1
|
Uhrig M, Sharma N, Maxwell P, Gomez J, Selemenakis P, Mazin A, Wiese C. Disparate requirements for RAD54L in replication fork reversal. Nucleic Acids Res 2024; 52:12390-12404. [PMID: 39315725 PMCID: PMC11551752 DOI: 10.1093/nar/gkae828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
RAD54L is a DNA motor protein with multiple roles in homologous recombination DNA repair. In vitro, RAD54L was shown to also catalyze the reversal and restoration of model replication forks. In cells, however, little is known about how RAD54L may regulate the dynamics of DNA replication. Here, we show that RAD54L restrains the progression of replication forks and functions as a fork remodeler in human cancer cell lines and non-transformed cells. Analogous to HLTF, SMARCAL1 and FBH1, and consistent with a role in fork reversal, RAD54L decelerates fork progression in response to replication stress and suppresses the formation of replication-associated ssDNA gaps. Interestingly, loss of RAD54L prevents nascent strand DNA degradation in both BRCA1/2- and 53BP1-deficient cells, suggesting that RAD54L functions in both pathways of RAD51-mediated replication fork reversal. In the HLTF/SMARCAL1 pathway, RAD54L is critical, but its ability to catalyze branch migration is dispensable, indicative of its function downstream of HLTF/SMARCAL1. Conversely, in the FBH1 pathway, branch migration activity of RAD54L is essential, and FBH1 engagement is dependent on its concerted action with RAD54L. Collectively, our results reveal disparate requirements for RAD54L in two distinct RAD51-mediated fork reversal pathways, positing its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Mollie E Uhrig
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Petey Maxwell
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jordi Gomez
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Platon Selemenakis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alexander V Mazin
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
Lin W, Huang D, Li M, Ren Y, Zheng X, Wu B, Miao Y. WHIRLY proteins, multi-layer regulators linking the nucleus and organelles in developmental and stress-induced senescence of plants. ANNALS OF BOTANY 2024; 134:521-536. [PMID: 38845347 PMCID: PMC11523626 DOI: 10.1093/aob/mcae092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/03/2024] [Indexed: 11/01/2024]
Abstract
Plant senescence is an integrated programme of plant development that aims to remobilize nutrients and energy from senescing tissues to developing organs under developmental and stress-induced conditions. Upstream in the regulatory network, a small family of single-stranded DNA/RNA-binding proteins known as WHIRLYs occupy a central node, acting at multiple regulatory levels and via trans-localization between the nucleus and organelles. In this review, we summarize the current progress on the role of WHIRLY members in plant development and stress-induced senescence. WHIRLY proteins can be traced back in evolution to green algae. WHIRLY proteins trade off the balance of plant developmental senescence and stress-induced senescence through maintaining organelle genome stability via R-loop homeostasis, repressing the transcription at a configuration condition, and recruiting RNA to impact organelle RNA editing and splicing, as evidenced in several species. WHIRLY proteins also act as retrograde signal transducers between organelles and the nucleus through protein modification and stromule or vesicle trafficking. In addition, WHIRLY proteins interact with hormones, reactive oxygen species and environmental signals to orchestrate cell fate in an age-dependent manner. Finally, prospects for further research and promotion to improve crop production under environmental constraints are highlighted.
Collapse
Affiliation(s)
- Wenfang Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Dongmei Huang
- Department of Biochemistry and Molecular Biology, Xiamen Medical College, Xiamen 361023, China
| | - Mengsi Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yujun Ren
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Binghua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| |
Collapse
|
3
|
Adolph MB, Cortez D. Mechanisms and regulation of replication fork reversal. DNA Repair (Amst) 2024; 141:103731. [PMID: 39089193 PMCID: PMC11877614 DOI: 10.1016/j.dnarep.2024.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| |
Collapse
|
4
|
Duan M, Leng S, Mao P. Cisplatin in the era of PARP inhibitors and immunotherapy. Pharmacol Ther 2024; 258:108642. [PMID: 38614254 DOI: 10.1016/j.pharmthera.2024.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Platinum compounds such as cisplatin, carboplatin and oxaliplatin are widely used in chemotherapy. Cisplatin induces cytotoxic DNA damage that blocks DNA replication and gene transcription, leading to arrest of cell proliferation. Although platinum therapy alone is effective against many tumors, cancer cells can adapt to the treatment and gain resistance. The mechanisms for cisplatin resistance are complex, including low DNA damage formation, high DNA repair capacity, changes in apoptosis signaling pathways, rewired cell metabolisms, and others. Drug resistance compromises the clinical efficacy and calls for new strategies by combining cisplatin with other therapies. Exciting progress in cancer treatment, particularly development of poly (ADP-ribose) polymerase (PARP) inhibitors and immune checkpoint inhibitors, opened a new chapter to combine cisplatin with these new cancer therapies. In this Review, we discuss how platinum synergizes with PARP inhibitors and immunotherapy to bring new hope to cancer patients.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Shuguang Leng
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
5
|
Uhrig ME, Sharma N, Maxwell P, Selemenakis P, Mazin AV, Wiese C. Disparate requirements for RAD54L in replication fork reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550704. [PMID: 37546955 PMCID: PMC10402051 DOI: 10.1101/2023.07.26.550704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
RAD54L is a DNA motor protein with multiple roles in homologous recombination DNA repair (HR). In vitro , RAD54L was shown to also catalyze the reversal and restoration of model replication forks. In cells, however, little is known about how RAD54L may regulate the dynamics of DNA replication. Here, we show that RAD54L restrains the progression of replication forks and functions as a fork remodeler in human cells. Analogous to HLTF, SMARCAL1, and FBH1, and consistent with a role in fork reversal, RAD54L decelerates fork progression in response to replication stress and suppresses the formation of replication-associated ssDNA gaps. Interestingly, loss of RAD54L prevents nascent strand DNA degradation in both BRCA1/2- and 53BP1-deficient cells, suggesting that RAD54L functions in both pathways of RAD51-mediated replication fork reversal. In the HLTF/SMARCAL1 pathway, RAD54L is critical, but its ability to catalyze branch migration is dispensable, indicative of its function downstream of HLTF/SMARCAL1. Conversely, in the FBH1 pathway, branch migration activity of RAD54L is essential, and FBH1 engagement is dependent on its concerted action with RAD54L. Collectively, our results reveal disparate requirements for RAD54L in two distinct RAD51-mediated fork reversal pathways, positing its potential as a future therapeutic target.
Collapse
|
6
|
Guo Y, Li S, Shi Z, Chen B, Wan Z, Yu P, Zheng B, Gong W, Chai R, Tu S, Yuan H. EEPD1 is identified as a predictor of prognosis and immune microenvironment through pan-cancer analysis and related to progression of colorectal cancer. Heliyon 2024; 10:e29285. [PMID: 38633650 PMCID: PMC11021989 DOI: 10.1016/j.heliyon.2024.e29285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Background EEPD1 is vital in homologous recombination, while its role in cancer remains unclear. Methods We performed multiple pan-cancer analyses of EEPD1 with bioinformatics methods, such as gene expression, gene alterations, Prognosis and enrichment analysis, tumor microenvironment, immune cell infiltration, TMB, MSI, immunotherapy, co-expression of genes, and drug resistance. Finally, RT-qPCR, EdU, and transwell assays helped investigate the impact of EEPD1 on CRC cells. Results EEPD1 was dysregulated and correlated with bad prognosis in several cancers. GSVA and GSEA revealed that EEPD1 was primarily associated with the "WNT_BETA_CATENIN_SIGNALING," "ribonucleoprotein complex biogenesis," "Ribosome," and "rRNA processing." The infiltration of CD8+ T cells, MAIT cells, iTreg cells, NK cells, Tc cells, Tex cells, Tfh cells, and Th1 cells were negatively correlated with EEPD1 expression. Additionally, EEPD1 is significantly associated with TMB and MSI in COAD, while enhanced CRC cell proliferation and migration. Conclusions EEPD1 was dysregulated in human cancers and correlated with various cancer patient prognoses. The dysregulated EEPD1 expression can affect tumor-infiltrating immune cells and immunotherapy response. Therefore, EEPD1 could act as an oncogene associated with immune cell infiltration in CRC.
Collapse
Affiliation(s)
- Yang Guo
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Shujin Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Zhan Shi
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Bingchen Chen
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Ziang Wan
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Peng Yu
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Boan Zheng
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Wenjing Gong
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Rui Chai
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Shiliang Tu
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| | - Hang Yuan
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, PR China
| |
Collapse
|
7
|
Nautiyal A, Thakur M. Prokaryotic DNA Crossroads: Holliday Junction Formation and Resolution. ACS OMEGA 2024; 9:12515-12538. [PMID: 38524412 PMCID: PMC10956419 DOI: 10.1021/acsomega.3c09866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/26/2024]
Abstract
Cells are continually exposed to a multitude of internal and external stressors, which give rise to various types of DNA damage. To protect the integrity of their genetic material, cells are equipped with a repertoire of repair proteins that engage in various repair mechanisms, facilitated by intricate networks of protein-protein and protein-DNA interactions. Among these networks is the homologous recombination (HR) system, a molecular repair mechanism conserved in all three domains of life. On one hand, HR ensures high-fidelity, template-dependent DNA repair, while on the other hand, it results in the generation of combinatorial genetic variations through allelic exchange. Despite substantial progress in understanding this pathway in bacteria, yeast, and humans, several critical questions remain unanswered, including the molecular processes leading to the exchange of DNA segments, the coordination of protein binding, conformational switching during branch migration, and the resolution of Holliday Junctions (HJs). This Review delves into our current understanding of the HR pathway in bacteria, shedding light on the roles played by various proteins or their complexes at different stages of HR. In the first part of this Review, we provide a brief overview of the end resection processes and the strand-exchange reaction, offering a concise depiction of the mechanisms that culminate in the formation of HJs. In the latter half, we expound upon the alternative methods of branch migration and HJ resolution more comprehensively and holistically, considering the historical research timelines. Finally, when we consolidate our knowledge about HR within the broader context of genome replication and the emergence of resistant species, it becomes evident that the HR pathway is indispensable for the survival of bacteria in diverse ecological niches.
