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
14
|
Azadeh M, Good J, Gunsior M, Kulagina N, Lu Y, McNally J, Myler H, Ni YG, Pelto R, Quadrini KJ, Vrentas C, Yang L. Best Practices for Development and Validation of Enzymatic Activity Assays to Support Drug Development for Inborn Errors of Metabolism and Biomarker Assessment. AAPS J 2024; 26:97. [PMID: 39179710 DOI: 10.1208/s12248-024-00966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/03/2024] [Indexed: 08/26/2024] Open
Abstract
Aberrant or dysfunctional cellular enzymes are responsible for a wide range of diseases including cancer, neurodegenerative conditions, and metabolic disorders. Deficiencies in enzyme level or biofunction may lead to intracellular accumulation of substrate to toxic levels and interfere with overall cellular function, ultimately leading to cell damage, disease, and death. Marketed therapeutic interventions for inherited monogenic enzyme deficiency disorders include enzyme replacement therapy and small molecule chaperones. Novel approaches of in vivo gene therapy and ex vivo cell therapy are under clinical evaluation and provide promising opportunities to expand the number of available disease-modifying treatments. To support the development of these different therapeutics, assays to quantify the functional activity of protein enzymes have gained importance in the diagnosis of disease, assessment of pharmacokinetics and pharmacodynamic response, and evaluation of drug efficacy. In this review, we discuss the technical aspects of enzyme activity assays in the bioanalytical context, including assay design and format as well as the unique challenges and considerations associated with assay development, validation, and life cycle management.
Collapse
Affiliation(s)
- Mitra Azadeh
- Ultragenyx Pharmaceutical, Inc., Novato, California, USA
| | | | | | - Nadia Kulagina
- Smithers Pharmaceutical Development Services, Gaithersburg, Maryland, USA
| | - Yanmei Lu
- Sangamo Therapeutics, Richmond, California, USA
| | | | | | - Yan G Ni
- Passage Bio, Inc., Philadelphia, Pennsylvania, USA
| | - Ryan Pelto
- Alexion, AstraZeneca Rare Disease, New Haven, Connecticut, USA
| | | | - Catherine Vrentas
- Pharmaceutical Product Development, a ThermoFisher Company, Richmond, Virginia, USA.
- , Richmond, Virginia, USA.
| | - Lin Yang
- Regenxbio, Rockville, Maryland, USA
| |
Collapse
|
15
|
Lipiński P, Tylki-Szymańska A. The Liver and Lysosomal Storage Diseases: From Pathophysiology to Clinical Presentation, Diagnostics, and Treatment. Diagnostics (Basel) 2024; 14:1299. [PMID: 38928715 PMCID: PMC11202662 DOI: 10.3390/diagnostics14121299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The liver, given its role as the central metabolic organ, is involved in many inherited metabolic disorders, including lysosomal storage diseases (LSDs). The aim of this manuscript was to provide a comprehensive overview on liver involvement in LSDs, focusing on clinical manifestation and its pathomechanisms. Gaucher disease, acid sphingomyelinase deficiency, and lysosomal acid lipase deficiency were thoroughly reviewed, with hepatic manifestation being a dominant clinical phenotype. The natural history of liver disease in the above-mentioned lysosomal disorders was delineated. The importance of Niemann-Pick type C disease as a cause of cholestatic jaundice, preceding neurological manifestation, was also highlighted. Diagnostic methods and current therapeutic management of LSDs were also discussed in the context of liver involvement.
Collapse
Affiliation(s)
- Patryk Lipiński
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy, 00-136 Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| |
Collapse
|
16
|
Calzoni E, Cerrotti G, Sagini K, Delo F, Buratta S, Pellegrino RM, Alabed HBR, Fratini F, Emiliani C, Urbanelli L. Evidence of Lysosomal β-Hexosaminidase Enzymatic Activity Associated with Extracellular Vesicles: Potential Applications for the Correction of Sandhoff Disease. J Funct Biomater 2024; 15:153. [PMID: 38921527 PMCID: PMC11204914 DOI: 10.3390/jfb15060153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Extracellular vesicles (EVs) can be isolated from biological fluids and cell culture medium. Their nanometric dimension, relative stability, and biocompatibility have raised considerable interest for their therapeutic use as delivery vehicles of macromolecules, namely nucleic acids and proteins. Deficiency in lysosomal enzymes and associated proteins is at the basis of a group of genetic diseases known as lysosomal storage disorders (LSDs), characterized by the accumulation of undigested substrates into lysosomes. Among them, GM2 gangliosidoses are due to a deficiency in the activity of lysosomal enzyme β-hexosaminidase, leading to the accumulation of the GM2 ganglioside and severe neurological symptoms. Current therapeutic approaches, including enzyme replacement therapy (ERT), have proven unable to significantly treat these conditions. Here, we provide evidence that the lysosomal β-hexosaminidase enzyme is associated with EVs released by HEK cells and that the EV-associated activity can be increased by overexpressing the α-subunit of β-hexosaminidase. The delivery of EVs to β-hexosaminidase-deficient fibroblasts results in a partial cross-correction of the enzymatic defect. Overall findings indicate that EVs could be a source of β-hexosaminidase that is potentially exploitable for developing therapeutic approaches for currently untreatable LSDs.
