1
|
Ma C, Zhang Q, Wang Y, Li D, Zhang H, Jia Q, Zheng W, Tan J, Xu K, Yang L, Meng Z. Effect of Benzyl Isothiocyanate on Anaplastic Thyroid Cancer Evaluated by Network Pharmacology Combined with Experiments. ACS OMEGA 2025; 10:11063-11076. [PMID: 40160743 PMCID: PMC11947813 DOI: 10.1021/acsomega.4c08388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Benzyl isothiocyanate (BITC), a natural compound abundant in cruciferous vegetables, plays an important role in the chemoprevention of various human malignancies. However, the mechanism by which BITC inhibits tumor cell growth is not fully understood. This study combined network pharmacology, molecular docking, cellular experiments, and mouse tumor models to predict and validate the targets and mechanisms of BITC in the treatment of anaplastic thyroid carcinoma (ATC). A total of 10 key targets of BITC and ATC were selected for molecular docking. The key target genes of KEGG were mainly concentrated in the nuclear factor κB signaling pathway and apoptosis signaling pathway. The inhibitory effects of BITC on two ATC cell lines, 8505C and CAL-62, were dose-dependent and time-dependent, with IC50 values of 27.56 and 28.30 μmol/L, respectively. BITC induced apoptosis in ATC cells. Pretreatment with autophagy inhibitor 3MA (2 mmol/L) significantly enhanced growth inhibition caused by BITC in ATC cells. Another autophagy inhibitor, HCQ (20 μmol/L), did not enhance the inhibitory effect of BITC. In CAL-62 xenografted nude mice, BITC (100 mg·kg-1·d-2, ip) significantly inhibited tumor growth. Our results indicate that BITC can inhibit the growth of ATC cells both in vitro and in vivo. Additionally, BITC disrupts autophagic degradation in ATC cells, inhibits the NF-κB pathway, and promotes apoptosis.
Collapse
Affiliation(s)
- Chunmei Ma
- Department
of Nuclear Medicine, Tianjin Key Lab of Functional Imaging & Tianjin
Institute of Radiology, Tianjin Medical
University General Hospital, Tianjin 300052, China
- North
China University of Science and Technology Affiliated Hospital, Tangshan 063000, China
| | - Qicheng Zhang
- Tianjin
Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment,
Tianjin Lung Cancer Institute, Tianjin Medical
University General Hospital, Tianjin 300052, China
| | - Yan Wang
- State
Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dihua Li
- Tianjin
Key Laboratory of Acute Abdomen Disease Associated Organ Injury and
ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Huiying Zhang
- North
China University of Science and Technology Affiliated Hospital, Tangshan 063000, China
| | - Qiang Jia
- Department
of Nuclear Medicine, Tianjin Key Lab of Functional Imaging & Tianjin
Institute of Radiology, Tianjin Medical
University General Hospital, Tianjin 300052, China
| | - Wei Zheng
- Department
of Nuclear Medicine, Tianjin Key Lab of Functional Imaging & Tianjin
Institute of Radiology, Tianjin Medical
University General Hospital, Tianjin 300052, China
| | - Jian Tan
- Department
of Nuclear Medicine, Tianjin Key Lab of Functional Imaging & Tianjin
Institute of Radiology, Tianjin Medical
University General Hospital, Tianjin 300052, China
| | - Ke Xu
- Tianjin
Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment,
Tianjin Lung Cancer Institute, Tianjin Medical
University General Hospital, Tianjin 300052, China
| | - Lei Yang
- Tianjin
Key Laboratory of Acute Abdomen Disease Associated Organ Injury and
ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Zhaowei Meng
- Department
of Nuclear Medicine, Tianjin Key Lab of Functional Imaging & Tianjin
Institute of Radiology, Tianjin Medical
University General Hospital, Tianjin 300052, China
| |
Collapse
|
2
|
Anestopoulos I, Paraskevaidis I, Kyriakou S, Potamiti L, Trafalis DT, Botaitis S, Franco R, Pappa A, Panayiotidis MI. Isothiocyanates Enhance the Anti-Melanoma Effect of Zebularine Through Modulation of Apoptosis and Regulation of DNMTs' Expression, Chromatin Configuration and Histone Posttranslational Modifications Associated with Altered Gene Expression Patterns. EPIGENOMES 2025; 9:7. [PMID: 40136320 PMCID: PMC11941220 DOI: 10.3390/epigenomes9010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Background: In the present study, we aimed to characterize the cytotoxic efficacy of Zebularine either as a single agent or in combination with various isothiocyanates in an in vitro model consisting of human melanoma (A375, Colo-679) as well as non-tumorigenic immortalized keratinocyte (HaCaT) cells. Methods: In this model, we have evaluated the anti-melanoma effect of Zebularine (in single and combinatorial protocols) in terms of cell viability, apoptotic induction and alterations in ultrastructural chromatin configuration, protein expression levels of DNA methyltransferases (DNMTs) and associated histone epigenetic marks capable of mediating gene expression. Results: Exposure to Zebularine resulted in dose- and time-dependent cytotoxicity through apoptotic induction in malignant melanoma cells, while neighboring non-tumorigenic keratinocytes remained unaffected. A more profound response was observed in combinational protocols, as evidenced by a further decline in cell viability leading to an even more robust apoptotic induction followed by a differential response (i.e., activation/de-activation) of various apoptotic genes. Furthermore, combined exposure protocols caused a significant decrease of DNMT1, DNMT3A and DNMT3B protein expression levels together with alterations in ultrastructural chromatin configuration and protein expression levels of specific histone modification marks capable of modulating gene expression. Conclusions: Overall, we have developed a novel experimental approach capable of potentiating the cytotoxic efficacy of Zebularine against human malignant melanoma cells while at the same time maintaining a non-cytotoxic profile against neighboring non-tumorigenic keratinocyte (HaCaT) cells.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus; (I.A.); (S.K.); (L.P.)
| | - Ioannis Paraskevaidis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus; (I.A.); (S.K.); (L.P.)
| | - Louiza Potamiti
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus; (I.A.); (S.K.); (L.P.)