Collapse
Affiliation(s)
- Astha Nautiyal
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Manoj Thakur
- Sri
Venkateswara College, Benito Juarez Road, University of Delhi, New Delhi 110021, India
| |
Collapse
|
8
|
Petrini S, Righi C, Mészáros I, D’Errico F, Tamás V, Pela M, Olasz F, Gallardo C, Fernandez-Pinero J, Göltl E, Magyar T, Feliziani F, Zádori Z. The Production of Recombinant African Swine Fever Virus Lv17/WB/Rie1 Strains and Their In Vitro and In Vivo Characterizations. Vaccines (Basel) 2023; 11:1860. [PMID: 38140263 PMCID: PMC10748256 DOI: 10.3390/vaccines11121860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Lv17/WB/Rie1-Δ24 was produced via illegitimate recombination mediated by low-dilution serial passage in the Cos7 cell line and isolated on PAM cell culture. The virus contains a huge ~26.4 Kb deletion in the left end of its genome. Lv17/WB/Rie1-ΔCD-ΔGL was generated via homologous recombination, crossing two ASFV strains (Lv17/WB/Rie1-ΔCD and Lv17/WB/Rie1-ΔGL containing eGFP and mCherry markers) during PAM co-infection. The presence of unique parental markers in the Lv17/WB/Rie1-ΔCD-ΔGL genome indicates at least two recombination events during the crossing, suggesting that homologous recombination is a relatively frequent event in the ASFV genome during replication in PAM. Pigs infected with Lv17/WB/Rie1-Δ24 and Lv17/WB/Rie1/ΔCD-ΔGL strains have shown mild clinical signs despite that ASFV could not be detected in their sera until a challenge infection with the Armenia/07 ASFV strain. The two viruses were not able to induce protective immunity in pigs against a virulent Armenia/07 challenge.
Collapse
Affiliation(s)
- Stefano Petrini
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (S.P.); (C.R.); (F.D.); (M.P.)
| | - Cecilia Righi
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (S.P.); (C.R.); (F.D.); (M.P.)
| | - István Mészáros
- HUN-REN Veterinary Medical Research Institute (VMRI), Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (V.T.); (F.O.); (E.G.); (T.M.)
| | - Federica D’Errico
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (S.P.); (C.R.); (F.D.); (M.P.)
| | - Vivien Tamás
- HUN-REN Veterinary Medical Research Institute (VMRI), Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (V.T.); (F.O.); (E.G.); (T.M.)
| | - Michela Pela
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (S.P.); (C.R.); (F.D.); (M.P.)
| | - Ferenc Olasz
- HUN-REN Veterinary Medical Research Institute (VMRI), Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (V.T.); (F.O.); (E.G.); (T.M.)
| | - Carmina Gallardo
- European Union Reference Laboratory for ASF (EURL-ASF), Centro de Investigación en Sanidad Animal (CISA-INIA, CSIC), Valdeolmos, 28130 Madrid, Spain; (C.G.)
| | - Jovita Fernandez-Pinero
- European Union Reference Laboratory for ASF (EURL-ASF), Centro de Investigación en Sanidad Animal (CISA-INIA, CSIC), Valdeolmos, 28130 Madrid, Spain; (C.G.)
| | - Eszter Göltl
- HUN-REN Veterinary Medical Research Institute (VMRI), Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (V.T.); (F.O.); (E.G.); (T.M.)
| | - Tibor Magyar
- HUN-REN Veterinary Medical Research Institute (VMRI), Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (V.T.); (F.O.); (E.G.); (T.M.)
| | - Francesco Feliziani
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (S.P.); (C.R.); (F.D.); (M.P.)
| | - Zoltán Zádori
- HUN-REN Veterinary Medical Research Institute (VMRI), Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (V.T.); (F.O.); (E.G.); (T.M.)
| |
Collapse
|
9
|
Jiang C, Fan F, Xu W, Jiang X. POLD4 Promotes Glioma Cell Proliferation and Suppressive Immune Microenvironment: A Pan-Cancer Analysis Integrated with Experimental Validation. Int J Mol Sci 2023; 24:13919. [PMID: 37762224 PMCID: PMC10530695 DOI: 10.3390/ijms241813919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
POLD4 plays a crucial part in the complex machinery of DNA replication and repair as a vital component of the DNA polymerase delta complex. In this research, we obtained original information from various publicly available databases. Using a blend of R programming and internet resources, we initiated an extensive examination into the correlation between POLD4 expression and the various elements of cancers. In addition, we performed knockdown experiments in glioma cell lines to authenticate its significant impact. We discovered that POLD4 is upregulated in various malignant tumors, demonstrating a significant correlation with poor patient survival prognosis. Using function analysis, it was uncovered that POLD4 exhibited intricate associations with signaling pathways spanning multiple tumor types. Subsequent investigations unveiled the close association of POLD4 with the immune microenvironment and the effectiveness of immunotherapy. Drugs like trametinib, saracatinib, and dasatinib may be used in patients with high POLD4. Using experimental analysis, we further confirmed the overexpression of POLD4 in gliomas, as well as its correlation with glioma recurrence, proliferation, and the suppressive immune microenvironment. Our research findings indicate that the expression pattern of POLD4 not only serves as a robust indicator of prognosis in cancer patients but also holds promising potential as a new focus for treatment.
Collapse
Affiliation(s)
| | | | | | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China (W.X.)
| |
Collapse
|
10
|
Palovcak A, Yuan F, Verdun R, Luo L, Zhang Y. Fanconi anemia associated protein 20 (FAAP20) plays an essential role in homology-directed repair of DNA double-strand breaks. Commun Biol 2023; 6:873. [PMID: 37620397 PMCID: PMC10449828 DOI: 10.1038/s42003-023-05252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
FAAP20 is a Fanconi anemia (FA) protein that associates with the FA core complex to promote FANCD2/FANCI monoubiquitination and activate the damage response to interstrand crosslink damage. Here, we report that FAAP20 has a marked role in homologous recombination at a DNA double-strand break not associated with an ICL and separable from its binding partner FANCA. While FAAP20's role in homologous recombination is not dependent on FANCA, we found that FAAP20 stimulates FANCA's biochemical activity in vitro and participates in the single-strand annealing pathway of double-strand break repair in a FANCA-dependent manner. This indicates that FAAP20 has roles in several homology-directed repair pathways. Like other homology-directed repair factors, FAAP20 loss causes a reduction in nuclear RAD51 Irradiation-induced foci; and sensitizes cancer cells to ionizing radiation and PARP inhibition. In summary, FAAP20 participates in DNA double strand break repair by supporting homologous recombination in a non-redundant manner to FANCA, and single-strand annealing repair via FANCA-mediated strand annealing activity.
Collapse
Affiliation(s)
- Anna Palovcak
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ramiro Verdun
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
11
|
Thomas M, Dubacq C, Rabut E, Lopez BS, Guirouilh-Barbat J. Noncanonical Roles of RAD51. Cells 2023; 12:cells12081169. [PMID: 37190078 DOI: 10.3390/cells12081169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Homologous recombination (HR), an evolutionary conserved pathway, plays a paramount role(s) in genome plasticity. The pivotal HR step is the strand invasion/exchange of double-stranded DNA by a homologous single-stranded DNA (ssDNA) covered by RAD51. Thus, RAD51 plays a prime role in HR through this canonical catalytic strand invasion/exchange activity. The mutations in many HR genes cause oncogenesis. Surprisingly, despite its central role in HR, the invalidation of RAD51 is not classified as being cancer prone, constituting the "RAD51 paradox". This suggests that RAD51 exercises other noncanonical roles that are independent of its catalytic strand invasion/exchange function. For example, the binding of RAD51 on ssDNA prevents nonconservative mutagenic DNA repair, which is independent of its strand exchange activity but relies on its ssDNA occupancy. At the arrested replication forks, RAD51 plays several noncanonical roles in the formation, protection, and management of fork reversal, allowing for the resumption of replication. RAD51 also exhibits noncanonical roles in RNA-mediated processes. Finally, RAD51 pathogenic variants have been described in the congenital mirror movement syndrome, revealing an unexpected role in brain development. In this review, we present and discuss the different noncanonical roles of RAD51, whose presence does not automatically result in an HR event, revealing the multiple faces of this prominent actor in genomic plasticity.
Collapse
Affiliation(s)
- Mélissa Thomas
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Caroline Dubacq
- Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, INSERM, CNRS, Sorbonne Université, F-75005 Paris, France
| | - Elise Rabut
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Bernard S Lopez
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Josée Guirouilh-Barbat
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| |
Collapse
|
12
|
Jeong SY, Hariharasudhan G, Kim MJ, Lim JY, Jung SM, Choi EJ, Chang IY, Kee Y, You HJ, Lee JH. SIAH2 regulates DNA end resection and replication fork recovery by promoting CtIP ubiquitination. Nucleic Acids Res 2022; 50:10469-10486. [PMID: 36155803 PMCID: PMC9561274 DOI: 10.1093/nar/gkac808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Human CtIP maintains genomic integrity primarily by promoting 5′ DNA end resection, an initial step of the homologous recombination (HR). A few mechanisms have been suggested as to how CtIP recruitment to damage sites is controlled, but it is likely that we do not yet have full understanding of the process. Here, we provide evidence that CtIP recruitment and functioning are controlled by the SIAH2 E3 ubiquitin ligase. We found that SIAH2 interacts and ubiquitinates CtIP at its N-terminal lysine residues. Mutating the key CtIP lysine residues impaired CtIP recruitment to DSBs and stalled replication forks, DSB end resection, overall HR repair capacity of cells, and recovery of stalled replication forks, suggesting that the SIAH2-induced ubiquitination is important for relocating CtIP to sites of damage. Depleting SIAH2 consistently phenocopied these results. Overall, our work suggests that SIAH2 is a new regulator of CtIP and HR repair, and emphasizes that SIAH2-mediated recruitment of the CtIP is an important step for CtIP’s function during HR repair.
Collapse
Affiliation(s)
- Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Gurusamy Hariharasudhan
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Min-Ji Kim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Ji-Yeon Lim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Sung Mi Jung
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Eun-Ji Choi
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - In-Youb Chang
- Department of Anatomy, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Younghoon Kee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
13
|
Griffin WC, McKinzey DR, Klinzing KN, Baratam R, Eliyapura A, Trakselis MA. A multi-functional role for the MCM8/9 helicase complex in maintaining fork integrity during replication stress. Nat Commun 2022; 13:5090. [PMID: 36042199 PMCID: PMC9427862 DOI: 10.1038/s41467-022-32583-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
The minichromosome maintenance (MCM) 8/9 helicase is a AAA+ complex involved in DNA replication-associated repair. Despite high sequence homology to the MCM2-7 helicase, a precise cellular role for MCM8/9 has remained elusive. We have interrogated the DNA synthesis ability and replication fork stability in cells lacking MCM8 or 9 and find that there is a functional partitioning of MCM8/9 activity between promoting replication fork progression and protecting persistently stalled forks. The helicase function of MCM8/9 aids in normal replication fork progression, but upon persistent stalling, MCM8/9 directs additional downstream stabilizers, including BRCA1 and Rad51, to protect forks from excessive degradation. Loss of MCM8 or 9 slows the overall replication rate and allows for excessive nascent strand degradation, detectable by increased markers of genomic damage. This evidence defines multifunctional roles for MCM8/9 in promoting normal replication fork progression and genome integrity following stress.