Collapse
Affiliation(s)
- Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, 06123 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | - Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
| | | | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (E.C.); (G.C.); (K.S.); (F.D.); (S.B.); (R.M.P.); (H.B.R.A.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
17
|
Wongkittichote P, Cho SH, Miller A, King K, Herbst ZM, Ren Z, Gelb MH, Hong X. Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Analysis of Urinary Oligosaccharides and Glycoamino Acids for the Diagnosis of Mucopolysaccharidosis and Glycoproteinosis. Clin Chem 2024; 70:865-877. [PMID: 38597162 DOI: 10.1093/clinchem/hvae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Mucopolysaccharidosis (MPS) and glycoproteinosis are 2 groups of heterogenous lysosomal storage disorders (LSDs) caused by defective degradation of glycosaminoglycans (GAGs) and glycoproteins, respectively. Oligosaccharides and glycoamino acids have been recognized as biomarkers for MPS and glycoproteinosis. Given that both groups of LSDs have overlapping clinical features, a multiplexed assay capable of unambiguous subtyping is desired for accurate diagnosis, and potentially for severity stratification and treatment monitoring. METHODS Urinary oligosaccharides were derivatized with 3-methyl-1-phenyl-2-pyrazoline-5-one (PMP) and analyzed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) together with the underivatized glycoamino acids. Novel biomarkers were identified with a semi-targeted approach with precursor mass scanning, the fragmentation pattern (if applicable), and the biochemical basis of the condition. RESULTS A UPLC-MS/MS analysis with improved chromatographic separation was developed. Novel biomarkers for MPS-IIIA, IIIB, IIIC, and VII were identified and validated. A total of 28 oligosaccharides, 2 glycoamino acids, and 2 ratios were selected as key diagnostic biomarkers. Validation studies including linearity, lower limit of quantitation (LLOQ), and precision were carried out with the assay performance meeting the required criteria. Age-specific reference ranges were collected. In the 76 untreated patients, unambiguous diagnosis was achieved with 100% sensitivity and specificity. Additionally, the levels of disease-specific biomarkers were substantially reduced in the treated patients. CONCLUSIONS A multiplexed UPLC-MS/MS assay for urinary oligosaccharides and glycoamino acids measurement was developed and validated. The assay is suitable for the accurate diagnosis and subtyping of MPS and glycoproteinosis, and potentially for severity stratification and monitoring response to treatment.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Se Hyun Cho
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Artis Miller
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kaitlyn King
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Zackary M Herbst
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Zhimei Ren
- Department of Statistics and Data Science, The Wharton School of the University of Pennsylvania, Philadelphia, PA, United States
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Xinying Hong
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Borie-Guichot M, Lan Tran M, Garcia V, Oukhrib A, Rodriguez F, Turrin CO, Levade T, Génisson Y, Ballereau S, Dehoux C. Multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease. Bioorg Chem 2024; 146:107295. [PMID: 38513326 DOI: 10.1016/j.bioorg.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
A concise asymmetric synthesis of clickable enantiomeric pyrrolidines was achieved using Crabbé-Ma allenation. The synthesized iminosugars were grafted by copper-free strain-promoted alkyne-azide cycloaddition onto phosphorus dendrimers. The hexavalent and dodecavalent pyrrolidines were evaluated as β-glucocerebrosidase inhibitors. The level of inhibition suggests that monofluorocyclooctatriazole group may contribute to the affinity for the protein leading to potent multivalent inhibitors. Docking studies were carried out to rationalize these results. Then, the iminosugars clusters were evaluated as pharmacological chaperones in Gaucher patients' fibroblasts. An increase in β-glucocerebrosidase activity was observed with hexavalent and dodecavalent pyrrolidines at concentrations as low as 1 µM and 0.1 µM, respectively. These iminosugar clusters constitute the first example of multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease.