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Sotiris Botaitis
- Department of Surgery, School of Medicine, University Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Rodrigo Franco
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus; (I.A.); (S.K.); (L.P.)
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
3
|
Joković N, Pešić S, Vitorović J, Bogdanović A, Sharifi-Rad J, Calina D. Glucosinolates and Their Hydrolytic Derivatives: Promising Phytochemicals With Anticancer Potential. Phytother Res 2025; 39:1035-1089. [PMID: 39726346 DOI: 10.1002/ptr.8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Recent research has increasingly focused on phytochemicals as promising anticancer agents, with glucosinolates (GSLs) and their hydrolytic derivatives playing a central role. These sulfur-containing compounds, found in plants of the Brassicales order, are converted by myrosinase enzymes into biologically active products, primarily isothiocyanates (ITCs) and indoles, which exhibit significant anticancer properties. Indole-3-carbinol, diindolylmethane, sulforaphane (SFN), phenethyl isothiocyanate (PEITC), benzyl isothiocyanate, and allyl isothiocyanate have shown potent anticancer effects in animal models, particularly in breast, prostate, lung, melanoma, bladder, hepatoma, and gastrointestinal cancers. Clinical studies further support the chemopreventive effects of SFN and PEITC, particularly in detoxifying carcinogens and altering biochemical markers in cancer patients. These compounds have demonstrated good bioavailability, low toxicity, and minimal adverse effects, supporting their potential therapeutic application. Their anticancer mechanisms include the modulation of reactive oxygen species, suppression of cancer-related signaling pathways, and direct interaction with tumor cell proteins. Additionally, semi-synthetic derivatives of GSLs have been developed to enhance anticancer efficacy. In conclusion, GSLs and their derivatives offer significant potential as both chemopreventive and therapeutic agents, warranting further clinical investigation to optimize their application in cancer treatment.
Collapse
Affiliation(s)
- Nataša Joković
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Strahinja Pešić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Jelena Vitorović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Andrija Bogdanović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
4
|
Zeng Z, Li Y, Zhou H, Li M, Ye J, Li D, Zhu Y, Zhang Y, Zhang X, Deng Y, Li J, Gu L, Wu J. System-wide identification of novel de-ubiquitination targets for USP10 in gastric cancer metastasis through multi-omics screening. BMC Cancer 2024; 24:773. [PMID: 38937694 PMCID: PMC11209979 DOI: 10.1186/s12885-024-12549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE Ubiquitin-specific peptidase 10 (USP10), a typical de-ubiquitinase, has been found to play a double-edged role in human cancers. Previously, we reported that the expression of USP10 was negatively correlated with the depth of gastric wall invasion, lymph node metastasis, and prognosis in gastric cancer (GC) patients. However, it remains unclear whether USP10 can regulate the metastasis of GC cells through its de-ubiquitination function. METHODS In this study, proteome, ubiquitinome, and transcriptome analyses were conducted to comprehensively identify novel de-ubiquitination targets for USP10 in GC cells. Subsequently, a series of validation experiments, including in vitro cell culture studies, in vivo metastatic tumor models, and clinical sample analyses, were performed to elucidate the regulatory mechanism of USP10 and its de-ubiquitination targets in GC metastasis. RESULTS After overexpression of USP10 in GC cells, 146 proteins, 489 ubiquitin sites, and 61 mRNAs exhibited differential expression. By integrating the results of multi-omics, we ultimately screened 9 potential substrates of USP10, including TNFRSF10B, SLC2A3, CD44, CSTF2, RPS27, TPD52, GPS1, RNF185, and MED16. Among them, TNFRSF10B was further verified as a direct de-ubiquitination target for USP10 by Co-IP and protein stabilization assays. The dysregulation of USP10 or TNFRSF10B affected the migration and invasion of GC cells in vitro and in vivo models. Molecular mechanism studies showed that USP10 inhibited the epithelial-mesenchymal transition (EMT) process by increasing the stability of TNFRSF10B protein, thereby regulating the migration and invasion of GC cells. Finally, the retrospective clinical sample studies demonstrated that the downregulation of TNFRSF10B expression was associated with poor survival among 4 of 7 GC cohorts, and the expression of TNFRSF10B protein was significantly negatively correlated with the incidence of distant metastasis, diffuse type, and poorly cohesive carcinoma. CONCLUSIONS Our study established a high-throughput strategy for screening de-ubiquitination targets for USP10 and further confirmed that inhibiting the ubiquitination of TNFRSF10B might be a promising therapeutic strategy for GC metastasis.