Collapse
Affiliation(s)
- Wezley C. Griffin
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA ,grid.240871.80000 0001 0224 711XPresent Address: St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - David R. McKinzey
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Kathleen N. Klinzing
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Rithvik Baratam
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Achini Eliyapura
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Michael A. Trakselis
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| |
Collapse
|
14
|
Lee H, Choi S, Ha S, Yoon S, Kim WY. ARL2 is required for homologous recombination repair and colon cancer stem cell survival. FEBS Open Bio 2022; 12:1523-1533. [PMID: 35567502 PMCID: PMC9340879 DOI: 10.1002/2211-5463.13438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
ARL2 regulates the dynamics of cytological components and is highly expressed in colon cancer tissues. Here, we report novel roles of ARL2 in the cell nucleus and colon cancer stem cells (CSCs). ARL2 is expressed at relatively low levels in K‐RAS active colon cancer cells, but its expression is induced in CSCs. Depletion of ARL2 results in M phase arrest exclusively in non‐CSC cultured cells; in addition, DNA break stress accumulates in CSCs leading to apoptosis. ARL2 expression is positively associated with the expression of all six RAD51 family genes, which are essential for homologous recombination repair (HRR). Furthermore, ARL2 is required for HRR and detected within chromatin compartments. These results demonstrate the requirement of ARL2 in colon CSC maintenance, which possibly occurs through mediating double‐strand break DNA repair in the nucleus.
Collapse
Affiliation(s)
- Hani Lee
- College of Pharmacy, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| | - SeokGyeong Choi
- College of Pharmacy, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| | - Sojung Ha
- College of Pharmacy, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| | - Sukjoon Yoon
- Department of Biological Sciences, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea.,Research Institute of Pharmacal Research, Sookmyung Women's University, Cheongparo 47 gil, Yongsangu, Seoul, 04312, Korea
| |
Collapse
|
15
|
Justice JL, Needham JM, Verhalen B, Jiang M, Thompson SR. BK Polyomavirus Requires the Mismatch Repair Pathway for DNA Damage Response Activation. J Virol 2022; 96:e0202821. [PMID: 35389233 PMCID: PMC9044952 DOI: 10.1128/jvi.02028-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
BK polyomavirus (PyV) infects the genitourinary tract of >90% of the adult population. Immunosuppression increases the risk of viral reactivation, making BKPyV a leading cause of graft failure in kidney transplant recipients. Polyomaviruses have a small double-stranded DNA (dsDNA) genome that requires host replication machinery to amplify the viral genome. Specifically, polyomaviruses promote S phase entry and delay S phase exit by activating the DNA damage response (DDR) pathway via an uncharacterized mechanism requiring viral replication. BKPyV infection elevates expression of MutSα, a mismatch repair (MMR) pathway protein complex that senses and repairs DNA mismatches and can activate the DDR. Thus, we investigated the role of the MMR pathway by silencing the MutSα component, Msh6, in BKPyV-infected primary cells. This resulted in severe DNA damage that correlated with weak DNA damage response activation and a failure to arrest the cell cycle to prevent mitotic entry during infection. Furthermore, silencing Msh6 expression resulted in significantly fewer infectious viral particles due to significantly lower levels of VP2, a minor capsid protein important for trafficking during subsequent infections. Since viral assembly occurs in the nucleus, our findings are consistent with a model in which entry into mitosis disrupts viral assembly due to nuclear envelope breakdown, which disperses VP2 throughout the cell, reducing its availability for encapsidation into viral particles. Thus, the MMR pathway may be required to activate the ATR (ATM-Rad3-related) pathway during infection to maintain a favorable environment for both viral replication and assembly. IMPORTANCE Since there are no therapeutics that target BKPyV reactivation in organ transplant patients, it is currently treated by decreasing immunosuppression to allow the natural immune system to fight the viral infection. Antivirals would significantly improve patient outcomes since reducing immunosuppression carries the risk of graft failure. PyVs activate the DDR, for which there are several promising inhibitors. However, a better understanding of how PyVs activate the DDR and what role the DDR plays during infection is needed. Here, we show that a component of the mismatch repair pathway is required for DDR activation during PyV infection. These findings show that the mismatch repair pathway is important for DDR activation during PyV infection and that inhibiting the DDR reduces viral titers by generating less infectious virions that lack the minor capsid protein VP2, which is important for viral trafficking.
Collapse
Affiliation(s)
- Joshua L. Justice
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason M. Needham
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brandy Verhalen
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mengxi Jiang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sunnie R. Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Modulation of RecFORQ- and RecA-Mediated Homologous Recombination in Escherichia coli by Isoforms of Translation Initiation Factor IF2. J Bacteriol 2022; 204:e0056921. [PMID: 35343793 DOI: 10.1128/jb.00569-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Homologous recombination (HR) is critically important for chromosomal replication, as well as DNA damage repair in all life forms. In Escherichia coli, the process of HR comprises (i) two parallel presynaptic pathways that are mediated, respectively, by proteins RecB/C/D and RecF/O/R/Q; (ii) a synaptic step mediated by RecA that leads to generation of Holliday junctions (HJs); and (iii) postsynaptic steps mediated sequentially by HJ-acting proteins RuvA/B/C followed by proteins PriA/B/C of replication restart. Combined loss of RuvA/B/C and a DNA helicase UvrD is synthetically lethal, which is attributed to toxicity caused by accumulated HJs since viability in these double mutant strains is restored by removal of the presynaptic or synaptic proteins RecF/O/R/Q or RecA, respectively. Here we show that, as in ΔuvrD strains, ruv mutations confer synthetic lethality in cells deficient for transcription termination factor Rho, and that loss of RecFORQ presynaptic pathway proteins or of RecA suppresses this lethality. Furthermore, loss of IF2-1 (which is one of three isoforms [IF2-1, IF2-2, and IF2-3] of the essential translation initiation factor IF2 that are synthesized from three in-frame initiation codons in infB) also suppressed uvrD-ruv and rho-ruv lethalities, whereas deficiency of IF2-2 and IF2-3 exacerbated the synthetic defects. Our results suggest that Rho deficiency is associated with an increased frequency of HR that is mediated by the RecFORQ pathway along with RecA. They also lend support to earlier reports that IF2 isoforms participate in DNA transactions, and we propose that they do so by modulation of HR functions. IMPORTANCE The process of homologous recombination (HR) is important for maintenance of genome integrity in all cells. In Escherichia coli, the RecA protein is a critical participant in HR, which acts at a step common to and downstream of two HR pathways mediated by the RecBCD and RecFOR proteins, respectively. In this study, an isoform (IF2-1) of the translation initiation factor IF2 has been identified as a novel facilitator of RecA's function in vivo during HR.
Collapse
|
17
|
Carr A, Lambert S. Recombination-dependent replication: new perspectives from site-specific fork barriers. Curr Opin Genet Dev 2021; 71:129-135. [PMID: 34364031 DOI: 10.1016/j.gde.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023]
Abstract
Replication stress (RS) is intrinsic to normal cell growth, is enhanced by exogenous factors and elevated in many cancer cells due to oncogene expression. Most genetic changes are a result of RS and the mechanisms by which cells tolerate RS has received considerable attention because of the link to cancer evolution and opportunities for cancer cell-specific therapeutic intervention. Site-specific replication fork barriers have provided unique insights into how cells respond to RS and their recent use has allowed a deeper understanding of the mechanistic and spatial mechanism that restart arrested forks and how these correlate with RS-dependent mutagenesis. Here we review recent data from site-specific fork arrest systems used in yeast and highlight their strengths and limitations.
Collapse
Affiliation(s)
- Antony Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, BN1 9RQ, UK
| | - Sarah Lambert
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipe Labélisée Ligue Nationale Contre Le Cancer, 91400 Orsay, France.
| |
Collapse
|
18
|
Komulainen E, Badman J, Rey S, Rulten S, Ju L, Fennell K, Kalasova I, Ilievova K, McKinnon PJ, Hanzlikova H, Staras K, Caldecott KW. Parp1 hyperactivity couples DNA breaks to aberrant neuronal calcium signalling and lethal seizures. EMBO Rep 2021; 22:e51851. [PMID: 33932076 PMCID: PMC8097344 DOI: 10.15252/embr.202051851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Defects in DNA single-strand break repair (SSBR) are linked with neurological dysfunction but the underlying mechanisms remain poorly understood. Here, we show that hyperactivity of the DNA strand break sensor protein Parp1 in mice in which the central SSBR protein Xrcc1 is conditionally deleted (Xrcc1Nes-Cre ) results in lethal seizures and shortened lifespan. Using electrophysiological recording and synaptic imaging approaches, we demonstrate that aberrant Parp1 activation triggers seizure-like activity in Xrcc1-defective hippocampus ex vivo and deregulated presynaptic calcium signalling in isolated hippocampal neurons in vitro. Moreover, we show that these defects are prevented by Parp1 inhibition or deletion and, in the case of Parp1 deletion, that the lifespan of Xrcc1Nes-Cre mice is greatly extended. This is the first demonstration that lethal seizures can be triggered by aberrant Parp1 activity at unrepaired SSBs, highlighting PARP inhibition as a possible therapeutic approach in hereditary neurological disease.
Collapse
Affiliation(s)
- Emilia Komulainen
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Jack Badman
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Stephanie Rey
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Stuart Rulten
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Limei Ju
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Kate Fennell
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Ilona Kalasova
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Kristyna Ilievova
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Peter J McKinnon
- Department of GeneticsSt Jude Children’s Research HospitalMemphisTNUSA
| | - Hana Hanzlikova
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Kevin Staras
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Keith W Caldecott
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
19
|
Fuchs J, Cheblal A, Gasser SM. Underappreciated Roles of DNA Polymerase δ in Replication Stress Survival. Trends Genet 2021; 37:476-487. [PMID: 33608117 DOI: 10.1016/j.tig.2020.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
Recent structural analysis of Fe-S centers in replication proteins and insights into the structure and function of DNA polymerase δ (DNA Pol δ) subunits have shed light on the key role played by this polymerase at replication forks under stress. The sequencing of cancer genomes reveals multiple point mutations that compromise the activity of POLD1, the DNA Pol δ catalytic subunit, whereas the loci encoding the accessory subunits POLD2 and POLD3 are amplified in a very high proportion of human tumors. Consistently, DNA Pol δ is key for the survival of replication stress and is involved in multiple long-patch repair pathways. Synthetic lethality arises from compromising the function and availability of the noncatalytic subunits of DNA Pol δ under conditions of replication stress, opening the door to novel therapies.