Collapse
Affiliation(s)
- Marc Borie-Guichot
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - My Lan Tran
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Virginie Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, France
| | | | - Frédéric Rodriguez
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Cédric-Olivier Turrin
- IMD-Pharma, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France; Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099 31077 Toulouse CEDEX 4, France; LCC-CNRS, Université de Toulouse, CNRS 31013 Toulouse CEDEX 6, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, F-31059 Toulouse, France
| | - Yves Génisson
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Stéphanie Ballereau
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Cécile Dehoux
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
19
|
Jerves Serrano T, Gold J, Cooper JA, Church HJ, Tylee KL, Wu HY, Kim SY, Stepien KM. Hepatomegaly and Splenomegaly: An Approach to the Diagnosis of Lysosomal Storage Diseases. J Clin Med 2024; 13:1465. [PMID: 38592278 PMCID: PMC10932313 DOI: 10.3390/jcm13051465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Clinical findings of hepatomegaly and splenomegaly, the abnormal enlargement of the liver and spleen, respectively, should prompt a broad differential diagnosis that includes metabolic, congestive, neoplastic, infectious, toxic, and inflammatory conditions. Among the metabolic diseases, lysosomal storage diseases (LSDs) are a group of rare and ultrarare conditions with a collective incidence of 1 in 5000 live births. LSDs are caused by genetic variants affecting the lysosomal enzymes, transporters, or integral membrane proteins. As a result, abnormal metabolites accumulate in the organelle, leading to dysfunction. Therapeutic advances, including early diagnosis and disease-targeted management, have improved the life expectancy and quality of life of people affected by certain LSDs. To access these new interventions, LSDs must be considered in patients presenting with hepatomegaly and splenomegaly throughout the lifespan. This review article navigates the diagnostic approach for individuals with hepatosplenomegaly particularly focusing on LSDs. We provide hints in the history, physical exam, laboratories, and imaging that may identify LSDs. Additionally, we discuss molecular testing, arguably the preferred confirmatory test (over biopsy), accompanied by enzymatic testing when feasible.
Collapse
Affiliation(s)
| | - Jessica Gold
- Division of Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - James A. Cooper
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Heather J. Church
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Karen L. Tylee
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Hoi Yee Wu
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Sun Young Kim
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Karolina M. Stepien
- Salford Royal Organization, Northern Care Alliance NHS Foundation Trust, Adult Inherited Metabolic Diseases Department, Salford M6 8HD, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
20
|
Uribe-Carretero E, Rey V, Fuentes JM, Tamargo-Gómez I. Lysosomal Dysfunction: Connecting the Dots in the Landscape of Human Diseases. BIOLOGY 2024; 13:34. [PMID: 38248465 PMCID: PMC10813815 DOI: 10.3390/biology13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Lysosomes are the main organelles responsible for the degradation of macromolecules in eukaryotic cells. Beyond their fundamental role in degradation, lysosomes are involved in different physiological processes such as autophagy, nutrient sensing, and intracellular signaling. In some circumstances, lysosomal abnormalities underlie several human pathologies with different etiologies known as known as lysosomal storage disorders (LSDs). These disorders can result from deficiencies in primary lysosomal enzymes, dysfunction of lysosomal enzyme activators, alterations in modifiers that impact lysosomal function, or changes in membrane-associated proteins, among other factors. The clinical phenotype observed in affected patients hinges on the type and location of the accumulating substrate, influenced by genetic mutations and residual enzyme activity. In this context, the scientific community is dedicated to exploring potential therapeutic approaches, striving not only to extend lifespan but also to enhance the overall quality of life for individuals afflicted with LSDs. This review provides insights into lysosomal dysfunction from a molecular perspective, particularly in the context of human diseases, and highlights recent advancements and breakthroughs in this field.
Collapse
Affiliation(s)
- Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jose Manuel Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
21
|
Leal AF, Inci OK, Seyrantepe V, Rintz E, Celik B, Ago Y, León D, Suarez DA, Alméciga-Díaz CJ, Tomatsu S. Molecular Trojan Horses for treating lysosomal storage diseases. Mol Genet Metab 2023; 140:107648. [PMID: 37598508 DOI: 10.1016/j.ymgme.2023.107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
