1
|
Kaya HK, Demirtas B. The effect of hydrophilic statins on adiponectin, leptin, visfatin, and vaspin levels in streptozocin-induced diabetic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3977-3984. [PMID: 39382680 DOI: 10.1007/s00210-024-03517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Statins may affect glucose metabolism through adipokines. The aim of this study was to measure the effects of hydrophilic statins on the levels of several adipokines in diabetic rats. Wistar albino rats were divided into four groups: healthy control, untreated diabetic, diabetic treated with pravastatin, and diabetic treated with rosuvastatin. Diabetes was induced by intraperitoneal injection of STZ. Thereafter, 20 mg/kg/day doses of either pravastatin or rosuvastatin were administered to the treated diabetic rats for 8 weeks. At the end of the experiment, the body weights, fasting blood glucose levels, serum insulin levels, and insulin resistance, as well as the serum adiponectin, leptin, visfatin, and vaspin levels, were measured. Fasting blood glucose and insulin resistance levels were significantly higher, whereas insulin levels and body weight were significantly lower in the untreated diabetic group than in the control group. Diabetes caused significant decreases in adiponectin, leptin, and vaspin levels but a significant increase in visfatin levels. Pravastatin treatment significantly increased body weight and decreased fasting blood glucose levels, whereas rosuvastatin decreased body weight but did not affect fasting blood glucose levels. Pravastatin caused significant increases in both adiponectin and vaspin levels. However, rosuvastatin did not affect the adiponectin level but caused a significant decrease in the vaspin levels. Both pravastatin and rosuvastatin treatments decreased the leptin and visfatin levels. In conclusion, pravastatin is more effective at improving fasting blood glucose levels and body weight in diabetic rats, probably by increasing adiponectin and vaspin levels.
Collapse
Affiliation(s)
- Hacer Kayhan Kaya
- Department of Physiology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Berjan Demirtas
- Equine and Training Program, Plant and Animal Production Department, Vocational School of Veterinary Medicine, İstanbul University-Cerahpaşa, İstanbul, Turkey.
| |
Collapse
|
2
|
Mir MM, Jeelani M, Alharthi MH, Rizvi SF, Sohail SK, Wani JI, Sabah ZU, BinAfif WF, Nandi P, Alshahrani AM, Alfaifi J, Jehangir A, Mir R. Unraveling the Mystery of Insulin Resistance: From Principle Mechanistic Insights and Consequences to Therapeutic Interventions. Int J Mol Sci 2025; 26:2770. [PMID: 40141412 PMCID: PMC11942988 DOI: 10.3390/ijms26062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Insulin resistance (IR) is a significant factor in the development and progression of metabolic-related diseases like dyslipidemia, T2DM, hypertension, nonalcoholic fatty liver disease, cardiovascular and cerebrovascular disorders, and cancer. The pathogenesis of IR depends on multiple factors, including age, genetic predisposition, obesity, oxidative stress, among others. Abnormalities in the insulin-signaling cascade lead to IR in the host, including insulin receptor abnormalities, internal environment disturbances, and metabolic alterations in the muscle, liver, and cellular organelles. The complex and multifaceted characteristics of insulin signaling and insulin resistance envisage their thorough and comprehensive understanding at the cellular and molecular level. Therapeutic strategies for IR include exercise, dietary interventions, and pharmacotherapy. However, there are still gaps to be addressed, and more precise biomarkers for associated chronic diseases and lifestyle interventions are needed. Understanding these pathways is essential for developing effective treatments for IR, reducing healthcare costs, and improving quality of patient life.
Collapse
Affiliation(s)
- Mohammad Muzaffar Mir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed Jeelani
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Syeda Fatima Rizvi
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Shahzada Khalid Sohail
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Javed Iqbal Wani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Zia Ul Sabah
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Partha Nandi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Abdullah M. Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Adnan Jehangir
- Biomedical Sciences Department, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
3
|
Deng L, Jia L, Wu XL, Cheng M. Association Between Body Mass Index and Glycemic Control in Type 2 Diabetes Mellitus: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2025; 18:555-563. [PMID: 40007519 PMCID: PMC11853989 DOI: 10.2147/dmso.s508365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Background Body mass index (BMI) is a known risk factor for poor glycemic control in patients with Type 2 diabetes mellitus (T2DM). However, the extent to which BMI correlates with glycated hemoglobin (HbA1c) levels and its clinical implications require further investigation. Objective This study aimed to assess the relationship between BMI and HbA1c levels in T2DM patients and to explore the clinical significance of BMI management in optimizing glycemic control. Methods A cross-sectional study was conducted on 200 T2DM patients from Jinniu District Hospital between 2024/04/01 and 2024/10/03. BMI and HbA1c levels were recorded, and patients were categorized into normal weight (BMI < 25 kg/m²), overweight (25 ≤ BMI < 30 kg/m²), and obese (BMI ≥ 30 kg/m²). Pearson correlation analysis was used to assess the relationship between BMI and HbA1c. One-way ANOVA was employed to compare HbA1c levels across BMI categories. Results A significant positive correlation between BMI and HbA1c was observed (r = 0.45, P < 0.001). Obese patients had significantly higher HbA1c levels (8.5 [7.8-9.0]%) compared to overweight (7.7 [7.2-8.1]%, P < 0.01) and normal-weight patients (6.9 [6.4-7.5]%, P < 0.001). The graded relationship indicated worsening glycemic control with increasing BMI. Conclusion Higher BMI is associated with poorer glycemic control in T2DM patients. Obese patients, in particular, may benefit from more intensive weight management strategies to reduce HbA1c levels and prevent diabetes-related complications. These findings underscore the importance of integrating BMI reduction into diabetes management plans to improve clinical outcomes.