Collapse
Affiliation(s)
- Jeannette Fuchs
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland.
| |
Collapse
|
20
|
Martin JC, Hoegel TJ, Lynch ML, Woloszynska A, Melendy T, Ohm JE. Exploiting Replication Stress as a Novel Therapeutic Intervention. Mol Cancer Res 2020; 19:192-206. [PMID: 33020173 DOI: 10.1158/1541-7786.mcr-20-0651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/01/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022]
Abstract
Ewing sarcoma is an aggressive pediatric tumor of the bone and soft tissue. The current standard of care is radiation and chemotherapy, and patients generally lack targeted therapies. One of the defining molecular features of this tumor type is the presence of significantly elevated levels of replication stress as compared with both normal cells and many other types of cancers, but the source of this stress is poorly understood. Tumors that harbor elevated levels of replication stress rely on the replication stress and DNA damage response pathways to retain viability. Understanding the source of the replication stress in Ewing sarcoma may reveal novel therapeutic targets. Ewing sarcomagenesis is complex, and in this review, we discuss the current state of our knowledge regarding elevated replication stress and the DNA damage response in Ewing sarcoma, one contributor to the disease process. We will also describe how these pathways are being successfully targeted therapeutically in other tumor types, and discuss possible novel, evidence-based therapeutic interventions in Ewing sarcoma. We hope that this consolidation will spark investigations that uncover new therapeutic targets and lead to the development of better treatment options for patients with Ewing sarcoma. IMPLICATIONS: This review uncovers new therapeutic targets in Ewing sarcoma and highlights replication stress as an exploitable vulnerability across multiple cancers.
Collapse
Affiliation(s)
- Jeffrey C Martin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Tamara J Hoegel
- Department of Pediatric Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Miranda L Lynch
- Hauptman-Woodward Medical Research Institute, Buffalo, New York
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Thomas Melendy
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, New York
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
21
|
de Araujo CB, da Cunha JPC, Inada DT, Damasceno J, Lima ARJ, Hiraiwa P, Marques C, Gonçalves E, Nishiyama-Junior MY, McCulloch R, Elias MC. Replication origin location might contribute to genetic variability in Trypanosoma cruzi. BMC Genomics 2020; 21:414. [PMID: 32571205 PMCID: PMC7310030 DOI: 10.1186/s12864-020-06803-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/05/2020] [Indexed: 11/29/2022] Open
Abstract
Background DNA replication in trypanosomatids operates in a uniquely challenging environment, since most of their genomes are constitutively transcribed. Trypanosoma cruzi, the etiological agent of Chagas disease, presents high variability in both chromosomes size and copy number among strains, though the underlying mechanisms are unknown. Results Here we have mapped sites of DNA replication initiation across the T. cruzi genome using Marker Frequency Analysis, which has previously only been deployed in two related trypanosomatids. The putative origins identified in T. cruzi show a notable enrichment of GC content, a preferential position at subtelomeric regions, coinciding with genes transcribed towards the telomeres, and a pronounced enrichment within coding DNA sequences, most notably in genes from the Dispersed Gene Family 1 (DGF-1). Conclusions These findings suggest a scenario where collisions between DNA replication and transcription are frequent, leading to increased genetic variability, as seen by the increase SNP levels at chromosome subtelomeres and in DGF-1 genes containing putative origins.
Collapse
Affiliation(s)
- Christiane Bezerra de Araujo
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil. .,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| | - Davi Toshio Inada
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Jeziel Damasceno
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Alex Ranieri Jerônimo Lima
- Laboratório de Tecnologia Biomolecular - Bioinformática, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | - Catarina Marques
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Evonnildo Gonçalves
- Laboratório de Tecnologia Biomolecular - Bioinformática, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Milton Yutaka Nishiyama-Junior
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.,Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Maria Carolina Elias
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil. .,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
22
|
Lawarée E, Jankevicius G, Cooper C, Ahel I, Uphoff S, Tang CM. DNA ADP-Ribosylation Stalls Replication and Is Reversed by RecF-Mediated Homologous Recombination and Nucleotide Excision Repair. Cell Rep 2020; 30:1373-1384.e4. [PMID: 32023456 PMCID: PMC7003065 DOI: 10.1016/j.celrep.2020.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/16/2019] [Accepted: 01/02/2020] [Indexed: 01/08/2023] Open
Abstract
ADP-ribosylation of proteins is crucial for fundamental cellular processes. Despite increasing examples of DNA ADP-ribosylation, the impact of this modification on DNA metabolism and cell physiology is unknown. Here, we show that the DarTG toxin-antitoxin system from enteropathogenic Escherichia coli (EPEC) catalyzes reversible ADP-ribosylation of single-stranded DNA (ssDNA). The DarT toxin recognizes specific sequence motifs. EPEC DarG abrogates DarT toxicity by two distinct mechanisms: removal of DNA ADP-ribose (ADPr) groups and DarT sequestration. Furthermore, we investigate how cells recognize and deal with DNA ADP-ribosylation. We demonstrate that DNA ADPr stalls replication and is perceived as DNA damage. Removal of ADPr from DNA requires the sequential activity of two DNA repair pathways, with RecF-mediated homologous recombination likely to transfer ADP-ribosylation from single- to double-stranded DNA (dsDNA) and subsequent nucleotide excision repair eliminating the lesion. Our work demonstrates that these DNA repair pathways prevent the genotoxic effects of DNA ADP-ribosylation.
Collapse
Affiliation(s)
- Emeline Lawarée
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Gytis Jankevicius
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Charles Cooper
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
23
|
Stroik S, Kurtz K, Hendrickson EA. CtIP is essential for telomere replication. Nucleic Acids Res 2019; 47:8927-8940. [PMID: 31378812 PMCID: PMC6755089 DOI: 10.1093/nar/gkz652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 01/10/2023] Open
Abstract
The maintenance of telomere length is critical to longevity and survival. Specifically, the failure to properly replicate, resect, and/or form appropriate telomeric structures drives telomere shortening and, in turn, genomic instability. The endonuclease CtIP is a DNA repair protein that is well-known to promote genome stability through the resection of endogenous DNA double-stranded breaks. Here, we describe a novel role for CtIP. We show that in the absence of CtIP, human telomeres shorten rapidly to non-viable lengths. This telomere dysfunction results in an accumulation of fusions, breaks, and frank telomere loss. Additionally, CtIP suppresses the generation of circular, extrachromosomal telomeric DNA. These latter structures appear to arise from arrested DNA replication forks that accumulate in the absence of CtIP. Hence, CtIP is required for faithful replication through telomeres via its roles at stalled replication tracts. Our findings demonstrate a new role for CtIP as a protector of human telomere integrity.
Collapse
Affiliation(s)
- Susanna Stroik
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kevin Kurtz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Densham RM, Morris JR. Moving Mountains-The BRCA1 Promotion of DNA Resection. Front Mol Biosci 2019; 6:79. [PMID: 31552267 PMCID: PMC6733915 DOI: 10.3389/fmolb.2019.00079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
DNA double-strand breaks (DSBs) occur in our cells in the context of chromatin. This type of lesion is toxic, entirely preventing genome continuity and causing cell death or terminal arrest. Several repair mechanisms can act on DNA surrounding a DSB, only some of which carry a low risk of mutation, so that which repair process is utilized is critical to the stability of genetic material of cells. A key component of repair outcome is the degree of DNA resection directed to either side of the break site. This in turn determines the subsequent forms of repair in which DNA homology plays a part. Here we will focus on chromatin and chromatin-bound complexes which constitute the "mountains" that block resection, with a particular focus on how the breast and ovarian cancer predisposition protein-1 (BRCA1) contributes to repair outcomes through overcoming these blocks.
Collapse
Affiliation(s)
| | - Joanna R. Morris
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
25
|
Bui TM, Sumagin R. Progressing from Recurring Tissue Injury to Genomic Instability: A New Mechanism of Neutrophil Pathogenesis. DNA Cell Biol 2019; 38:747-753. [PMID: 31188020 PMCID: PMC7643757 DOI: 10.1089/dna.2019.4842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Aberrant neutrophil (PMN) infiltration of the intestinal mucosa is a hallmark of inflammatory bowel diseases, including Crohn's disease and ulcerative colitis. While the genotoxic function of PMNs and its implications in carcinogenesis have been primarily associated with oxidative stress, recent work by Butin-Israeli and colleagues has defined a novel mechanism where PMN-derived microparticles through the delivery and activity of specific miRNAs promoted formation of double-strand breaks (DSBs), and in parallel, suppressed DSB repair through the downregulation of lamin B1 and Rad51. Respective downregulation of these two proteins compromised the nuclear envelope and high-fidelity repair by homologous recombination, increasing DSB accumulation and aneuploidy. This discovery defined a novel mode of action where PMN-mediated suppression of DSB repair leading to genomic instability in the injured mucosa may facilitate progression toward colorectal cancer.
Collapse
Affiliation(s)
- Triet M. Bui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
26
|
Recent achievements in the generation of stable genome alterations/mutations in species of the genus Streptomyces. Appl Microbiol Biotechnol 2019; 103:5463-5482. [DOI: 10.1007/s00253-019-09901-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
|
27
|
Pérez Di Giorgio JA, Lepage É, Tremblay-Belzile S, Truche S, Loubert-Hudon A, Brisson N. Transcription is a major driving force for plastid genome instability in Arabidopsis. PLoS One 2019; 14:e0214552. [PMID: 30943245 PMCID: PMC6447228 DOI: 10.1371/journal.pone.0214552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Though it is an essential process, transcription can be a source of genomic instability. For instance, it may generate RNA:DNA hybrids as the nascent transcript hybridizes with the complementary DNA template. These hybrids, called R-loops, act as a major cause of replication fork stalling and DNA breaks. In this study, we show that lowering transcription and R-loop levels in plastids of Arabidopsis thaliana reduces DNA rearrangements and mitigates plastid genome instability phenotypes. This effect can be observed on a genome-wide scale, as the loss of the plastid sigma transcription factor SIG6 prevents DNA rearrangements by favoring conservative repair in the presence of ciprofloxacin-induced DNA damage or in the absence of plastid genome maintenance actors such as WHY1/WHY3, RECA1 and POLIB. Additionally, resolving R-loops by the expression of a plastid-targeted exogenous RNAse H1 produces similar results. We also show that highly-transcribed genes are more susceptible to DNA rearrangements, as increased transcription of the psbD operon by SIG5 correlates with more locus-specific rearrangements. The effect of transcription is not specific to Sigma factors, as decreased global transcription levels by mutation of heat-stress-induced factor HSP21, mutation of nuclear-encoded polymerase RPOTp, or treatment with transcription-inhibitor rifampicin all prevent the formation of plastid genome rearrangements, especially under induced DNA damage conditions.