Collapse
Affiliation(s)
- Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yina Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Heng Zhou
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan Ye
- Department of Pharmacy, Huazhong University of Science and Technology Hospital, Wuhan, Hubei, China
| | - Dan Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuxi Zhu
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunchao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Lijuan Gu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Jie Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Vrca I, Jug B, Fredotović Ž, Vuko E, Brkan V, Šestić L, Juretić L, Dunkić V, Nazlić M, Ramić D, Smole Možina S, Kremer D. Significant Benefits of Environmentally Friendly Hydrosols from Tropaeolum majus L. Seeds with Multiple Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3897. [PMID: 38005794 PMCID: PMC10675760 DOI: 10.3390/plants12223897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Tropaeolum majus L. is a traditional medicinal plant with a wide range of biological activities due to the degradation products of the glucosinolate glucotropaeolin. Therefore, the goals of this study were to identify volatiles using gas chromatography-mass spectrometry analysis (GC-MS) of the hydrosols (HYs) isolated using microwave-assisted extraction (MAE) and microwave hydrodiffusion and gravity (MHG). Cytotoxic activity was tested against a cervical cancer cell line (HeLa), human colon cancer cell line (HCT116), human osteosarcoma cell line (U2OS), and healthy cell line (RPE1). The effect on wound healing was investigated using human keratinocyte cells (HaCaT), while the antibacterial activity of the HYs was tested against growth and adhesion to a polystyrene surface of Staphylococcus aureus and Escherichia coli. Antiphytoviral activity against tobacco mosaic virus (TMV) was determined. The GC-MS analysis showed that the two main compounds in the HYs of T. majus are benzyl isothiocyanate (BITC) and benzyl cyanide (BCN) using the MAE (62.29% BITC and 15.02% BCN) and MHG (17.89% BITC and 65.33% BCN) extraction techniques. The HYs obtained using MAE showed better cytotoxic activity against the tested cancer cell lines (IC50 value of 472.61-637.07 µg/mL) compared to the HYs obtained using MHG (IC50 value of 719.01-1307.03 μg/mL). Both concentrations (5 and 20 µg/mL) of T. majus HYs using MAE showed a mild but statistically non-significant effect in promoting gap closure compared with untreated cells, whereas the T. majus HY isolated using MHG at a concentration of 15 µg/mL showed a statistically significant negative effect on wound healing. The test showed that the MIC concentration was above 0.5 mg/mL for the HY isolated using MAE, and 2 mg/mL for the HY isolated using MHG. The HY isolated using MHG reduced the adhesion of E. coli at a concentration of 2 mg/mL, while it also reduced the adhesion of S. aureus at a concentration of 1 mg/mL. Both hydrosols showed excellent antiphytoviral activity against TMV, achieving100% inhibition of local lesions on the leaves of infected plants, which is the first time such a result was obtained with a hydrosol treatment. Due to the antiphytoviral activity results, hydrosols of T. majus have a promising future for use in agricultural production.
Collapse
Affiliation(s)
- Ivana Vrca
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (Ž.F.); (E.V.); (V.B.); (L.Š.); (V.D.); (M.N.)
| | - Blaž Jug
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (B.J.); (D.R.); (S.S.M.)
| | - Željana Fredotović
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (Ž.F.); (E.V.); (V.B.); (L.Š.); (V.D.); (M.N.)
| | - Elma Vuko
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (Ž.F.); (E.V.); (V.B.); (L.Š.); (V.D.); (M.N.)
| | - Valentina Brkan
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (Ž.F.); (E.V.); (V.B.); (L.Š.); (V.D.); (M.N.)
| | - Loriana Šestić
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (Ž.F.); (E.V.); (V.B.); (L.Š.); (V.D.); (M.N.)
| | - Lea Juretić
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Valerija Dunkić
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (Ž.F.); (E.V.); (V.B.); (L.Š.); (V.D.); (M.N.)
| | - Marija Nazlić
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (Ž.F.); (E.V.); (V.B.); (L.Š.); (V.D.); (M.N.)
| | - Dina Ramić
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (B.J.); (D.R.); (S.S.M.)
| | - Sonja Smole Možina
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (B.J.); (D.R.); (S.S.M.)
| | - Dario Kremer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia;
| |
Collapse
|
6
|
LaRocca TJ, Smith ME, Freeberg KA, Craighead DH, Helmuth T, Robinson MM, Nair KS, Bryan AD, Seals DR. Novel whole blood transcriptome signatures of changes in maximal aerobic capacity in response to endurance exercise training in healthy women. Physiol Genomics 2023; 55:338-344. [PMID: 37335021 PMCID: PMC10396280 DOI: 10.1152/physiolgenomics.00017.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/21/2023] Open
Abstract
Maximal aerobic exercise capacity [maximal oxygen consumption (V̇o2max)] is one of the strongest predictors of morbidity and mortality. Aerobic exercise training can increase V̇o2max, but inter-individual variability is marked and unexplained physiologically. The mechanisms underlying this variability have major clinical implications for extending human healthspan. Here, we report a novel transcriptome signature related to ΔV̇o2max with exercise training detected in whole blood RNA. We used RNA-Seq to characterize transcriptomic signatures of ΔV̇o2max in healthy women who completed a 16-wk randomized controlled trial comparing supervised, higher versus lower aerobic exercise training volume and intensity (4 training groups, fully crossed). We found significant baseline gene expression differences in subjects who responded to aerobic exercise training with robust versus little/no ΔV̇o2max, and differentially expressed genes/transcripts were mostly related to inflammatory signaling and mitochondrial function/protein translation. Baseline gene expression signatures associated with robust versus little/no ΔV̇o2max were also modulated by exercise training in a dose-dependent manner, and they predicted ΔV̇o2max in this and a separate dataset. Collectively, our data demonstrate the potential utility of using whole blood transcriptomics to study the biology of inter-individual variability in responsiveness to the same exercise training stimulus.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Meghan E Smith
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Kaitlin A Freeberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Timothy Helmuth
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States
| | - K Sreekumaran Nair
- Department of Internal Medicine, Endocrinology and Metabolism Division, Mayo Clinic, Rochester, Minnesota, United States
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
7
|