Lysosomal storage diseases (LSDs) are caused by monogenic mutations in genes encoding for proteins related to the lysosomal function. Lysosome plays critical roles in molecule degradation and cell signaling through interplay with many other cell organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes. Even though several strategies (i.e., protein replacement and gene therapy) have been attempted for LSDs with promising results, there are still some challenges when hard-to-treat tissues such as bone (i.e., cartilages, ligaments, meniscus, etc.), the central nervous system (mostly neurons), and the eye (i.e., cornea, retina) are affected. Consistently, searching for novel strategies to reach those tissues remains a priority. Molecular Trojan Horses have been well-recognized as a potential alternative in several pathological scenarios for drug delivery, including LSDs. Even though molecular Trojan Horses refer to genetically engineered proteins to overcome the blood-brain barrier, such strategy can be extended to strategies able to transport and deliver drugs to specific tissues or cells using cell-penetrating peptides, monoclonal antibodies, vesicles, extracellular vesicles, and patient-derived cells. Only some of those platforms have been attempted in LSDs. In this paper, we review the most recent efforts to develop molecular Trojan Horses and discuss how this strategy could be implemented to enhance the current efficacy of strategies such as protein replacement and gene therapy in the context of LSDs.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia; Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Orhan Kerim Inci
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Volkan Seyrantepe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Betul Celik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Yasuhiko Ago
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Daniel León
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland; Faculty of Arts and Sciences, University of Delaware, Newark, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Tucci F, Consiglieri G, Cossutta M, Bernardo ME. Current and Future Perspective in Hematopoietic Stem Progenitor Cell-gene Therapy for Inborn Errors of Metabolism. Hemasphere 2023; 7:e953. [PMID: 37711990 PMCID: PMC10499111 DOI: 10.1097/hs9.0000000000000953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
- Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
| | - Giulia Consiglieri
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Matilde Cossutta
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University of Rome Tor Vergata, Italy
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
- “Vita-Salute” San Raffaele University, Milan, Italy
| |
Collapse
|
23
|
Spataro F, Carlucci P, Loverre T, Macchia L, Di Bona D. Hypersensitivity reaction during enzyme replacement therapy in lysosomal storage disorders. A systematic review of desensitization strategies. Pediatr Allergy Immunol 2023; 34:e13981. [PMID: 37366214 DOI: 10.1111/pai.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Lysosomal storage diseases (LSDs) are rare genetic metabolic disorders that cause the accumulation of glycosaminoglycans in lysosomes due to enzyme deficiency or reduced function. Enzyme replacement therapy (ERT) represents the gold standard treatment, but hypersensitivity reaction can occur resulting in treatment discontinuation. Thus, desensitization procedures for different culprit recombinant enzymes can be performed to restore ERT. We searched desensitization procedures performed in LSDs and focused on skin test results, protocols and premedication performed, and breakthrough reactions occurred during infusions. Fifty-two patients have been subjected to desensitization procedures successfully. Skin tests, with the culprit recombinant enzyme, deemed positive in 29 cases, doubtful in two cases, and not performed in four patients. Moreover, 29 of the 52 desensitization protocols used at the first infusion were breakthrough reaction free. Different desensitization strategies have proved safe and effective in restoring ERT in patients with previous hypersensitivity reactions. Most of these events seem to be Type I hypersensitivity reactions (IgE-mediated). Standardized in vivo and in vitro testing is necessary to better estimate the risk of the procedure and find the safest individualized desensitization protocol.
Collapse
Affiliation(s)
- Federico Spataro
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Palma Carlucci
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Teresa Loverre
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Macchia
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Danilo Di Bona
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
24
|
Li B, Zhao D, Li Y, Yang Y, Zhu X, Li J, Bi C, Zhang X. Obtaining the best igRNAs for bystander-less correction of all ABE-reversible pathogenic SNVs using high-throughput screening. Mol Ther 2023; 31:1167-1176. [PMID: 36733252 PMCID: PMC10124137 DOI: 10.1016/j.ymthe.2023.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/07/2022] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Imperfect -gRNA (igRNA) provides a simple strategy for single-base editing of a base editor. However, a significant number of igRNAs need to be generated and tested for each target locus to achieve efficient single-base reversion of pathogenic single nucleotide variations (SNVs), which hinders the direct application of this technology. To provide ready-to-use igRNAs for single-base and bystander-less correction of all the adenine base editor (ABE)-reversible pathogenic SNVs, we employed a high-throughput method to edit all 5,253 known ABE-reversible pathogenic SNVs, each with multiple systematically designed igRNAs, and two libraries of 96,000 igRNAs were tested. A total of 1,988 SNV loci could be single-base reversed by igRNA with a >30% efficiency. Among these 1,988 loci, 378 SNV loci exhibited an efficiency of more than 90%. At the same time, the bystander editing efficiency of 76.62% of the SNV loci was reduced to 0%, while remaining below 1% for another 18.93% of the loci. These ready-to-use igRNAs provided the best solutions for a substantial portion of the 4,657 pathogenic/likely pathogenic SNVs. In this work, we overcame one of the most significant obstacles of base editors and provide a ready-to-use platform for the genetic treatment of diseases caused by ABE-reversible SNVs.
Collapse
Affiliation(s)
- Bo Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yaqiu Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuanzhao Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xiagu Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.