Collapse
Affiliation(s)
| | - Étienne Lepage
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Truche
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Audrey Loubert-Hudon
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Normand Brisson
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
28
|
Wang J, Wang Y, Shen F, Xu Y, Zhang Y, Zou X, Zhou J, Chen Y. Maternal embryonic leucine zipper kinase: A novel biomarker and a potential therapeutic target of cervical cancer. Cancer Med 2018; 7:5665-5678. [PMID: 30334367 PMCID: PMC6246930 DOI: 10.1002/cam4.1816] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/12/2018] [Accepted: 08/31/2018] [Indexed: 12/30/2022] Open
Abstract
Maternal embryo leucine zipper kinase (MELK) is highly expressed in a variety of malignant tumors and involved in cell cycle regulation, cell proliferation, apoptosis, tumor formation etc However, the biological effects of MELK in cervical cancer are still uninvestigated. This study aimed to explore the expression of MELK in cervical cancer, as well as its effects on the proliferation, apoptosis, DNA damage repair on cervical cancer cell line in vitro and to provide novel ideas for further improving the clinical efficacy of cervical cancer. Immunohistochemistry, Western blot, RT‐qPCR, CCK8, and immunofluorescence techniques were used to detect the expression of MELK in cervical cancer tissues, paracancerous tissues, and cervical cancer cell lines. Several cervical cancer cell lines were treated with MELK knockdown by siRNA and MELK selective inhibitor OTSSP167. The effects on proliferation, apoptosis, and colony formation capacity, and tumor cell DNA damage repair‐related factor were detected in cell lines. Our data showed that the high expression rate of MELK in cervical cancer patients was 56.92%. MELK expression in cervical cancer samples was significantly higher than that in paraneoplastic tissues. Highly expressed MELK correlated with the cervical histopathological grading and greatly increased with the cervical histopathological grading, from normal cervix and cervical intraepithelial neoplasia to cervical cancer. Moreover, the abnormal expression of MELK was related to cervical cancer metastasis at early stage. The knockdown of MELK with siRNA and OTSSP167 had strong inhibition effects on the proliferation, apoptosis, and colony formation of cervical cancer cells. MELK knockdown could also aggravate the DNA damage of cervical cancer cells possibly by homologous recombination repair pathway. Therefore, MELK may be a predicting marker of poor prognosis of cervical cancer and may also be a new therapeutic target for cervical cancer, providing ideas for improving the therapeutic effect of cervical cancer.
Collapse
Affiliation(s)
- Juan Wang
- Department of Obstetrics and Gynecology, The First Hospital Affiliated Soochow University, Suzhou, China
| | - Yamei Wang
- Department of Obstetrics and Gynecology, The First Hospital Affiliated Soochow University, Suzhou, China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, The First Hospital Affiliated Soochow University, Suzhou, China
| | - Yanting Xu
- Department of Obstetrics and Gynecology, The First Hospital Affiliated Soochow University, Suzhou, China
| | - Yinghui Zhang
- Department of Obstetrics and Gynecology, The First Hospital Affiliated Soochow University, Suzhou, China
| | - Xinwei Zou
- Department of Obstetrics and Gynecology, The First Hospital Affiliated Soochow University, Suzhou, China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Hospital Affiliated Soochow University, Suzhou, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Hospital Affiliated Soochow University, Suzhou, China
| |
Collapse
|
29
|
Tdp1 processes chromate-induced single-strand DNA breaks that collapse replication forks. PLoS Genet 2018; 14:e1007595. [PMID: 30148840 PMCID: PMC6128646 DOI: 10.1371/journal.pgen.1007595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/07/2018] [Accepted: 07/26/2018] [Indexed: 01/20/2023] Open
Abstract
Hexavalent chromium [Cr(VI)] damages DNA and causes cancer, but it is unclear which DNA damage responses (DDRs) most critically protect cells from chromate toxicity. Here, genome-wide quantitative functional profiling, DDR measurements and genetic interaction assays in Schizosaccharomyces pombe reveal a chromate toxicogenomic profile that closely resembles the cancer chemotherapeutic drug camptothecin (CPT), which traps Topoisomerase 1 (Top1)-DNA covalent complex (Top1cc) at the 3’ end of single-stand breaks (SSBs), resulting in replication fork collapse. ATR/Rad3-dependent checkpoints that detect stalled and collapsed replication forks are crucial in Cr(VI)-treated cells, as is Mus81-dependent sister chromatid recombination (SCR) that repairs single-ended double-strand breaks (seDSBs) at broken replication forks. Surprisingly, chromate resistance does not require base excision repair (BER) or interstrand crosslink (ICL) repair, nor does co-elimination of XPA-dependent nucleotide excision repair (NER) and Rad18-mediated post-replication repair (PRR) confer chromate sensitivity in fission yeast. However, co-elimination of Tdp1 tyrosyl-DNA phosphodiesterase and Rad16-Swi10 (XPF-ERCC1) NER endonuclease synergistically enhances chromate toxicity in top1Δ cells. Pnk1 polynucleotide kinase phosphatase (PNKP), which restores 3’-hydroxyl ends to SSBs processed by Tdp1, is also critical for chromate resistance. Loss of Tdp1 ameliorates pnk1Δ chromate sensitivity while enhancing the requirement for Mus81. Thus, Tdp1 and PNKP, which prevent neurodegeneration in humans, repair an important class of Cr-induced SSBs that collapse replication forks. Hexavalent chromium is a carcinogen that is found at toxic waste sites and in some groundwater supplies. Cellular metabolism converts chromium into DNA-damaging chromate, but it is unclear which types of chromate-DNA lesions are most dangerous, and which cellular mechanisms most critically prevent chromium toxicity. This study uses whole-genome profiling to identify DNA repair pathways that are crucial for chromate resistance in fission yeast. The resulting ‘toxicogenomic’ profile of chromate closely matches camptothecin, a natural product representing a class of chemotherapeutic drugs that cause replication fork collapse by poisoning Topoisomerase 1 (Top1), which relaxes supercoiled DNA by creating and resealing single-strand breaks (SSBs). Genetic interaction analyses uncover important roles for Tdp1 tyrosyl-DNA phosphodiesterase and Pnk1 polynucleotide 5’-kinase 3’-phosphatase (PNKP), which repair camptothecin-induced SSBs and prevent neurological disease in humans. However, chromium toxicity does not involve Top1. As Tdp1 and Pnk1 repair SSBs with 3’-blocked termini, these data suggest that Top1-independent 3’-blocked SSBs contribute to the carcinogenic and mutagenic properties of chromium.
Collapse
|
30
|
Abstract
Flaws in the DNA replication process have emerged as a leading driver of genome instability in human diseases. Alteration to replication fork progression is a defining feature of replication stress and the consequent failure to maintain fork integrity and complete genome duplication within a single round of S-phase compromises genetic integrity. This includes increased mutation rates, small and large scale genomic rearrangement and deleterious consequences for the subsequent mitosis that result in the transmission of additional DNA damage to the daughter cells. Therefore, preserving fork integrity and replication competence is an important aspect of how cells respond to replication stress and avoid genetic change. Homologous recombination is a pivotal pathway in the maintenance of genome integrity in the face of replication stress. Here we review our recent understanding of the mechanisms by which homologous recombination acts to protect, restart and repair replication forks. We discuss the dynamics of these genetically distinct functions and their contribution to faithful mitoticsegregation.
Collapse
|
31
|
Hromas R, Kim HS, Sidhu G, Williamson E, Jaiswal A, Totterdale TA, Nole J, Lee SH, Nickoloff JA, Kong KY. The endonuclease EEPD1 mediates synthetic lethality in RAD52-depleted BRCA1 mutant breast cancer cells. Breast Cancer Res 2017; 19:122. [PMID: 29145865 PMCID: PMC5693420 DOI: 10.1186/s13058-017-0912-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Background Proper repair and restart of stressed replication forks requires intact homologous recombination (HR). HR at stressed replication forks can be initiated by the 5′ endonuclease EEPD1, which cleaves the stalled replication fork. Inherited or acquired defects in HR, such as mutations in breast cancer susceptibility protein-1 (BRCA1) or BRCA2, predispose to cancer, including breast and ovarian cancers. In order for these HR-deficient tumor cells to proliferate, they become addicted to a bypass replication fork repair pathway mediated by radiation repair protein 52 (RAD52). Depleting RAD52 can cause synthetic lethality in BRCA1/2 mutant cancers by an unknown molecular mechanism. Methods We hypothesized that cleavage of stressed replication forks by EEPD1 generates a fork repair intermediate that is toxic when HR-deficient cells cannot complete repair with the RAD52 bypass pathway. To test this hypothesis, we applied cell survival assays, immunofluorescence staining, DNA fiber and western blot analyses to look at the correlation between cell survival and genome integrity in control, EEPD1, RAD52 and EEPD1/RAD52 co-depletion BRCA1-deficient breast cancer cells. Results Our data show that depletion of EEPD1 suppresses synthetic lethality, genome instability, mitotic catastrophe, and hypersensitivity to stress of replication of RAD52-depleted, BRCA1 mutant breast cancer cells. Without HR and the RAD52-dependent backup pathway, the BRCA1 mutant cancer cells depleted of EEPD1 skew to the alternative non-homologous end-joining DNA repair pathway for survival. Conclusion This study indicates that the mechanism of synthetic lethality in RAD52-depleted BRCA1 mutant cancer cells depends on the endonuclease EEPD1. The data imply that EEPD1 cleavage of stressed replication forks may result in a toxic intermediate when replication fork repair cannot be completed. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0912-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Hromas
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
| | - Hyun-Suk Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gurjit Sidhu
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Elizabeth Williamson
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Aruna Jaiswal
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Taylor A Totterdale
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Jocelyn Nole
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kimi Y Kong
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
| |
Collapse
|
32
|
Ait Saada A, Teixeira-Silva A, Iraqui I, Costes A, Hardy J, Paoletti G, Fréon K, Lambert SAE. Unprotected Replication Forks Are Converted into Mitotic Sister Chromatid Bridges. Mol Cell 2017; 66:398-410.e4. [PMID: 28475874 DOI: 10.1016/j.molcel.2017.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 01/23/2023]
Abstract
Replication stress and mitotic abnormalities are key features of cancer cells. Temporarily paused forks are stabilized by the intra-S phase checkpoint and protected by the association of Rad51, which prevents Mre11-dependent resection. However, if a fork becomes dysfunctional and cannot resume, this terminally arrested fork is rescued by a converging fork to avoid unreplicated parental DNA during mitosis. Alternatively, dysfunctional forks are restarted by homologous recombination. Using fission yeast, we report that Rad52 and the DNA binding activity of Rad51, but not its strand-exchange activity, act to protect terminally arrested forks from unrestrained Exo1-nucleolytic activity. In the absence of recombination proteins, large ssDNA gaps, up to 3 kb long, occur behind terminally arrested forks, preventing efficient fork merging and leading to mitotic sister chromatid bridging. Thus, Rad52 and Rad51 prevent temporarily and terminally arrested forks from degrading and, despite the availability of converging forks, converting to anaphase bridges causing aneuploidy and cell death.
