1
|
Abavisani M, Tafti P, Khoshroo N, Ebadpour N, Khoshrou A, Kesharwani P, Sahebkar A. The heart of the matter: How gut microbiota-targeted interventions influence cardiovascular diseases. Pathol Res Pract 2025; 269:155931. [PMID: 40174272 DOI: 10.1016/j.prp.2025.155931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
The human body is habitat to a wide spectrum of microbial populations known as microbiota, which play an important role in overall health. The considerable research has mostly focused on the gut microbiota due to its potential to impact numerous physiological functions and its correlation with a variety of disorders, such as cardiovascular diseases (CVDs). Imbalances in the gut microbiota, known as dysbiosis, have been linked to the development and progression of CVDs through various processes, including the generation of metabolites like trimethylamine-N-oxide and short-chain fatty acids. Studies have also looked at the idea of using therapeutic interventions, like changing your diet, taking probiotics or prebiotics, or even fecal microbiota transplantation (FMT), to change the gut microbiota's make-up and how it works in order to prevent or treat CVDs. Exploring the cause-and-effect connection between the gut microbiota and CVDs offers a hopeful path for creating innovative microbiome-centered strategies to prevent and cure CVDs. This review presents an in-depth review of the correlation between the gut microbiota and CVDs, as well as potential therapeutic approaches for manipulating the gut microbiota to enhance cardiovascular health.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pourya Tafti
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khoshroo
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pardesh, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Tegegne HA, Savidge TC. Leveraging human microbiomes for disease prediction and treatment. Trends Pharmacol Sci 2025; 46:32-44. [PMID: 39732609 PMCID: PMC11786253 DOI: 10.1016/j.tips.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/30/2024]
Abstract
The human microbiome consists of diverse microorganisms that inhabit various body sites. As these microbes are increasingly recognized as key determinants of health, there is significant interest in leveraging individual microbiome profiles for early disease detection, prevention, and drug efficacy prediction. However, the complexity of microbiome data, coupled with conflicting study outcomes, has hindered its integration into clinical practice. This challenge is partially due to demographic and technological biases that impede the development of reliable disease classifiers. Here, we examine recent advances in 16S rRNA and shotgun-metagenomics sequencing, along with bioinformatics tools designed to enhance microbiome data integration for precision diagnostics and personalized treatments. We also highlight progress in microbiome-based therapies and address the challenges of establishing causality to ensure robust diagnostics and effective treatments for complex diseases.
Collapse
Affiliation(s)
- Henok Ayalew Tegegne
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
3
|
Zhao Y, Yang H, Wu P, Yang S, Xue W, Xu B, Zhang S, Tang B, Xu D. Akkermansia muciniphila: A promising probiotic against inflammation and metabolic disorders. Virulence 2024; 15:2375555. [PMID: 39192579 PMCID: PMC11364076 DOI: 10.1080/21505594.2024.2375555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic disease is a worldwide epidemic that has become a public health problem. Gut microbiota is considered to be one of the important factors that maintain human health by regulating host metabolism. As an abundant bacterium in the host gut, A. muciniphila regulates metabolic and immune functions, and protects gut health. Multiple studies have indicated that alterations in the abundance of A. muciniphila are associated with various diseases, including intestinal inflammatory diseases, obesity, type 2 diabetes mellitus, and even parasitic diseases. Beneficial effects were observed not only in live A. muciniphila, but also in pasteurized A. muciniphila, A. muciniphila-derived extracellular vesicles, outer membrane, and secreted proteins. Although numerous studies have only proven the simple correlation between multiple diseases and A. muciniphila, an increasing number of studies in animal models and preclinical models have demonstrated that the beneficial impacts shifted from correlations to in-depth mechanisms. In this review, we provide a comprehensive view of the beneficial effects of A. muciniphila on different diseases and summarize the potential mechanisms of action of A. muciniphila in the treatment of diseases. We provide a comprehensive understanding of A. muciniphila for improving host health and discuss the perspectives of A. muciniphila in the future studies.