Hu Q, Li Z, Li Y, Deng X, Chen Y, Ma X, Zeng J, Zhao Y. Natural products targeting signaling pathways associated with regulated cell death in gastric cancer: Recent advances and perspectives. Phytother Res 2023. [PMID: 37157181 DOI: 10.1002/ptr.7866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Gastric cancer (GC) is one of the most serious gastrointestinal malignancies with high morbidity and mortality. The complexity of GC process lies in the multi-phenotypic linkage regulation, in which regulatory cell death (RCD) is the core link, which largely dominates the fate of GC cells and becomes a key determinant of GC development and prognosis. In recent years, increasing evidence has been reported that natural products can prevent and inhibit the development of GC by regulating RCDs, showing great therapeutic potential. In order to further clarify its key regulatory characteristics, this review focused on specific expressions of RCDs, combined with a variety of signaling pathways and their crosstalk characteristics, sorted out the key targets and action rules of natural products targeting RCD. It is highlighted that a variety of core biological pathways and core targets are involved in the decision of GC cell fate, including the PI3K/Akt signaling pathway, MAPK-related signaling pathways, p53 signaling pathway, ER stress, Caspase-8, gasdermin D (GSDMD), and so on. Moreover, natural products target the crosstalk of different RCDs by modulating above signaling pathways. Taken together, these findings suggest that targeting various RCDs in GC with natural products is a promising strategy, providing a reference for further clarifying the molecular mechanism of natural products treating GC, which warrants further investigations in this area.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Zhao M, Yang Y, Nian Q, Shen C, Xiao X, Liao W, Zheng Q, Zhang G, Chen N, Gong D, Tang J, Wen Y, Zeng J. Phytochemicals and mitochondria: Therapeutic allies against gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154608. [PMID: 36586205 DOI: 10.1016/j.phymed.2022.154608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mitochondria are the energy factories of cells with the ability to modulate the cell cycle, cellular differentiation, signal transduction, growth, and apoptosis. Existing drugs targeting mitochondria in cancer treatment have disadvantages of drug resistance and side effects. Phytochemicals, which are widely found in plants, are bioactive compounds that could facilitate the development of new drugs for gastric cancer. Studies have shown that some phytochemicals can suppress the development of gastric cancer. METHODS We searched for data from PubMed, China National Knowledge Infrastructure, Web of Science, and Embase databases from initial establishment to December 2021 to review the mechanism by which phytochemicals suppress gastric cancer cell growth by modulating mitochondrial function. Phytochemicals were classified and summarized by their mechanisms of action. RESULTS Phytochemicals can interfere with mitochondria through several mechanisms to reach the goal of promoting apoptosis in gastric cancer cells. Some phytochemicals, e.g., daidzein and tetrandrine promoted cytochrome c spillover into the cytoplasm by modulating the members of the B-cell lymphoma-2 protein family and induced apoptotic body activity by activating the caspase protein family. Phytochemicals (e.g., celastrol and shikonin) could promote the accumulation of reactive oxygen species and reduce the mitochondrial membrane potential. Several phytochemicals (e.g., berberine and oleanolic acid) activated mitochondrial apoptotic submission via the phosphatidylinositol-3-kinase/Akt signaling pathway, thereby triggering apoptosis in gastric cancer cells. Several well-known phytochemicals that target mitochondria, including berberine, ginsenoside, and baicalein, showed the advantages of multiple targets, high efficacy, and fewer side effects. CONCLUSIONS Phytochemicals could target the mitochondria in the treatment of gastric cancer, providing potential directions and evidence for clinical translation. Drug discovery focused on phytochemicals has great potential to break barriers in cancer treatment.
Collapse
Affiliation(s)
- Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yi Yang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Caifei Shen
- Department of Endoscopy center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Daoyin Gong
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| |
Collapse
|
9
|
Lee W, Song G, Bae H. Glucotropaeolin Promotes Apoptosis by Calcium Dysregulation and Attenuates Cell Migration with FOXM1 Suppression in Pancreatic Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12020257. [PMID: 36829815 PMCID: PMC9952507 DOI: 10.3390/antiox12020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has naturally aggressive characteristics including postoperative recurrence, resistance to conventional treatment, and metastasis. Surgical resection with chemotherapeutic agents has been conducted as the major treatment for PDAC. However, surgical treatment is ineffective in the case of advanced cancer, and conventional adjuvant chemotherapy, including gemcitabine and 5-fluorouracil, show low effectiveness due to the high drug resistance of PDAC to this type of treatment. Therefore, the development of innovative therapeutic drugs is crucial to solving the present limitation of conventional drugs. Glucotropaeolin (GT) is a glucosinolate that can be isolated from the Brassicaceae family. GT has exhibited a growth-inhibitory effect against liver and colon cancer cells; however, there is no study regarding the anticancer effect of GT on PDAC. In our study, we determined the antiproliferative effect of GT in PANC-1 and MIA PaCa-2, representative of PDAC. We revealed the intracellular mechanisms underlying the anticancer effect of GT with respect to cell viability, reactive oxygen species (ROS) accumulation, alteration of mitochondrial membrane potential (MMP), calcium dysregulation, cell migration, and the induction of apoptosis. Moreover, GT regulated the signaling pathways related to anticancer in PDAC cells. Finally, the silencing of the forkhead box protein M, a key factor regulating PDAC progression, contributes to the anticancer property of GT in terms of the induction of apoptosis and cell migration. Therefore, GT may be a potential therapeutic drug against PDAC.
Collapse
Affiliation(s)
- Woonghee Lee
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Correspondence: (G.S.); (H.B.); Tel.: +82-2-3290-3881 (G.S.); +82-31-201-2686 (H.B.)
| | - Hyocheol Bae
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Correspondence: (G.S.); (H.B.); Tel.: +82-2-3290-3881 (G.S.); +82-31-201-2686 (H.B.)
| |
Collapse
|
10
|
Anticarcinogenic Effects of Isothiocyanates on Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213834. [PMID: 36430307 PMCID: PMC9693344 DOI: 10.3390/ijms232213834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for about 90% of cases. Sorafenib, lenvatinib, and the combination of atezolizumab and bevacizumab are considered first-line treatments for advanced HCC. However, clinical application of these drugs has also caused some adverse reactions such as hypertension, elevated aspartate aminotransferases, and proteinuria. At present, natural products and their derivatives have drawn more and more attention due to less side effects as cancer treatments. Isothiocyanates (ITCs) are one type of hydrolysis products from glucosinolates (GLSs), secondary plant metabolites found exclusively in cruciferous vegetables. Accumulating evidence from encouraging in vitro and in vivo animal models has demonstrated that ITCs have multiple biological activities, especially their potentially health-promoting activities (antibacterial, antioxidant, and anticarcinogenic effects). In this review, we aim to comprehensively summarize the chemopreventive, anticancer, and chemosensitizative effects of ITCs on HCC, and explain the underlying molecular mechanisms.