Collapse
Affiliation(s)
- Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Ana Teixeira-Silva
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Ismail Iraqui
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Audrey Costes
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Julien Hardy
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Giulia Paoletti
- Institut Curie, PSL Research University, CNRS, UMR144, F-75248 Paris, France
| | - Karine Fréon
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Sarah A E Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France.
| |
Collapse
|
33
|
Bournique E, Dall'Osto M, Hoffmann JS, Bergoglio V. Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutat Res 2017; 808:62-73. [PMID: 28843435 DOI: 10.1016/j.mrfmmm.2017.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/31/2023]
Abstract
Replication stress is a strong and early driving force for genomic instability and tumor development. Beside replicative DNA polymerases, an emerging group of specialized DNA polymerases is involved in the technical assistance of the replication machinery in order to prevent replicative stress and its deleterious consequences. During S-phase, altered progression of the replication fork by endogenous or exogenous impediments induces replicative stress, causing cells to reach mitosis with genomic regions not fully duplicated. Recently, specific mechanisms to resolve replication intermediates during mitosis with the aim of limiting DNA damage transmission to daughter cells have been identified. In this review, we detail the two major actions of specialized DNA polymerases that limit DNA damage transmission: the prevention of replicative stress by non-B DNA replication and the recovery of stalled replication forks.
Collapse
Affiliation(s)
- Elodie Bournique
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Marina Dall'Osto
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Jean-Sébastien Hoffmann
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Valérie Bergoglio
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France.
| |
Collapse
|
34
|
Paths from DNA damage and signaling to genome rearrangements via homologous recombination. Mutat Res 2017; 806:64-74. [PMID: 28779875 DOI: 10.1016/j.mrfmmm.2017.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
DNA damage is a constant threat to genome integrity. DNA repair and damage signaling networks play a central role maintaining genome stability, suppressing tumorigenesis, and determining tumor response to common cancer chemotherapeutic agents and radiotherapy. DNA double-strand breaks (DSBs) are critical lesions induced by ionizing radiation and when replication forks encounter damage. DSBs can result in mutations and large-scale genome rearrangements reflecting mis-repair by non-homologous end joining or homologous recombination. Ionizing radiation induces genetic change immediately, and it also triggers delayed events weeks or even years after exposure, long after the initial damage has been repaired or diluted through cell division. This review covers DNA damage signaling and repair pathways and cell fate following genotoxic insult, including immediate and delayed genome instability and cell survival/cell death pathways.
Collapse
|
35
|
DNA Replication Origins and Fork Progression at Mammalian Telomeres. Genes (Basel) 2017; 8:genes8040112. [PMID: 28350373 PMCID: PMC5406859 DOI: 10.3390/genes8040112] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions.
Collapse
|
36
|
Castillo F, Benmohamed A, Szatmari G. Xer Site Specific Recombination: Double and Single Recombinase Systems. Front Microbiol 2017; 8:453. [PMID: 28373867 PMCID: PMC5357621 DOI: 10.3389/fmicb.2017.00453] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
The separation and segregation of newly replicated bacterial chromosomes can be constrained by the formation of circular chromosome dimers caused by crossing over during homologous recombination events. In Escherichia coli and most bacteria, dimers are resolved to monomers by site-specific recombination, a process performed by two Chromosomally Encoded tyrosine Recombinases (XerC and XerD). XerCD recombinases act at a 28 bp recombination site dif, which is located at the replication terminus region of the chromosome. The septal protein FtsK controls the initiation of the dimer resolution reaction, so that recombination occurs at the right time (immediately prior to cell division) and at the right place (cell division septum). XerCD and FtsK have been detected in nearly all sequenced eubacterial genomes including Proteobacteria, Archaea, and Firmicutes. However, in Streptococci and Lactococci, an alternative system has been found, composed of a single recombinase (XerS) genetically linked to an atypical 31 bp recombination site (difSL). A similar recombination system has also been found in 𝜀-proteobacteria such as Campylobacter and Helicobacter, where a single recombinase (XerH) acts at a resolution site called difH. Most Archaea contain a recombinase called XerA that acts on a highly conserved 28 bp sequence dif, which appears to act independently of FtsK. Additionally, several mobile elements have been found to exploit the dif/Xer system to integrate their genomes into the host chromosome in Vibrio cholerae, Neisseria gonorrhoeae, and Enterobacter cloacae. This review highlights the versatility of dif/Xer recombinase systems in prokaryotes and summarizes our current understanding of homologs of dif/Xer machineries.
Collapse
Affiliation(s)
- Fabio Castillo
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| | | | - George Szatmari
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| |
Collapse
|
37
|
Chun C, Wu Y, Lee SH, Williamson EA, Reinert BL, Jaiswal AS, Nickoloff JA, Hromas RA. The homologous recombination component EEPD1 is required for genome stability in response to developmental stress of vertebrate embryogenesis. Cell Cycle 2017; 15:957-62. [PMID: 26900729 PMCID: PMC4889227 DOI: 10.1080/15384101.2016.1151585] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR), initiated by nuclease cleavage of branched structures at stalled forks. We previously reported that the 5' nuclease EEPD1 is recruited to stressed replication forks, where it plays critical early roles in HR initiation by promoting fork cleavage and end resection. HR repair of stressed replication forks prevents their repair by non-homologous end-joining (NHEJ), which would cause genome instability. Rapid cell division during vertebrate embryonic development generates enormous pressure to maintain replication speed and accuracy. To determine the role of EEPD1 in maintaining replication fork integrity and genome stability during rapid cell division in embryonic development, we assessed the role of EEPD1 during zebrafish embryogenesis. We show here that when EEPD1 is depleted, zebrafish embryos fail to develop normally and have a marked increase in death rate. Zebrafish embryos depleted of EEPD1 are far more sensitive to replication stress caused by nucleotide depletion. We hypothesized that the HR defect with EEPD1 depletion would shift repair of stressed replication forks to unopposed NHEJ, causing chromosome abnormalities. Consistent with this, EEPD1 depletion results in nuclear defects including anaphase bridges and micronuclei in stressed zebrafish embryos, similar to BRCA1 deficiency. These results demonstrate that the newly characterized HR protein EEPD1 maintains genome stability during embryonic replication stress. These data also imply that the rapid cell cycle transit seen during embryonic development produces replication stress that requires HR to resolve.
Collapse
Affiliation(s)
- Changzoon Chun
- a Division of Hematology/Oncology , Department of Medicine, University of Florida Health , Gainesville , FL , USA
| | - Yuehan Wu
- a Division of Hematology/Oncology , Department of Medicine, University of Florida Health , Gainesville , FL , USA
| | - Suk-Hee Lee
- b Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Elizabeth A Williamson
- a Division of Hematology/Oncology , Department of Medicine, University of Florida Health , Gainesville , FL , USA
| | - Brian L Reinert
- a Division of Hematology/Oncology , Department of Medicine, University of Florida Health , Gainesville , FL , USA
| | - Aruna Shanker Jaiswal
- a Division of Hematology/Oncology , Department of Medicine, University of Florida Health , Gainesville , FL , USA
| | - Jac A Nickoloff
- c Department of Environmental and Radiological Health Sciences , Colorado State University , Fort Collins , CO , USA
| | - Robert A Hromas
- a Division of Hematology/Oncology , Department of Medicine, University of Florida Health , Gainesville , FL , USA
| |
Collapse
|
38
|
Densham RM, Morris JR. The BRCA1 Ubiquitin ligase function sets a new trend for remodelling in DNA repair. Nucleus 2017; 8:116-125. [PMID: 28032817 PMCID: PMC5403137 DOI: 10.1080/19491034.2016.1267092] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/24/2016] [Indexed: 02/05/2023] Open
Abstract
The protein product of the breast and ovarian cancer gene, BRCA1, is part of an obligate heterodimer with BARD1. Together these RING bearing proteins act as an E3 ubiquitin ligase. Several functions have been attributed to BRCA1 that contribute to genome integrity but which of these, if any, require this enzymatic function was unclear. Here we review recent studies clarifying the role of BRCA1 E3 ubiquitin ligase in DNA repair. Perhaps the most surprising finding is the narrow range of BRCA1 functions this activity relates to. Remarkably ligase activity promotes chromatin remodelling and 53BP1 positioning through the remodeller SMARCAD1, but the activity is dispensable for the cellular survival in response to cisplatin or replication stressing agents. Implications for therapy response and tumor susceptibility are discussed.
Collapse
Affiliation(s)
- Ruth M. Densham
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Joanna R. Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
39
|
Kim HS, Nickoloff JA, Wu Y, Williamson EA, Sidhu GS, Reinert BL, Jaiswal AS, Srinivasan G, Patel B, Kong K, Burma S, Lee SH, Hromas RA. Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks. J Biol Chem 2017; 292:2795-2804. [PMID: 28049724 PMCID: PMC5314175 DOI: 10.1074/jbc.m116.758235] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/29/2016] [Indexed: 01/21/2023] Open
Abstract
Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5′ end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5′-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5′ end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5′-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5′ end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks.
Collapse
Affiliation(s)
- Hyun-Suk Kim
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jac A Nickoloff
- the Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Yuehan Wu
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Elizabeth A Williamson
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Gurjit Singh Sidhu
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Brian L Reinert
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Aruna S Jaiswal
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Gayathri Srinivasan
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Bhavita Patel
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Kimi Kong
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Sandeep Burma
- the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Suk-Hee Lee
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| | - Robert A Hromas
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| |
Collapse
|
40
|
Kim HS, Williamson EA, Nickoloff JA, Hromas RA, Lee SH. Metnase Mediates Loading of Exonuclease 1 onto Single Strand Overhang DNA for End Resection at Stalled Replication Forks. J Biol Chem 2016; 292:1414-1425. [PMID: 27974460 DOI: 10.1074/jbc.m116.745646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
Stalling at DNA replication forks generates stretches of single-stranded (ss) DNA on both strands that are exposed to nucleolytic degradation, potentially compromising genome stability. One enzyme crucial for DNA replication fork repair and restart of stalled forks in human is Metnase (also known as SETMAR), a chimeric fusion protein consisting of a su(var)3-9, enhancer-of-zeste and trithorax (SET) histone methylase and transposase nuclease domain. We previously showed that Metnase possesses a unique fork cleavage activity necessary for its function in replication restart and that its SET domain is essential for recovery from hydroxyurea-induced DNA damage. However, its exact role in replication restart is unclear. In this study, we show that Metnase associates with exonuclease 1 (Exo1), a 5'-exonuclease crucial for 5'-end resection to mediate DNA processing at stalled forks. Metnase DNA cleavage activity was not required for Exo1 5'-exonuclease activity on the lagging strand daughter DNA, but its DNA binding activity mediated loading of Exo1 onto ssDNA overhangs. Metnase-induced enhancement of Exo1-mediated DNA strand resection required the presence of these overhangs but did not require Metnase's DNA cleavage activity. These results suggest that Metnase enhances Exo1-mediated exonuclease activity on the lagging strand DNA by facilitating Exo1 loading onto a single strand gap at the stalled replication fork.