| |
Collapse
|
25
|
Pandey MK. Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines 2023; 11:biomedicines11041067. [PMID: 37189685 DOI: 10.3390/biomedicines11041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Lysosomal storage diseases are a group of rare and ultra-rare genetic disorders caused by defects in specific genes that result in the accumulation of toxic substances in the lysosome. This excess accumulation of such cellular materials stimulates the activation of immune and neurological cells, leading to neuroinflammation and neurodegeneration in the central and peripheral nervous systems. Examples of lysosomal storage diseases include Gaucher, Fabry, Tay–Sachs, Sandhoff, and Wolman diseases. These diseases are characterized by the accumulation of various substrates, such as glucosylceramide, globotriaosylceramide, ganglioside GM2, sphingomyelin, ceramide, and triglycerides, in the affected cells. The resulting pro-inflammatory environment leads to the generation of pro-inflammatory cytokines, chemokines, growth factors, and several components of complement cascades, which contribute to the progressive neurodegeneration seen in these diseases. In this study, we provide an overview of the genetic defects associated with lysosomal storage diseases and their impact on the induction of neuro-immune inflammation. By understanding the underlying mechanisms behind these diseases, we aim to provide new insights into potential biomarkers and therapeutic targets for monitoring and managing the severity of these diseases. In conclusion, lysosomal storage diseases present a complex challenge for patients and clinicians, but this study offers a comprehensive overview of the impact of these diseases on the central and peripheral nervous systems and provides a foundation for further research into potential treatments.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0515, USA
| |
Collapse
|
26
|
Mignani L, Guerra J, Corli M, Capoferri D, Presta M. Zebra-Sphinx: Modeling Sphingolipidoses in Zebrafish. Int J Mol Sci 2023; 24:ijms24054747. [PMID: 36902174 PMCID: PMC10002607 DOI: 10.3390/ijms24054747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Sphingolipidoses are inborn errors of metabolism due to the pathogenic mutation of genes that encode for lysosomal enzymes, transporters, or enzyme cofactors that participate in the sphingolipid catabolism. They represent a subgroup of lysosomal storage diseases characterized by the gradual lysosomal accumulation of the substrate(s) of the defective proteins. The clinical presentation of patients affected by sphingolipid storage disorders ranges from a mild progression for some juvenile- or adult-onset forms to severe/fatal infantile forms. Despite significant therapeutic achievements, novel strategies are required at basic, clinical, and translational levels to improve patient outcomes. On these bases, the development of in vivo models is crucial for a better understanding of the pathogenesis of sphingolipidoses and for the development of efficacious therapeutic strategies. The teleost zebrafish (Danio rerio) has emerged as a useful platform to model several human genetic diseases owing to the high grade of genome conservation between human and zebrafish, combined with precise genome editing and the ease of manipulation. In addition, lipidomic studies have allowed the identification in zebrafish of all of the main classes of lipids present in mammals, supporting the possibility to model diseases of the lipidic metabolism in this animal species with the advantage of using mammalian lipid databases for data processing. This review highlights the use of zebrafish as an innovative model system to gain novel insights into the pathogenesis of sphingolipidoses, with possible implications for the identification of more efficacious therapeutic approaches.
Collapse
|
27
|
Shaimardanova AA, Solovyeva VV, Issa SS, Rizvanov AA. Gene Therapy of Sphingolipid Metabolic Disorders. Int J Mol Sci 2023; 24:3627. [PMID: 36835039 PMCID: PMC9964151 DOI: 10.3390/ijms24043627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Sphingolipidoses are defined as a group of rare hereditary diseases resulting from mutations in the genes encoding lysosomal enzymes. This group of lysosomal storage diseases includes more than 10 genetic disorders, including GM1-gangliosidosis, Tay-Sachs disease, Sandhoff disease, the AB variant of GM2-gangliosidosis, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann-Pick disease, Farber disease, etc. Enzyme deficiency results in accumulation of sphingolipids in various cell types, and the nervous system is also usually affected. There are currently no known effective methods for the treatment of sphingolipidoses; however, gene therapy seems to be a promising therapeutic variant for this group of diseases. In this review, we discuss gene therapy approaches for sphingolipidoses that are currently being investigated in clinical trials, among which adeno-associated viral vector-based approaches and transplantation of hematopoietic stem cells genetically modified with lentiviral vectors seem to be the most effective.
Collapse
Affiliation(s)
- Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
28
|
Muschol N, Koehn A, von Cossel K, Okur I, Ezgu F, Harmatz P, de Castro Lopez MJ, Couce ML, Lin SP, Batzios S, Cleary M, Solano M, Nestrasil I, Kaufman B, Shaywitz AJ, Maricich SM, Kuca B, Kovalchin J, Zanelli E. A phase I/II study on intracerebroventricular tralesinidase alfa in patients with Sanfilippo syndrome type B. J Clin Invest 2023; 133:165076. [PMID: 36413418 PMCID: PMC9843052 DOI: 10.1172/jci165076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
BackgroundSanfilippo type B is a mucopolysaccharidosis (MPS) with a major neuronopathic component characterized by heparan sulfate (HS) accumulation due to mutations in the NAGLU gene encoding alfa-N-acetyl-glucosaminidase. Enzyme replacement therapy for neuronopathic MPS requires efficient enzyme delivery throughout the brain in order to normalize HS levels, prevent brain atrophy, and potentially delay cognitive decline.MethodsIn this phase I/II open-label study, patients with MPS type IIIB (n = 22) were treated with tralesinidase alfa administered i.c.v. The patients were monitored for drug exposure; total HS and HS nonreducing end (HS-NRE) levels in both cerebrospinal fluid (CSF) and plasma; anti-drug antibody response; brain, spleen, and liver volumes as measured by MRI; and cognitive development as measured by age-equivalent (AEq) scores.ResultsIn the Part 1 dose escalation (30, 100, and 300 mg) phase, a 300 mg dose of tralesinidase alfa was necessary to achieve normalization of HS and HS-NRE levels in the CSF and plasma. In Part 2, 300 mg tralesinidase alfa sustained HS and HS-NRE normalization in the CSF and stabilized cortical gray matter volume (CGMV) over 48 weeks of treatment. Resolution of hepatomegaly and a reduction in spleen volume were observed in most patients. Significant correlations were also established between the change in cognitive AEq score and plasma drug exposure, plasma HS-NRE levels, and CGMV.ConclusionAdministration of tralesinidase alfa i.c.v. effectively normalized HS and HS-NRE levels as a prerequisite for clinical efficacy. Peripheral drug exposure data suggest a role for the glymphatic system in altering tralesinidase alfa efficacy.Trial registrationClinicaltrials.gov NCT02754076.FUNDINGBioMarin Pharmaceutical Inc. and Allievex Corporation.