Collapse
|
11
|
Po WW, Choi WS, Khing TM, Lee JY, Lee JH, Bang JS, Min YS, Jeong JH, Sohn UD. Benzyl Isothiocyanate-Induced Cytotoxicity via the Inhibition of Autophagy and Lysosomal Function in AGS Cells. Biomol Ther (Seoul) 2022; 30:348-359. [PMID: 35768332 PMCID: PMC9252883 DOI: 10.4062/biomolther.2022.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/05/2022] Open
Abstract
Gastric adenocarcinoma is among the top causes of cancer-related death and is one of the most commonly diagnosed carcinomas worldwide. Benzyl isothiocyanate (BITC) has been reported to inhibit the gastric cancer metastasis. In our previous study, BITC induced apoptosis in AGS cells. The purpose of the present study was to investigate the effect of BITC on autophagy mechanism in AGS cells. First, the AGS cells were treated with 5, 10, or 15 μM BITC for 24 h, followed by an analysis of the autophagy mechanism. The expression level of autophagy proteins involved in different steps of autophagy, such as LC3B, p62/SQSTM1, Atg5-Atg12, Beclin1, p-mTOR/mTOR ratio, and class III PI3K was measured in the BITC-treated cells. Lysosomal function was investigated using cathepsin activity and Bafilomycin A1, an autophagy degradation stage inhibitor. Methods including qPCR, western blotting, and immunocytochemistry were employed to detect the protein expression levels. Acridine orange staining and omnicathepsin assay were conducted to analyze the lysosomal function. siRNA transfection was performed to knock down the LC3B gene. BITC reduced the level of autophagy protein such as Beclin 1, class III PI3K, and Atg5-Atg12. BITC also induced lysosomal dysfunction which was shown as reducing cathepsin activity, protein level of cathepsin, and enlargement of acidic vesicle. Overall, the results showed that the BITC-induced AGS cell death mechanism also comprises the inhibition of the cytoprotective autophagy at both initiation and degradation steps.
Collapse
Affiliation(s)
- Wah Wah Po
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tin Myo Khing
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Yun Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jong Hyuk Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Joon Seok Bang
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Young Sil Min
- Department of Pharmaceutical Science, Jungwon University, Goesan 28024, Republic of Korea
| | - Ji Hoon Jeong
- College of Medicine, Chung-Ang University, and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Uy Dong Sohn
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
12
|
Khattak S, Rauf MA, Khan NH, Zhang QQ, Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY, Ji XY, Wu DD. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules 2022; 27:3389. [PMID: 35684331 PMCID: PMC9181954 DOI: 10.3390/molecules27113389] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Muhammad Jahangir
- Department of Psychiatric and Mental Health, Central South University, Changsha 410078, China;
| | - Chun-Yang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of General Thoracic Surgery, Hami Central Hospital, Hami 839000, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
13
|
Alhandal H, Almesaileikh E, Bhardwaj RG, Al Khabbaz A, Karched M. The Effect of Benzyl Isothiocyanate on the Expression of Genes Encoding NADH Oxidase and Fibronectin-Binding Protein in Oral Streptococcal Biofilms. FRONTIERS IN ORAL HEALTH 2022; 3:863723. [PMID: 35478497 PMCID: PMC9035700 DOI: 10.3389/froh.2022.863723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Recent studies have shown that antimicrobial treatment results in up- or down regulation of several virulence-associated genes in bacterial biofilms. The genes encoding NADH oxidase (nox) and fibronectin-binding protein (fbp) are known to play important roles in biofilm growth of some oral bacterial species. The objective was to study the effect of benzyl isothiocyanate (BITC), an antimicrobial agent from Miswak plant, on the expression of nox and fbp genes in some oral streptococci. The biofilms were treated with BITC and mRNA expression of nox and fbp genes was measured by comparative ΔΔCt method. The highest amount of biofilm mass was produced by A. defectiva, followed by S. gordonii, S. mutans, G. elegans and G. adiacens. Upon treatment with BITC, S. gordonii biofilms showed highest folds change in mRNA expression for both fbp and nox genes followed by S. mutans, A. defectiva, and G. adiacens. G. elegans mRNA levels for nox were extremely low. In conclusion, BITC treatment of the biofilms caused an upregulation of biofilm-associated genes fbp and nox genes in most of the tested species suggesting the significance of these genes in biofilm lifestyle of these oral bacteria and needs further investigation to understand if it contributes to antimicrobial resistance.
Collapse
Affiliation(s)
- Hawraa Alhandal
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Esraa Almesaileikh
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Radhika G. Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Areej Al Khabbaz
- Department of Surgical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait, Kuwait
- *Correspondence: Maribasappa Karched
| |
Collapse
|
14
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
15
|
Rudzinska-Radecka M, Janczewski Ł, Gajda A, Godlewska M, Chmielewska-Krzesinska M, Wasowicz K, Podlasz P. The Anti-Tumoral Potential of Phosphonate Analog of Sulforaphane in Zebrafish Xenograft Model. Cells 2021; 10:3219. [PMID: 34831440 PMCID: PMC8618692 DOI: 10.3390/cells10113219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
Isothiocyanates (ITCs) show strong activity against numerous human tumors. Five structurally diverse ITCs were tested in vivo using the zebrafish embryos 6 and 48 h post-fertilization (hpf). The survival rate, hatching time, and gross morphological changes were assessed 24, 48, and 72 h after treatment with all compounds in various doses (1-10 µM). As a result, we selected a phosphonate analog of sulforaphane (P-ITC; 1-3 µM) as a non-toxic treatment for zebrafish embryos, both 6 and 48 hpf. Furthermore, the in vivo anti-cancerogenic studies with selected 3 µM P-ITC were performed using a set of cell lines derived from the brain (U87), cervical (HeLa), and breast (MDA-MB-231) tumors. For the experiment, cells were labeled using red fluorescence dye Dil (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine, 10 μg/mL) and injected into the hindbrain ventricle, yolk sac region and Cuvier duct of zebrafish embryos. The tumor size measurement after 48 h of treatment demonstrated the significant inhibition of cancer cell growth in all tested cases by P-ITC compared to the non-treated controls. Our studies provided evidence for P-ITC anti-cancerogenic properties with versatile activity against different cancer types. Additionally, P-ITC demonstrated the safety of use in the living organism at various stages of embryogenesis.