Collapse
Affiliation(s)
- Li Deng
- Department of Rehabilitation, Chengdu Jinniu District People’s Hospital, Chengdu, People’s Republic of China
| | - Long Jia
- Department of Rehabilitation, Chengdu Jinniu District People’s Hospital, Chengdu, People’s Republic of China
| | - Xiao-Li Wu
- Department of Rehabilitation, Chengdu Jinniu District People’s Hospital, Chengdu, People’s Republic of China
| | - Ming Cheng
- Department of Rehabilitation, Chengdu Jinniu District People’s Hospital, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Zhang Q, Zhao YX, Li LF, Fan QQ, Huang BB, Du HZ, Li C, Li W. Metabolism-Related Adipokines and Metabolic Diseases: Their Role in Osteoarthritis. J Inflamm Res 2025; 18:1207-1233. [PMID: 39886385 PMCID: PMC11780177 DOI: 10.2147/jir.s499835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025] Open
Abstract
Osteoarthritis (OA) affects several joints but tends to be more prevalent in those that are weight-bearing, such as the knees, which are the most heavily loaded joints in the body. The incidence and disability rates of OA have continued to increase and seriously jeopardise the quality of life of middle-aged and older adults. However, OA is more than just a wear and tear disease; its aetiology is complex, and its pathogenesis is poorly understood. Metabolic syndrome (MetS) has emerged as a critical driver of OA development. This condition contributes to the formation of a distinct phenotype, termed metabolic syndrome-associated osteoarthritis (MetS-OA),which differs from other metabolically related diseases by its unique pathophysiological mechanisms and clinical presentation. As key mediators of MetS, metabolic adipokines such as leptin, lipocalin, and resistin regulate inflammation and bone metabolism through distinct or synergistic signaling pathways. Their modulation of inflammatory responses and bone remodeling processes plays a critical role in the pathogenesis and progression of OA. Due to their central role in regulating inflammation and bone remodeling, metabolic adipokines not only deepen our understanding of MetS-OA pathogenesis but also represent promising targets for novel therapeutic strategies that could slow disease progression and improve clinical outcomes in affected patients.
Collapse
Affiliation(s)
- Qian Zhang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Yi Xuan Zhao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Long Fei Li
- Cerebrovascular Disease Ward, The First People’s Hospital of Ping Ding Shan, Pingdingshan, Henan, People’s Republic of China
| | - Qian Qian Fan
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Bin Bin Huang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Hong Zhen Du
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Chen Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| |
Collapse
|
5
|
Lis-Kuberka J, Berghausen-Mazur M, Orczyk-Pawiłowicz M. Evaluation of Selected Pro- and Anti-Inflammatory Adipokines in Colostrum from Mothers with Gestational Diabetes Mellitus. Int J Mol Sci 2024; 26:40. [PMID: 39795898 PMCID: PMC11719563 DOI: 10.3390/ijms26010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Adipokines related to gestational diabetes mellitus (GDM) are an emerging area of interest. The aim of this study was to evaluate the associations between GDM and adipokine levels in human milk. This was an observational cohort study targeting mothers with gestational diabetes, which evaluated the association of maternal hyperglycemia severity, classified as GDM-G1 (diet treatment) and GDM-G2 (insulin treatment), with colostral adipokines involved in pro- and anti-inflammatory processes. Colostrum was collected from hyperglycemic (N = 34) and normoglycemic (N = 26) mothers, and adipokine levels were determined by immunoenzymatic assay. Among anti-inflammatory adipokines, only for irisin and vaspin, but not for obestatin and adropin, were significantly different levels noted between the GDM-G1, GDM-G2 and non-GDM cohorts. Colostrum of the GDM-G2 subgroup contained more vaspin (4.77 ng/mL) than that of normoglycemic mothers (3.12 ng/mL) and more irisin (26.95 μg/mL) than in the GDM-G1 subgroup (17.59 μg/mL). The levels of pro-inflammatory adipokines, namely, dermcidin, chemerin and visfatin, were at similar levels irrespective of maternal glycemia. Moreover, irisin showed a negative correlation with dermcidin in GDM-G2 and non-GDM cohorts. Associations were observed between colostral irisin and maternal preconception BMI, dermcidin and gestational age, and vaspin and maternal age. This study provides evidence that the way of restoring glucose homeostasis in pregnant women has an impact on the anti-inflammatory adipokines irisin and vaspin, but not on obestatin and adropin. GDM, regardless of severity, did not influence the colostral pro-inflammatory adipokines visfatin, chemerin and dermcidin.