Collapse
Affiliation(s)
- Nicole Muschol
- University Medical Center Hamburg-Eppendorf, International Center for Lysosomal Disorders (ICLD), Hamburg, Germany
| | - Anja Koehn
- University Medical Center Hamburg-Eppendorf, International Center for Lysosomal Disorders (ICLD), Hamburg, Germany
| | - Katharina von Cossel
- University Medical Center Hamburg-Eppendorf, International Center for Lysosomal Disorders (ICLD), Hamburg, Germany
| | - Ilyas Okur
- Gazi University Faculty of Medicine, Departments of Pediatric Metabolism and Genetics, Ankara, Turkey
| | - Fatih Ezgu
- Gazi University Faculty of Medicine, Departments of Pediatric Metabolism and Genetics, Ankara, Turkey
| | - Paul Harmatz
- UCSF Benioff Children’s Hospital Oakland, Oakland, California, USA
| | - Maria J. de Castro Lopez
- Hospital Clínico Universitario de Santiago, University of Santiago de Compostela, IDIS, CIBERER, MetabERN, A Coruña, Spain
| | - Maria Luz Couce
- Hospital Clínico Universitario de Santiago, University of Santiago de Compostela, IDIS, CIBERER, MetabERN, A Coruña, Spain
| | | | | | | | | | - Igor Nestrasil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, and Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian Kaufman
- CLB Consulting, Falls of Neuse, Raleigh, North Carolina, USA
| | | | | | - Bernice Kuca
- Allievex Corporation, Marblehead, Massachusetts, USA
| | | | - Eric Zanelli
- Allievex Corporation, Marblehead, Massachusetts, USA
| |
Collapse
|
29
|
Fachel FNS, Frâncio L, Poletto É, Schuh RS, Teixeira HF, Giugliani R, Baldo G, Matte U. Gene editing strategies to treat lysosomal disorders: The example of mucopolysaccharidoses. Adv Drug Deliv Rev 2022; 191:114616. [PMID: 36356930 DOI: 10.1016/j.addr.2022.114616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Lysosomal storage disorders are a group of progressive multisystemic hereditary diseases with a combined incidence of 1:4,800. Here we review the clinical and molecular characteristics of these diseases, with a special focus on Mucopolysaccharidoses, caused primarily by the lysosomal storage of glycosaminoglycans. Different gene editing techniques can be used to ameliorate their symptoms, using both viral and nonviral delivery methods. Whereas these are still being tested in animal models, early results of phase I/II clinical trials of gene therapy show how this technology may impact the future treatment of these diseases. Hurdles related to specific hard-to-reach organs, such as the central nervous system, heart, joints, and the eye must be tackled. Finally, the regulatory framework necessary to advance into clinical practice is also discussed.
Collapse
Affiliation(s)
- Flávia Nathiely Silveira Fachel
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Lariane Frâncio
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil
| | - Édina Poletto
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Fisiologia, UFRGS, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Li X, Ren X, Zhang Y, Ding L, Huo M, Li Q. Fabry disease: Mechanism and therapeutics strategies. Front Pharmacol 2022; 13:1025740. [PMID: 36386210 PMCID: PMC9643830 DOI: 10.3389/fphar.2022.1025740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Fabry disease is a monogenic disease characterized by a deficiency or loss of the α-galactosidase A (GLA). The resulting impairment in lysosomal GLA enzymatic activity leads to the pathogenic accumulation of enzymatic substrate and, consequently, the progressive appearance of clinical symptoms in target organs, including the heart, kidney, and brain. However, the mechanisms involved in Fabry disease-mediated organ damage are largely ambiguous and poorly understood, which hinders the development of therapeutic strategies for the treatment of this disorder. Although currently available clinical approaches have shown some efficiency in the treatment of Fabry disease, they all exhibit limitations that need to be overcome. In this review, we first introduce current mechanistic knowledge of Fabry disease and discuss potential therapeutic strategies for its treatment. We then systemically summarize and discuss advances in research on therapeutic approaches, including enzyme replacement therapy (ERT), gene therapy, and chaperone therapy, as well as strategies targeting subcellular compartments, such as lysosomes, the endoplasmic reticulum, and the nucleus. Finally, the future development of potential therapeutic strategies is discussed based on the results of mechanistic studies and the limitations associated with these therapeutic approaches.