Collapse
Affiliation(s)
- Magdalena Rudzinska-Radecka
- Foundation of Research and Science Development, Rydygiera 8, 01-793 Warsaw, Poland;
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Łukasz Janczewski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (Ł.J.); (A.G.)
| | - Anna Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (Ł.J.); (A.G.)
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland;
| | - Malgorzata Chmielewska-Krzesinska
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.C.-K.); (K.W.)
| | - Krzysztof Wasowicz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.C.-K.); (K.W.)
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.C.-K.); (K.W.)
| |
Collapse
|
16
|
Samuel SM, Kubatka P, Büsselberg D. Treating Cancers Using Nature's Medicine: Significance and Challenges. Biomolecules 2021; 11:1698. [PMID: 34827696 PMCID: PMC8615517 DOI: 10.3390/biom11111698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
There was a time when plant-derived natural formulations were the cornerstone of ancient therapeutic approaches for treating many illnesses [...].
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
17
|
Henklewska M, Pawlak A, Li RF, Yi J, Zbyryt I, Obmińska-Mrukowicz B. Benzyl Isothiocyanate, a Vegetable-Derived Compound, Induces Apoptosis via ROS Accumulation and DNA Damage in Canine Lymphoma and Leukemia Cells. Int J Mol Sci 2021; 22:ijms222111772. [PMID: 34769202 PMCID: PMC8583731 DOI: 10.3390/ijms222111772] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment of neoplastic diseases in companion animals is one of the most important problems of modern veterinary medicine. Given the growing interest in substances of natural origin as potential anti-cancer drugs, our goal was to examine the effectiveness of benzyl isothiocyanate (BITC), a compound found in cruciferous vegetables, against canine lymphoma and leukemia. These are the one of the most common canine cancer types, and chemotherapy is the only treatment option. The study involved established cell lines originating from various hematopoietic malignancies: CLBL-1, GL-1, CLB70 and CNK-89, immortalized noncancerous cell lines: MDCK and NIH-3T3 and canine peripheral blood mononuclear cells (PBMCs). The cytotoxic activity of BITC, apoptosis induction, caspase activity and ROS generation were evaluated by flow cytometry. H2AX phosphorylation was assessed by western blot. The study showed that the compound was especially active against B lymphocyte-derived malignant cells. Their death resulted from caspase-dependent apoptosis. BITC induced ROS accumulation, and glutathione precursor N-acetyl-l-cysteine reversed the effect of the compound, thus proving the role of oxidative stress in BITC activity. In addition, exposure to the compound induced DNA damage in the tested cells. This is the first study that provides information on the activity of BITC in canine hematopoietic malignancies and suggests that the compound may be particularly useful in B-cell neoplasms treatment.
Collapse
Affiliation(s)
- Marta Henklewska
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
- Correspondence:
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Rong-Fang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-F.L.); (J.Y.)
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-F.L.); (J.Y.)
| | - Iwona Zbyryt
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland;
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| |
Collapse
|
18
|
Salehi B, Quispe C, Butnariu M, Sarac I, Marmouzi I, Kamle M, Tripathi V, Kumar P, Bouyahya A, Capanoglu E, Ceylan FD, Singh L, Bhatt ID, Sawicka B, Krochmal-Marczak B, Skiba D, El Jemli M, El Jemli Y, Coy-Barrera E, Sharifi-Rad J, Kamiloglu S, Cádiz-Gurrea MDLL, Segura-Carretero A, Kumar M, Martorell M. Phytotherapy and food applications from Brassica genus. Phytother Res 2021; 35:3590-3609. [PMID: 33666283 DOI: 10.1002/ptr.7048] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 01/26/2023]
Abstract
Plants of the genus Brassica occupy the top place among vegetables in the world. This genus, which contains a group of six related species of a global economic significance, three of which are diploid: Brassica nigra (L.) K. Koch, Brassica oleracea L., and Brassica rapa L. and three are amphidiploid species: Brassica carinata A. Braun, Brassica juncea (L.) Czern., and Brassica napus L. These varieties are divided into oily, fodder, spice, and vegetable based on their morphological structure, chemical composition, and usefulness of plant organs. The present review provides information about habitat, phytochemical composition, and the bioactive potential of Brassica plants, mainly antioxidant, antimicrobial, anticancer activities, and clinical studies in human. Brassica vegetables are of great economic importance around the world. At present, Brassica plants are grown together with cereals and form the basis of global food supplies. They are distinguished by high nutritional properties from other vegetable plants, such as low fat and protein content and high value of vitamins, fibers along with minerals. In addition, they possess several phenolic compounds and have a unique type of compounds namely glucosinolates that differentiate these crops from other vegetables. These compounds are also responsible for numerous biological activities to the genus Brassica as described in this review.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania", Timisoara, Romania
| | - Ioan Sarac
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania", Timisoara, Romania
| | - Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, Faculté de Médecine et de Pharmacie, Mohammed V University in Rabat, Rabat, Morocco
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco
| | - Esra Capanoglu
- Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Fatma Duygu Ceylan
- Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Laxman Singh
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Almora, India
| | - Indra D Bhatt
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Almora, India
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Sciences, Lublin, Poland
| | - Barbara Krochmal-Marczak
- Department of Production and Food Safety, State Higher Vocational School named after Stanislaw Pigon, Krosno, Poland
| | - Dominika Skiba
- Department of Plant Production Technology and Commodities Science, University of Life Sciences, Lublin, Poland
| | - Meryem El Jemli
- Pharmacodynamy Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Yousra El Jemli
- Faculty of Science and Technology, University of Cadi Ayyad Marrakech, Marrakesh, Morocco
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá, Colombia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Senem Kamiloglu