Collapse
Affiliation(s)
- Jolanta Lis-Kuberka
- Division of Chemistry and Immunochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| | - Marta Berghausen-Mazur
- Department of Neonatology, J. Gromkowski Provincial Specialist Hospital, Koszarowa 5, 51-149 Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Hoene-Wrońskiego 13c, 58-376 Wroclaw, Poland
| | - Magdalena Orczyk-Pawiłowicz
- Division of Chemistry and Immunochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| |
Collapse
|
6
|
Janciauskiene S, Lechowicz U, Pelc M, Olejnicka B, Chorostowska-Wynimko J. Diagnostic and therapeutic value of human serpin family proteins. Biomed Pharmacother 2024; 175:116618. [PMID: 38678961 DOI: 10.1016/j.biopha.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SERPIN (serine proteinase inhibitors) is an acronym for the superfamily of structurally similar proteins found in animals, plants, bacteria, viruses, and archaea. Over 1500 SERPINs are known in nature, while only 37 SERPINs are found in humans, which participate in inflammation, coagulation, angiogenesis, cell viability, and other pathophysiological processes. Both qualitative or quantitative deficiencies or overexpression and/or abnormal accumulation of SERPIN can lead to diseases commonly referred to as "serpinopathies". Hence, strategies involving SERPIN supplementation, elimination, or correction are utilized and/or under consideration. In this review, we discuss relationships between certain SERPINs and diseases as well as putative strategies for the clinical explorations of SERPINs.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Magdalena Pelc
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland.
| |
Collapse
|
7
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Monsalve FA, Delgado-López F, Fernández-Tapia B, González DR. Adipose Tissue, Non-Communicable Diseases, and Physical Exercise: An Imperfect Triangle. Int J Mol Sci 2023; 24:17168. [PMID: 38138997 PMCID: PMC10743187 DOI: 10.3390/ijms242417168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 12/24/2023] Open
Abstract
The study of adipose tissue has received considerable attention due to its importance not just in maintaining body energy homeostasis but also in playing a role in a number of other physiological processes. Beyond storing energy, adipose tissue is important in endocrine, immunological, and neuromodulatory functions, secreting hormones that participate in the regulation of energy homeostasis. An imbalance of these functions will generate structural and functional changes in the adipose tissue, favoring the secretion of deleterious adipocytokines that induce a pro-inflammatory state, allowing the development of metabolic and cardiovascular diseases and even some types of cancer. A common theme worldwide has been the development of professional guidelines for the control and treatment of obesity, with emphasis on hypocaloric diets and exercise. The aim of this review is to examine the pathophysiological mechanisms of obesity, considering the relationship among adipose tissue and two aspects that contribute positively or negatively to keeping a healthy body homeostasis, namely, exercise and noninfectious diseases. We conclude that the relationship of these aspects does not have homogeneous effects among individuals. Nevertheless, it is possible to establish some common mechanisms, like a decrease in pro-inflammatory markers in the case of exercise, and an increase in chronic inflammation in non-communicable diseases. An accurate diagnosis might consider the particular variables of a patient, namely their molecular profile and how it affects its metabolism, routines, and lifestyle; their underling health conditions; and probably even the constitution of their microbiome. We foresee that the development and accessibility of omics approaches and precision medicine will greatly improve the diagnosis, treatment, and successful outcomes for obese patients.
Collapse
Affiliation(s)
- Francisco A. Monsalve
- Department of Basic Biomedical Science, Faculty of Health Sciences, Universidad de Talca, Talca 3465548, Chile;
| | - Fernando Delgado-López
- Laboratories of Biomedical Research, Department of Preclinical Sciences, Faculty of Medicine, Universidad Católica del Maule, Talca 3466706, Chile;
| | | | - Daniel R. González
- Department of Basic Biomedical Science, Faculty of Health Sciences, Universidad de Talca, Talca 3465548, Chile;
| |
Collapse
|