Collapse
Affiliation(s)
- Xi Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Yabing Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Ding
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Minfeng Huo
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| |
Collapse
|
31
|
An Overview of Molecular Mechanisms in Fabry Disease. Biomolecules 2022; 12:biom12101460. [PMID: 36291669 PMCID: PMC9599883 DOI: 10.3390/biom12101460] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
Fabry disease (FD) (OMIM #301500) is a rare genetic lysosomal storage disorder (LSD). LSDs are characterized by inappropriate lipid accumulation in lysosomes due to specific enzyme deficiencies. In FD, the defective enzyme is α-galactosidase A (α-Gal A), which is due to a mutation in the GLA gene on the X chromosome. The enzyme deficiency leads to a continuous deposition of neutral glycosphingolipids (globotriaosylceramide) in the lysosomes of numerous tissues and organs, including endothelial cells, smooth muscle cells, corneal epithelial cells, renal glomeruli and tubules, cardiac muscle and ganglion cells of the nervous system. This condition leads to progressive organ failure and premature death. The increasing understanding of FD, and LSD in general, has led in recent years to the introduction of enzyme replacement therapy (ERT), which aims to slow, if not halt, the progression of the metabolic disorder. In this review, we provide an overview of the main features of FD, focusing on its molecular mechanism and the role of biomarkers.
Collapse
|
32
|
Grabowski GA, Mistry PK. Therapies for lysosomal storage diseases: Principles, practice, and prospects for refinements based on evolving science. Mol Genet Metab 2022; 137:81-91. [PMID: 35933791 DOI: 10.1016/j.ymgme.2022.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Gregory A Grabowski
- University of Cincinnati College of Medicine, Department of Pediatrics, Department of Molecular Genetics, Biochemistry and Microbiology, United States of America; Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States of America.
| | - Pramod K Mistry
- Yale School of Medicine, Department of Medicine, Department of Pediatrics, Department of Cellular & Molecular Physiology, New Haven, CT, United States of America
| |
Collapse
|
33
|
Del Grosso A, Parlanti G, Mezzena R, Cecchini M. Current treatment options and novel nanotechnology-driven enzyme replacement strategies for lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114464. [PMID: 35878795 DOI: 10.1016/j.addr.2022.114464] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Lysosomal storage disorders (LSDs) are a vast group of more than 50 clinically identified metabolic diseases. They are singly rare, but they affect collectively 1 on 5,000 live births. They result in most of the cases from an enzymatic defect within lysosomes, which causes the subsequent augmentation of unwanted substrates. This accumulation process leads to plenty of clinical signs, determined by the specific substrate and accumulation area. The majority of LSDs present a broad organ and tissue engagement. Brain, connective tissues, viscera and bones are usually afflicted. Among them, brain disease is markedly frequent (two-thirds of LSDs). The most clinically employed approach to treat LSDs is enzyme replacement therapy (ERT), which is practiced by administering systemically the missed or defective enzyme. It represents a healthful strategy for 11 LSDs at the moment, but it solves the pathology only in the case of Gaucher disease. This approach, in fact, is not efficacious in the case of LSDs that have an effect on the central nervous system (CNS) due to the existence of the blood-brain barrier (BBB). Additionally, ERT suffers from several other weak points, such as low penetration of the exogenously administered enzyme to poorly vascularized areas, the development of immunogenicity and infusion-associated reactions (IARs), and, last but not least, the very high cost and lifelong needed. To ameliorate these weaknesses lot of efforts have been recently spent around the development of innovative nanotechnology-driven ERT strategies. They may boost the power of ERT and minimize adverse reactions by loading enzymes into biodegradable nanomaterials. Enzyme encapsulation into biocompatible liposomes, micelles, and polymeric nanoparticles, for example, can protect enzymatic activity, eliminating immunologic reactions and premature enzyme degradation. It can also permit a controlled release of the payload, ameliorating pharmacokinetics and pharmacodynamics of the drug. Additionally, the potential to functionalize the surface of the nanocarrier with targeting agents (antibodies or peptides), could promote the passage through biological barriers. In this review we examined the clinically applied ERTs, highlighting limitations that do not allow to completely cure the specific LSD. Later, we critically consider the nanotechnology-based ERT strategies that have beenin-vitroand/orin-vivotested to improve ERT efficacy.