- Science and Technology Application and Research Center (BITAUM), Bursa Uludag University, Bursa, Turkey
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), University of Granada, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), University of Granada, Granada, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion, Chile
| |
Collapse
|
19
|
El Badawy SA, Ogaly HA, Abd-Elsalam RM, Azouz AA. Benzyl isothiocyanates modulate inflammation, oxidative stress, and apoptosis via Nrf2/HO-1 and NF-κB signaling pathways on indomethacin-induced gastric injury in rats. Food Funct 2021; 12:6001-6013. [PMID: 34037056 DOI: 10.1039/d1fo00645b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study investigated the gastroprotective activity of benzyl isothiocyanates (BITC) on indomethacin (IND)-induced gastric injury in a rat model and explicated the possible involved biochemical, cellular, and molecular mechanisms. The rat model with gastric ulcers was established by a single oral dose of IND (30 mg per kg b.wt). BITC (0.75 and 1.5 mg kg-1) and esomeprazole (20 mg per kg b.wt) were orally administered for 3 weeks to rats before the induction of gastric injury. Compared with the IND group, BITC could diminish both the macroscopic and microscopic pathological morphology of gastric mucosa. BITC significantly preserved the antioxidants (glutathione GSH, superoxide dismutase SOD), nitric oxide (NO), and prostaglandin E2 (PGE2) contents, while decreasing the gastric mucosal malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and myeloperoxidase (MPO) contents. Moreover, BITC remarkably upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), hemoxygenase-1 (HO-1), and NAD(P)H : quinone oxidoreductase (NQO1). In addition, BITC activates the expression of heat shock protein 70 (HSP-70) and downregulated the expression of nuclear factor-κB (NF-κB) and caspase-3 to promote gastric mucosal cell survival. To the best of our knowledge, this study is the first published report to implicate the suppression of inflammation, oxidative stress, and Nrf2 signaling pathway as a potential mechanism for the gastroprotective activity of BITC.
Collapse
Affiliation(s)
- Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia. and Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Asmaa A Azouz
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Anticancer activities of dietary benzyl isothiocyanate: A comprehensive review. Pharmacol Res 2021; 169:105666. [PMID: 33989764 DOI: 10.1016/j.phrs.2021.105666] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022]
Abstract
Benzyl isothiocyanate (BITC) is one of the common isothiocyanates found in cruciferous vegetables such as broccoli, cabbage or watercress. Preclinical studies report of its effectiveness in the prevention and treatment against several cancers. This review aims to report and discuss findings on anticancer activities of BITC and its modes of action against 14 types of cancer. A literature search was conducted using the keywords "BITC" and "anticancer" from PubMed, Google Scholar and CINAHL Plus to obtain relevant research articles. This review highlights the anticancer efficacy of BITC through modulation of various signaling pathways involved in apoptosis, cell proliferation, cell cycle arrest, metastasis, angiogenesis, autophagy and the effects of BITC in combination with other drugs. With the available pharmacology evidence, we conclude that further studies are needed to validate its effectiveness in humans for further development and translation into prophylaxis or therapy by promoting optimal therapeutic effects and minimizing toxicity in cancer treatment.
Collapse
|
21
|
Liu P, Xu DW, Li RT, Wang SH, Hu YL, Shi SY, Li JY, Huang YH, Kang LW, Liu TX. A Combined Phytochemistry and Network Pharmacology Approach to Reveal Potential Anti-NSCLC Effective Substances and Mechanisms in Marsdenia tenacissima (Roxb.) Moon (Stem). Front Pharmacol 2021; 12:518406. [PMID: 33994999 PMCID: PMC8117745 DOI: 10.3389/fphar.2021.518406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Marsdeniae tenacissimae Caulis is a traditional Chinese medicine, named Tongguanteng (TGT), that is often used for the adjuvant treatment of cancer. In our previous study, we reported that an ethyl acetate extract of TGT had inhibitory effects against adenocarcinoma A549 cells growth. To identify the components of TGT with anti-tumor activity and to elucidate their underlying mechanisms of action, we developed a technique for isolating compounds, which was then followed by cytotoxicity screening, network pharmacology analysis, and cellular and molecular experiments. We isolated a total of 19 compounds from a TGT ethyl acetate extract. Two novel steroidal saponins were assessed using an ultra-performance liquid chromatography-photodiode array coupled with quadrupole time-of-flight mass (UPLC-ESI-Q/TOF-MS). Then, we screened these constituents for anti-cancer activity against non-small cell lung cancer (NSCLC) in vitro and obtained six target compounds. Furthermore, a compound-target-pathway network of these six bioactive ingredients was constructed to elucidate the potential pathways that controlled anticancer effects. Approximately 205 putative targets that were associated with TGT, as well as 270 putative targets that were related to NSCLC, were obtained from online databases and target prediction software. Protein-protein interaction networks for drugs as well as disease putative targets were generated, and 18 candidate targets were detected based on topological features. In addition, pathway enrichment analysis was performed to identify related pathways, including PI3K/AKT, VEGF, and EGFR tyrosine kinase inhibitor resistance, which are all related to metabolic processes and intrinsic apoptotic pathways involving reactive oxygen species (ROS). Then, various cellular experiments were conducted to validate drug-target mechanisms that had been predicted using network pharmacology analysis. The experimental results showed the four C21 steroidal saponins could upregulate Bax and downregulate Bcl-2 expression, thereby changing the mitochondrial membrane potential, producing ROS, and releasing cytochrome C, which finally activated caspase-3, caspase-9, and caspase-8, all of which induced apoptosis in A549 cells. In addition, these components also downregulated the expression of MMP-2 and MMP-9 proteins, further weakening their degradation of extracellular matrix components and type IV collagen, and inhibiting the migration and invasion of A549 cells. Our study elucidated the chemical composition and underlying anti-tumor mechanism of TGT, which may be utilized in the treatment of lung cancer.