Collapse
Affiliation(s)
- Hyun-Suk Kim
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Elizabeth A Williamson
- the Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, and
| | - Jac A Nickoloff
- the Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Robert A Hromas
- the Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, and
| | - Suk-Hee Lee
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| |
Collapse
|
41
|
Vlaming H, Molenaar TM, van Welsem T, Poramba-Liyanage DW, Smith DE, Velds A, Hoekman L, Korthout T, Hendriks S, Altelaar AFM, van Leeuwen F. Direct screening for chromatin status on DNA barcodes in yeast delineates the regulome of H3K79 methylation by Dot1. eLife 2016; 5. [PMID: 27922451 PMCID: PMC5179194 DOI: 10.7554/elife.18919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022] Open
Abstract
Given the frequent misregulation of chromatin in cancer, it is important to understand the cellular mechanisms that regulate chromatin structure. However, systematic screening for epigenetic regulators is challenging and often relies on laborious assays or indirect reporter read-outs. Here we describe a strategy, Epi-ID, to directly assess chromatin status in thousands of mutants. In Epi-ID, chromatin status on DNA barcodes is interrogated by chromatin immunoprecipitation followed by deep sequencing, allowing for quantitative comparison of many mutants in parallel. Screening of a barcoded yeast knock-out collection for regulators of histone H3K79 methylation by Dot1 identified all known regulators as well as novel players and processes. These include histone deposition, homologous recombination, and adenosine kinase, which influences the methionine cycle. Gcn5, the acetyltransferase within the SAGA complex, was found to regulate histone methylation and H2B ubiquitination. The concept of Epi-ID is widely applicable and can be readily applied to other chromatin features. DOI:http://dx.doi.org/10.7554/eLife.18919.001 To fit into the nucleus of eukaryotic cells (which include plant, animal and yeast cells), DNA wraps around histone proteins to form a structure called chromatin. Histones can be modified by a variety of chemical tags, which affect how easily nearby DNA can be accessed by other molecules in the cell. These modifications therefore help to control the activity of the genes encoded in the DNA and other key processes such as DNA repair. If histone modifications are not regulated correctly, diseases such as cancer may result. Enzymes generally perform the actual modification, but there is another layer of regulation that controls the activity of these enzymes that not much is known about. The activity of an enzyme that performs a histone modification known as H3K79 methylation (which involves a methyl chemical group being added to a particular region of a particular histone protein) has been linked to some forms of leukemia. Collections of mutant yeast cells can be used to identify the factors that regulate histone modifications in both yeast and human cells. However, current methods that screen for these regulators are time consuming. To make the search for histone modification regulators more efficient, Vlaming et al. developed a new screening procedure called Epi-ID that can measure the amount of a specific histone modification in thousands of budding yeast mutants at the same time. In Epi-ID, each mutant yeast cell has a unique DNA sequence, or “barcode”. The mutant cells are mixed together and the barcodes that are modified by a particular histone modification – such as H3K79 methylation – are isolated and then counted using a DNA sequencing technique. A high barcode count of a certain mutant indicates that more of the histone modification occurs in that mutant. Using Epi-ID to survey H3K79 methylation enabled Vlaming et al. to successfully identify all previously known H3K79 methylation regulators, as well several new ones. These new regulators included enzymes that deposit histones on DNA, that carry out DNA repair, and that modify or de-modify histone proteins. To move forward with the newly identified regulators, it will be important to analyze how they control H3K79 methylation in yeast cells and to determine whether the regulators also control H3K79 methylation in human cells. Finally, Epi-ID can be used to identify regulators of other types of histone modifications. A better understanding of chromatin regulation – and H3K79 methylation regulation in particular – can increase our understanding of diseases in which chromatin is deregulated, and may yield new strategies for the treatment of such diseases. DOI:http://dx.doi.org/10.7554/eLife.18919.002
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thom M Molenaar
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Desiree E Smith
- Department of Clinical Chemistry, Metabolic Laboratory, VU University Medical Center, Amsterdam, Netherlands
| | - Arno Velds
- Central Genomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Liesbeth Hoekman
- Mass Spectrometry/Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sjoerd Hendriks
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - A F Maarten Altelaar
- Mass Spectrometry/Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands.,Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
42
|
Wilhelm T, Ragu S, Magdalou I, Machon C, Dardillac E, Técher H, Guitton J, Debatisse M, Lopez BS. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress. PLoS Genet 2016; 12:e1006007. [PMID: 27135742 PMCID: PMC4852921 DOI: 10.1371/journal.pgen.1006007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/05/2016] [Indexed: 01/01/2023] Open
Abstract
Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation, and emphasize the importance of homologous recombination as a barrier against spontaneous genetic instability triggered by the endogenous oxidative/replication stress axis. Endogenous stress is an important stress because it challenges cells daily. However, endogenous stress is difficult to apprehend. Replication forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Here we identify endogenous oxidative stress among the different potential endogenous stresses as being responsible for spontaneous replication defects in homologous recombination-defective cells. Therefore, oxidative and replication stresses, which are both evoked during tumorigenesis and senescence initiation, are linked, and homologous recombination acts as a barrier against spontaneous genetic instability triggered by endogenous oxidative/replication stress.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Sandrine Ragu
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Indiana Magdalou
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Christelle Machon
- Laboratoire de Biochimie et Toxicologie, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
- Laboratoire de Chimie Analytique, Université de Lyon, Université Lyon 1, ISPB Faculté de Pharmacie, Lyon, France
| | - Elodie Dardillac
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Hervé Técher
- Institut Curie, Centre de Recherche, Paris, France, UPMC Université Paris 06, Paris, France, CNRS UMR 3244, Paris, France
| | - Jérôme Guitton
- Laboratoire de Biochimie et Toxicologie, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
- Laboratoire de Toxicologie, Université Lyon 1, ISPB, Faculté de Pharmacie, Lyon, France
| | - Michelle Debatisse
- Institut Curie, Centre de Recherche, Paris, France, UPMC Université Paris 06, Paris, France, CNRS UMR 3244, Paris, France
| | - Bernard S. Lopez
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
- * E-mail:
| |
Collapse
|
43
|
Holliday Junctions Are Associated with Transposable Element Sequences in the Human Genome. J Mol Biol 2016; 428:658-667. [PMID: 26780549 DOI: 10.1016/j.jmb.2016.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 01/22/2023]
Abstract
Holliday junctions (HJs) constitute important intermediate structures for many cell functions such as DNA recombination and DNA repair. They derive from a 10-nt degenerate sequence, with a 3-nt core motif. In this study, we explored the human genome whether the HJ degenerate sequence associates with transposable elements (TEs) and mainly with those of the active and inactive ALU, LINE, SVA and HERV families. We identified six different forms of the HJ sequence motif, and we located the genomic coordinates of sequences containing both HJs and TEs. From 2982 total HJs, a significant number of 1319 TE-associated HJs were found, with a median distribution of 1 per 2.4 Mb. The HJs with higher GC content were observed more frequently at the genome. A high percentage of HJs were associated with all main TE families, with specificity for particular active or inactive elements: DNA elements and the retroelements ALUs, LINEs and HERVs up to 41.94%, 72.72%, 42.94% and 84.5%, respectively. Phylogenetic analysis revealed that HJs occur in both active and inactive TEs. Furthermore, the TE-associated HJs were almost exclusively found within a distance less than 1 Mb from human genes, while only 23 were not associated with any genes. This is the first report associating human HJs, with mobile elements. Our data pinpoint that particular HJ forms show preference for specific active retrotransposon families of ALUs and LINEs, suggesting that retrotransposon-incorporated HJs may relocate or replicate in the genome through retrotransposition, contributing to recombination, genome plasticity and DNA repair.
Collapse
|
44
|
The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress. PLoS Genet 2016; 12:e1005843. [PMID: 26849847 PMCID: PMC4743919 DOI: 10.1371/journal.pgen.1005843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101Mms22 ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δmms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101Mms22 E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1’s replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) complex at stalled forks. Post-translational protein modifications, such as ubiquitylation, are essential for cells to respond to environmental cues. In order to understand how eukaryotes cope with DNA damage, we have investigated a conserved E3 ubiquitin ligase complex required for the resistance to carcinogenic chemicals. This complex, composed of Rtt101, Mms1 and Mms22 in budding yeast, plays a critical role in regulating the fate of stalled DNA replication. Here, we found that the Rtt101Mms22 E3 ubiquitin ligase complex interacts with the replisome during S-phase, and orchestrates the repair/restart of DNA synthesis after stalling by activating a Rad52-dependent homologous recombination pathway. Our findings indicate that Rtt101Mms22 specifically counteracts the replicative activity of Mrc1, a subunit of the fork protection complex, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) helicase complex upon fork stalling. Altogether, our study unravels a functional protein cluster that is essential to understand how eukaryotic cells cope with DNA damage during replication and, thus deepens our knowledge of the biology that underlies carcinogenesis.
Collapse
|
45
|
Wu Y, Lee SH, Williamson EA, Reinert BL, Cho JH, Xia F, Jaiswal AS, Srinivasan G, Patel B, Brantley A, Zhou D, Shao L, Pathak R, Hauer-Jensen M, Singh S, Kong K, Wu X, Kim HS, Beissbarth T, Gaedcke J, Burma S, Nickoloff JA, Hromas RA. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair. PLoS Genet 2015; 11:e1005675. [PMID: 26684013 PMCID: PMC4684289 DOI: 10.1371/journal.pgen.1005675] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022] Open
Abstract
Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5’ end resection near the fork junction, which permits 3’ single strand invasion of a homologous template for fork restart. This 5’ end resection also prevents classical non-homologous end-joining (cNHEJ), a competing pathway for DNA double-strand break (DSB) repair. Unopposed NHEJ can cause genome instability during replication stress by abnormally fusing free double strand ends that occur as unstable replication fork repair intermediates. We show here that the previously uncharacterized Exonuclease/Endonuclease/Phosphatase Domain-1 (EEPD1) protein is required for initiating repair and restart of stalled forks. EEPD1 is recruited to stalled forks, enhances 5’ DNA end resection, and promotes restart of stalled forks. Interestingly, EEPD1 directs DSB repair away from cNHEJ, and also away from MMEJ, which requires limited end resection for initiation. EEPD1 is also required for proper ATR and CHK1 phosphorylation, and formation of gamma-H2AX, RAD51 and phospho-RPA32 foci. Consistent with a direct role in stalled replication fork cleavage, EEPD1 is a 5’ overhang nuclease in an obligate complex with the end resection nuclease Exo1 and BLM. EEPD1 depletion causes nuclear and cytogenetic defects, which are made worse by replication stress. Depleting 53BP1, which slows cNHEJ, fully rescues the nuclear and cytogenetic abnormalities seen with EEPD1 depletion. These data demonstrate that genome stability during replication stress is maintained by EEPD1, which initiates HR and inhibits cNHEJ and MMEJ. The cell itself damages its own DNA throughout the cell cycle as a result of oxidative metabolism, and this damage creates barriers for replication fork progression. Thus, DNA replication is not a smooth and continuous process, but rather one of stalls and restarts. Therefore, proper replication fork restart is crucial to maintain the integrity of the cell’s genome, and preventing its own death or immortalization. To restart after stalling, the replication fork subverts a DNA repair pathway termed homologous recombination. Using any other pathway for fork repair will result in an unstable genome. How the homologous recombination repair pathway is initiated at the replication fork is not well defined. In this study we demonstrate the previously uncharacterized EEPD1 protein is a novel gatekeeper for the initiation of this fork repair pathway. EEPD1 promotes 5’ end resection, the initial step of homologous recombination, which also prevents alternative fork repair pathways that lead to unstable chromosomes. Thus, EEPD1 protects the integrity of the cell genome by promoting the safe homologous recombination fork repair pathway.