Collapse
Affiliation(s)
- Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Gabriele Parlanti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Roberta Mezzena
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
34
|
Zerra PE, Parker ET, Baldwin WH, Healey JF, Patel SR, McCoy JW, Cox C, Stowell SR, Meeks SL. Engineering a Therapeutic Protein to Enhance the Study of Anti-Drug Immunity. Biomedicines 2022; 10:1724. [PMID: 35885029 PMCID: PMC9313379 DOI: 10.3390/biomedicines10071724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
The development of anti-drug antibodies represents a significant barrier to the utilization of protein-based therapies for a wide variety of diseases. While the rate of antibody formation can vary depending on the therapeutic employed and the target patient population receiving the drug, the antigen-specific immune response underlying the development of anti-drug antibodies often remains difficult to define. This is especially true for patients with hemophilia A who, following exposure, develop antibodies against the coagulation factor, factor VIII (FVIII). Models capable of studying this response in an antigen-specific manner have been lacking. To overcome this challenge, we engineered FVIII to contain a peptide (323-339) from the model antigen ovalbumin (OVA), a very common tool used to study antigen-specific immunity. FVIII with an OVA peptide (FVIII-OVA) retained clotting activity and possessed the ability to activate CD4 T cells specific to OVA323-339 in vitro. When compared to FVIII alone, FVIII-OVA also exhibited a similar level of immunogenicity, suggesting that the presence of OVA323-339 does not substantially alter the anti-FVIII immune response. Intriguingly, while little CD4 T cell response could be observed following exposure to FVIII-OVA alone, inclusion of anti-FVIII antibodies, recently shown to favorably modulate anti-FVIII immune responses, significantly enhanced CD4 T cell activation following FVIII-OVA exposure. These results demonstrate that model antigens can be incorporated into a therapeutic protein to study antigen-specific responses and more specifically that the CD4 T cell response to FVIII-OVA can be augmented by pre-existing anti-FVIII antibodies.
Collapse
Affiliation(s)
- Patricia E. Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University, Atlanta, GA 30322, USA; (P.E.Z.); (J.W.M.)
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Ernest T. Parker
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Wallace Hunter Baldwin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - John F. Healey
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Seema R. Patel
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - James W. McCoy
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University, Atlanta, GA 30322, USA; (P.E.Z.); (J.W.M.)
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon L. Meeks
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| |
Collapse
|
35
|
Splicing Modulation as a Promising Therapeutic Strategy for Lysosomal Storage Disorders: The Mucopolysaccharidoses Example. Life (Basel) 2022; 12:life12050608. [PMID: 35629276 PMCID: PMC9146820 DOI: 10.3390/life12050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Over recent decades, the many functions of RNA have become more evident. This molecule has been recognized not only as a carrier of genetic information, but also as a specific and essential regulator of gene expression. Different RNA species have been identified and novel and exciting roles have been unveiled. Quite remarkably, this explosion of novel RNA classes has increased the possibility for new therapeutic strategies that tap into RNA biology. Most of these drugs use nucleic acid analogues and take advantage of complementary base pairing to either mimic or antagonize the function of RNAs. Among the most successful RNA-based drugs are those that act at the pre-mRNA level to modulate or correct aberrant splicing patterns, which are caused by specific pathogenic variants. This approach is particularly tempting for monogenic disorders with associated splicing defects, especially when they are highly frequent among affected patients worldwide or within a specific population. With more than 600 mutations that cause disease affecting the pre-mRNA splicing process, we consider lysosomal storage diseases (LSDs) to be perfect candidates for this type of approach. Here, we introduce the overall rationale and general mechanisms of splicing modulation approaches and highlight the currently marketed formulations, which have been developed for non-lysosomal genetic disorders. We also extensively reviewed the existing preclinical studies on the potential of this sort of therapeutic strategy to recover aberrant splicing and increase enzyme activity in our diseases of interest: the LSDs. Special attention was paid to a particular subgroup of LSDs: the mucopolysaccharidoses (MPSs). By doing this, we hoped to unveil the unique therapeutic potential of the use of this sort of approach for LSDs as a whole.
Collapse
|
36
|
Development and clinical translation of ex vivo gene therapy. Comput Struct Biotechnol J 2022; 20:2986-3003. [PMID: 35782737 PMCID: PMC9218169 DOI: 10.1016/j.csbj.2022.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
Retroviral gene therapy has emerged as a promising therapeutic modality for multiple inherited and acquired human diseases. The capability of delivering curative treatment or mediating therapeutic benefits for a long-term period following a single application fundamentally distinguishes this medical intervention from traditional medicine and various lentiviral/γ-retroviral vector-mediated gene therapy products have been approved for clinical use. Continued advances in retroviral vector engineering, genomic editing, synthetic biology and immunology will broaden the medical applications of gene therapy and improve the efficacy and safety of the treatments based on genetic correction and alteration. This review will summarize the advent and clinical translation of ex vivo gene therapy, with the focus on the milestones during the exploitation of genetically engineered hematopoietic stem cells (HSCs) tackling a variety of pathological conditions which led to marketing approval. Finally, current statue and future prospects of gene editing as an alternative therapeutic approach are also discussed.
Collapse
|