Collapse
Affiliation(s)
- Pei Liu
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, China
| | - Dong-Wei Xu
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, China
| | - Run-Tian Li
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, China
| | - Shao-Hui Wang
- Medical College of Qingdao Binhai University, Affiliated Hospital of Qingdao Binhai University, Qingdao, China
| | - Yan-Lan Hu
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, China
| | - Shao-Yu Shi
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, China
| | - Jia-Yao Li
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, China
| | - Yu-He Huang
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, China
| | - Li-Wei Kang
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, China
| | - Tong-Xiang Liu
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, China
| |
Collapse
|
22
|
Xie J, Liao B, Tang RY. Functional Application of Sulfur-Containing Spice Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12505-12526. [PMID: 33138361 DOI: 10.1021/acs.jafc.0c05002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sulfur-containing spice compounds possess diverse biological functions and play an important role in food, chemicals, pharmaceuticals, and agriculture. The development of functional spices has become increasingly popular, especially for medicinal functions for dietary health. Thus, this review focuses on the properties and functions of sulfur-containing spice compounds, including antioxidant, anti-inflammatory, antiobesity, anticancer, antibacterial, and insecticidal functions, among others. Developments over the last five years concerning the properties of sulfur-containing spice compounds are summarized and discussed.
Collapse
Affiliation(s)
- Jinxin Xie
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Benjian Liao
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ri-Yuan Tang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
23
|
Wu TY, Lin JN, Luo ZY, Hsu CJ, Wang JS, Wu HP. 2,3,4',5-Tetrahydroxystilbene-2- O-β-D-Glucoside (THSG) Activates the Nrf2 Antioxidant Pathway and Attenuates Oxidative Stress-Induced Cell Death in Mouse Cochlear UB/OC-2 Cells. Biomolecules 2020; 10:biom10030465. [PMID: 32197448 PMCID: PMC7175305 DOI: 10.3390/biom10030465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a critical role in the pathogenesis of hearing loss, and 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) exerts antioxidant effects by inhibiting reactive oxygen species (ROS) generation. With the aim of developing new therapeutic strategies for oxidative stress, this study investigated the protective mechanism of THSG in vitro using a normal mouse cochlear cell line (UB/OC-2). The THSG and ascorbic acid have similar free radical scavenger capacities. H2O2, but not THSG, reduced the UB/OC-2 cell viability. Moreover, H2O2 might induce apoptosis and autophagy by inducing morphological changes, as visualized by microscopy. As evidenced by Western blot analysis and monodansylcadaverine (MDC) staining, THSG might decrease H2O2-induced autophagy. According to a Western blotting analysis and Annexin V/PI and JC-1 staining, THSG might protect cells from H2O2-induced apoptosis and stabilize the mitochondrial membrane potential. Furthermore, THSG enhanced the translocation of nucleus factor erythroid 2-related factor 2 (Nrf2) into the nucleus and increased the mRNA and protein expression of antioxidant/detoxifying enzymes under H2O2-induced oxidative stress conditions. Collectively, our findings demonstrate that THSG, as a scavenging agent, can directly attenuate free radicals and upregulate antioxidant/detoxifying enzymes to protect against oxidative damage and show that THSG protects UB/OC-2 cells from H2O2-induced autophagy and apoptosis in vitro.
Collapse
Affiliation(s)
- Tien-Yuan Wu
- Department of Pharmacology, School of Medicine, College of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Jia-Ni Lin
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (J.-N.L.); (Z.-Y.L.); (C.-J.H.)
| | - Zi-Yao Luo
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (J.-N.L.); (Z.-Y.L.); (C.-J.H.)
| | - Chuan-Jen Hsu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (J.-N.L.); (Z.-Y.L.); (C.-J.H.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Jen-Shu Wang
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Hung-Pin Wu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (J.-N.L.); (Z.-Y.L.); (C.-J.H.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Correspondence:
| |
Collapse
|
24
|
Transcriptomic Analysis, Motility and Biofilm Formation Characteristics of Salmonella typhimurium Exposed to Benzyl Isothiocyanate Treatment. Int J Mol Sci 2020; 21:ijms21031025. [PMID: 32033098 PMCID: PMC7037498 DOI: 10.3390/ijms21031025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/27/2022] Open
Abstract
Salmonella typhimurium (S. typhimurium) is a common foodborne pathogen that not only causes diseases and contaminates food, but also causes considerable economic losses. Therefore, it is necessary to find effective and feasible methods to control S. typhimurium. In this study, changes in S. typhimurium after treatment with benzyl isothiocyanate (BITC) were detected by transcriptomics to explore the antibacterial effect of BITC at subinhibitory concentration. The results showed that, in contrast to the control group (SC), the BITC-treated group (SQ_BITC) had 197 differentially expressed genes (DEGs), of which 115 were downregulated and 82 were upregulated. We screened out eight significantly downregulated virulence-related genes and verified gene expression by quantitative Real-time Polymerase Chain Reaction (qRT-PCR). We also selected motility and biofilm formation to observe the effects of BITC on the other virulence related factors of S. typhimurium. The results showed that both swimming and swarming were significantly inhibited. BITC also had a significant inhibitory effect on biofilm formation, and showed an effect on bacterial morphology. These results will be helpful for understanding the mechanism of the antibacterial action of BITC against S. typhimurium and other foodborne pathogens.
Collapse
|