Collapse
Affiliation(s)
- Yuehan Wu
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Elizabeth A. Williamson
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Brian L. Reinert
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Ju Hwan Cho
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Fen Xia
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Aruna Shanker Jaiswal
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Gayathri Srinivasan
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Bhavita Patel
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Alexis Brantley
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Daohong Zhou
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lijian Shao
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Martin Hauer-Jensen
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Sudha Singh
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Kimi Kong
- Department of Craniofacial Regeneration, College of Dental Medicine, Columbia University, New York, New York, United States of America
| | - Xaiohua Wu
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California, United States of America
| | - Hyun-Suk Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Timothy Beissbarth
- Department of Medical Statistics, and General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jochen Gaedcke
- Department of Medical Statistics, and General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail: (JAN); (RAH)
| | - Robert A. Hromas
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
- * E-mail: (JAN); (RAH)
| |
Collapse
|
46
|
Chen C, Wei D, Liu P, Wang M, Shi J, Jiang B, Hao J. Inhibition of RecBCD inKlebsiella pneumoniaeby Gam and its effect on the efficiency of gene replacement. J Basic Microbiol 2015; 56:120-6. [DOI: 10.1002/jobm.201400953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 10/03/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Chuan Chen
- Lab of Biorefinery, Shanghai Advanced Research Institute; Chinese Academy of Sciences; Pudong Shanghai People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Biotechnology; Tianjin University of Science and Technology; Tianjin People's Republic of China
| | - Dong Wei
- Lab of Biorefinery, Shanghai Advanced Research Institute; Chinese Academy of Sciences; Pudong Shanghai People's Republic of China
| | - Pengfu Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute; Chinese Academy of Sciences; Pudong Shanghai People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Biotechnology; Tianjin University of Science and Technology; Tianjin People's Republic of China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute; Chinese Academy of Sciences; Pudong Shanghai People's Republic of China
- School of Life Science and Technology; ShanghaiTech University; Shanghai People's Republic of China
| | - Biao Jiang
- Lab of Biorefinery, Shanghai Advanced Research Institute; Chinese Academy of Sciences; Pudong Shanghai People's Republic of China
| | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute; Chinese Academy of Sciences; Pudong Shanghai People's Republic of China
| |
Collapse
|
47
|
Zhang D, Tang B, Xie X, Xiao YF, Yang SM, Zhang JW. The interplay between DNA repair and autophagy in cancer therapy. Cancer Biol Ther 2015; 16:1005-13. [PMID: 25985143 DOI: 10.1080/15384047.2015.1046022] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
DNA is the prime target of anticancer treatments. DNA damage triggers a series of signaling cascades promoting cellular survival, including DNA repair, cell cycle arrest, and autophagy. The elevated basal and/or stressful levels of both DNA repair and autophagy observed in tumor cells, in contrast to normal cells, have been identified as the most important drug-responsive programs that impact the outcome of anticancer therapy. The exact relationship between DNA repair and autophagy in cancer cells remains unclear. On one hand, autophagy has been shown to regulate some of the DNA repair proteins after DNA damage by maintaining the balance between their synthesis, stabilization, and degradation. One the other hand, some evidence has demonstrated that some DNA repair molecular have a crucial role in the initiation of autophagy. In this review, we mainly discuss the interplay between DNA repair and autophagy in anticancer therapy and expect to enlighten some effective strategies for cancer treatment.
Collapse
Key Words
- AMPK, adenosine monophosphate-activated protein kinase
- ATG5, autophagy-related gene 5
- ATM, ataxia-telangiectasia mutated
- ATR, ATM and Rad3-related
- BER, base excision repair
- Chk1, check-point kinase 1
- Chk2, check-point kinase 2
- DDR, DNA damage response
- DNA damage
- DNA damage response
- DNA repair
- DNA-PKcs, DNA-dependent protein kinase catalytic subunit
- DSBs, double-strand breaks
- HDAC, histone deacetylases
- HR, homologous recombination
- IR, ionizing radiation
- MGMT, O6 methylguanine –DNA methyltransferase
- MMR, mismatch repair
- MRN, Mre11-Rad50-Nbs1
- NER, nucleotide excision recombination
- NHEJ, non-homologous end joining
- OGG1, 8-oxoguannine DNA glycosidase
- PARP-1, poly (ADP-ribose) polymerase 1
- PI3K, phosphoinositide 3-kinase
- PML, promyelocytic leukemia
- SSBs, single-strand break
- TMZ, temozolomide
- TSC2, tuberous sclerosis complex 2
- anticancer therapy
- apoptosis
- autophagy
- cell cycle arrest
- mTOR, mammalian target of rapamycin
- γ-H2AX, phosphorylated histone
Collapse
Affiliation(s)
- Dan Zhang
- a Department of Gastroenterology; Xinqiao Hospital; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | |
Collapse
|
48
|
Sánchez A, Russell P. Ku stabilizes replication forks in the absence of Brc1. PLoS One 2015; 10:e0126598. [PMID: 25965521 PMCID: PMC4428774 DOI: 10.1371/journal.pone.0126598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/05/2015] [Indexed: 11/21/2022] Open
Abstract
DNA replication errors are a major source of genome instability in all organisms. In the fission yeast Schizosaccharomyces pombe, the DNA damage response protein Brc1 binds phospho-histone H2A (γH2A)-marked chromatin during S-phase, but how Brc1 protects genome integrity remains unclear. Here we report that the non-homologous end-joining (NHEJ) protein Ku becomes critical for survival of replication stress in brc1∆ cells. Ku’s protective activity in brc1∆ cells does not involve its canonical NHEJ function or its roles in protecting telomeres or shielding DNA ends from Exo1 exonuclease. In brc1∆ pku80∆ cells, nuclear foci of Rad52 homologous recombination (HR) protein increase and Mus81-Eme1 Holliday junction resolvase becomes critical, indicating increased replication fork instability. Ku’s localization at a ribosomal DNA replication fork barrier associated with frequent replisome-transcriptosome collisions increases in brc1∆ cells and increased collisions correlate with an enhanced requirement for Brc1. These data indicate that Ku stabilizes replication forks in the absence of Brc1.
Collapse
Affiliation(s)
- Arancha Sánchez
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Paul Russell
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Zampini É, Lepage É, Tremblay-Belzile S, Truche S, Brisson N. Organelle DNA rearrangement mapping reveals U-turn-like inversions as a major source of genomic instability in Arabidopsis and humans. Genome Res 2015; 25:645-54. [PMID: 25800675 PMCID: PMC4417113 DOI: 10.1101/gr.188573.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/19/2015] [Indexed: 12/15/2022]
Abstract
Failure to maintain organelle genome stability has been linked to numerous phenotypes, including variegation and cytosolic male sterility (CMS) in plants, as well as cancer and neurodegenerative diseases in mammals. Here we describe a next-generation sequencing approach that precisely maps and characterizes organelle DNA rearrangements in a single genome-wide experiment. In addition to displaying global portraits of genomic instability, it surprisingly unveiled an abundance of short-range rearrangements in Arabidopsis thaliana and human organelles. Among these, short-range U-turn-like inversions reach 25% of total rearrangements in wild-type Arabidopsis plastids and 60% in human mitochondria. Furthermore, we show that replication stress correlates with the accumulation of this type of rearrangement, suggesting that U-turn-like rearrangements could be the outcome of a replication-dependent mechanism. We also show that U-turn-like rearrangements are mostly generated using microhomologies and are repressed in plastids by Whirly proteins WHY1 and WHY3. A synergistic interaction is also observed between the genes for the plastid DNA recombinase RECA1 and those encoding plastid Whirly proteins, and the triple mutant why1why3reca1 accumulates almost 60 times the WT levels of U-turn-like rearrangements. We thus propose that the process leading to U-turn-like rearrangements may constitute a RecA-independent mechanism to restart stalled forks. Our results reveal that short-range rearrangements, and especially U-turn-like rearrangements, are a major factor of genomic instability in organelles, and this raises the question of whether they could have been underestimated in diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Éric Zampini
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Étienne Lepage
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Sébastien Truche
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Normand Brisson
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
50
|
Hu Z, Cools T, Kalhorzadeh P, Heyman J, De Veylder L. Deficiency of the Arabidopsis helicase RTEL1 triggers a SOG1-dependent replication checkpoint in response to DNA cross-links. THE PLANT CELL 2015; 27:149-61. [PMID: 25595823 PMCID: PMC4330584 DOI: 10.1105/tpc.114.134312] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To maintain genome integrity, DNA replication is executed and regulated by a complex molecular network of numerous proteins, including helicases and cell cycle checkpoint regulators. Through a systematic screening for putative replication mutants, we identified an Arabidopsis thaliana homolog of human Regulator of Telomere Length 1 (RTEL1), which functions in DNA replication, DNA repair, and recombination. RTEL1 deficiency retards plant growth, a phenotype including a prolonged S-phase duration and decreased cell proliferation. Genetic analysis revealed that rtel1 mutant plants show activated cell cycle checkpoints, specific sensitivity to DNA cross-linking agents, and increased homologous recombination, but a lack of progressive shortening of telomeres, indicating that RTEL1 functions have only been partially conserved between mammals and plants. Surprisingly, RTEL1 deficiency induces tolerance to the deoxynucleotide-depleting drug hydroxyurea, which could be mimicked by DNA cross-linking agents. This resistance does not rely on the essential replication checkpoint regulator WEE1 but could be blocked by a mutation in the SOG1 transcription factor. Taken together, our data indicate that RTEL1 is required for DNA replication and that its deficiency activates a SOG1-dependent replication checkpoint.
Collapse
Affiliation(s)
- Zhubing Hu
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Toon Cools
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Pooneh Kalhorzadeh
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Jefri Heyman
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|