Collapse
Affiliation(s)
- Yanqing Zhao
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huijun Yang
- The First School of Clinical Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Peng Wu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shuguo Yang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenkun Xue
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Biao Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Sirui Zhang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bin Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Daoxiu Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
4
|
Mohr AE, Jasbi P, van Woerden I, Chi J, Gu H, Bruening M, Whisner CM. Microbial Ecology and Metabolism of Emerging Adulthood: Gut Microbiome Insights from a College Freshman Cohort. GUT MICROBES REPORTS 2024; 1:1-23. [PMID: 39221110 PMCID: PMC11361303 DOI: 10.1080/29933935.2024.2387936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The human gut microbiome (GM) undergoes dynamic changes throughout life, transitioning from infancy to adulthood. Despite improved understanding over the past years about how genetics, lifestyle, and the external environment impact the GM, limited research has explored the GM's evolution during late-stage adolescence, especially among college students. This study addresses this gap by investigating the longitudinal dynamics of fecal microbial, functional, and metabolomic signatures in a diverse group of first-year, dormitory-housed college students. A total of 485 stool samples from 246 participants were analyzed, identifying four primary GM community types, predominantly led by Bacteroides (66.8% of samples), as well as Blautia and Prevotella. The Prevotella/Bacteroides (P/B) ratio emerged as a robust GM composition indicator, predictively associated with 15 metabolites. Notably, higher P/B ratios correlated negatively with p-cresol sulfate and cholesterol sulfate, implying potential health implications, while positively correlating with kynurenic acid. Distinct GM transition and stability patterns were found from a detailed longitudinal subset of 93 participants over an academic year. Parasutterella and the Ruminococcus gnavus group exhibited positive associations with compositional variability, whereas Faecalibacterium and Eubacterium ventriosum group displayed negative associations, the latter suggesting stabilizing roles in the GM. Most notably, nearly half of the longitudinal cohort experienced GM community shifts, emphasizing long-term GM adaptability. Comparing individuals with stable community types to those undergoing transitions, we observed significant differences in microbial composition and diversity, signifying substantial shifts in the microbiota during transitions. Although diet-related variables contributed to some observed variance, diet did not independently predict the probability of switching between community types within the study's timeframe via multi-state Markov modeling. Furthermore, exploration of stability within dynamic microbiomes among the longitudinal cohort experiencing shifts in community types revealed that microbiome taxa at the genus level exhibited significantly higher total variance than estimated functional and fecal metabolomic features. This suggests tight control of function and metabolism, despite community shifting. Overall, this study highlights the dynamic nature of the late-stage adolescent GM, the role of core taxa, metabolic pathways, the fecal metabolome, and lifestyle and dietary factors, contributing to our understanding of GM assembly and potential health implications during this life phase.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Center for Personalized Diagnostics, School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | - Irene van Woerden
- Community and Public Health, Idaho State University, Pocatello, ID, USA
| | - Jinhua Chi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Meg Bruening
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Department of Nutritional Sciences, College of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
5
|
Mabrok HB, Ramadan AA, Hamed IM, Mohamed DA. Obesity as Inducer of Cognitive Function Decline via Dysbiosis of Gut Microbiota in Rats. Brain Sci 2024; 14:807. [PMID: 39199499 PMCID: PMC11353248 DOI: 10.3390/brainsci14080807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Diet-induced obesity is a global phenomenon that affects the population worldwide with manifestations at both the phenotypic and genotypic levels. Cognitive function decline is a major global health challenge. The relation between obesity and cognitive function is a debatable issue. The main goal of the current research was to study the implications of obesity on cognitive function and gut microbiota diversity and its impact on plasma and brain metabolic parameters in rats. Obesity was induced in rats by feeding on a high-fat (HF) or a high-fat/high-sucrose (HFHS) diet. The results reveal that both the HF (0.683) and HFHS (0.688) diets were effective as obesity inducers, which was confirmed by a significant increase in the body mass index (BMI). Both diet groups showed dyslipidemia and elevation of oxidative stress, insulin resistance (IR), and inflammatory markers with alterations in liver and kidney functions. Obesity led to a reduction in cognitive function through a reduction in short-term memory by 23.8% and 30.7% in the rats fed HF and HFHS diets, respectively, and learning capacity and visuo-spatial memory reduced by 8.9 and 9.7 s in the rats fed an HF or HFHS diet, respectively. Bacteroidetes, Firmicutes, Proteobacteria, Fusobacteria, and Spirochaetes phyla were detected. The Firmicutes/Bacteroidetes ratio (F/B) significantly decreased in the HF group, while it increased in the HFHS group compared to the normal control. The two species, Bacteroides acidifaciens and Bacteroides ovatus, which are associated with IR, were drastically compromised by the high-fat/high-sucrose diet. Some species that have been linked to reduced inflammation showed a sharp decrease in the HFHS group, while Prevotella copri, which is linked to carbohydrate metabolism, was highly enriched. In conclusion: Obesity led to cognitive impairment through changes in short-term and visuo-spatial memory. A metagenomic analysis revealed alterations in the abundance of some microbial taxa associated with obesity, inflammation, and insulin resistance in the HF and HFHS groups.
Collapse
Grants
- a626035bfd925943, 4c6c6a0dc9645904, 175e6bf937114ef5, 18dca4e8f29e587c, aaf09103eb8bd6ee, 3740a1d4a23d772f, 1b07773fd3c8c954, 4f8fa1a570a3a4b7, 490e7e4e51713e71, 1e87a07edec11a96, 7642f29d62c1068b, c06bc3bf279a8491, c78b30a55528e880, e160d996ffb69ed4, 133 Discount Vouchers
Collapse
Affiliation(s)
| | | | | | - Doha A. Mohamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo 12622, Egypt; (H.B.M.); (A.A.R.); (I.M.H.)
| |
Collapse
|
6
|
Han N, Peng X, Zhang T, Qiang Y, Li X, Zhang W. Temporal dynamics and species-level complexity of Prevotella spp. in the human gut microbiota: implications for enterotypes and health. Front Microbiol 2024; 15:1414000. [PMID: 39044948 PMCID: PMC11265296 DOI: 10.3389/fmicb.2024.1414000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
The concept of "enterotypes" in microbiome research has attracted substantial interest, particularly focusing on the abundance of Prevotella spp. in the human gut. In this study, the intricate dynamics of Prevotella spp. in the human gut microbiota was investigated, based on the metagenomic method. First, 239 fecal samples from individuals across four regions of China revealed a bimodal distribution, highlighting the abundance and variability in Prevotella spp. within the Chinese population. Second, the longitudinal cohort study included 184 fecal samples from 52 time points collected from seven individuals who demonstrated either the outbreaks or disappearances of Prevotella spp., emphasizing the transient nature of Prevotella abundance levels and suggesting shifts in Prevotella "enterotypes." Furthermore, a turnover of the dominant Prevotella spp. was observed, indicating the potential presence of diverse subtypes of Prevotella enterotype. Notably, the genomic analysis demonstrated the persistence of specific Prevotella strains within individuals over extended periods, highlighting the enduring presence of Prevotella in the human gut. In conclusion, by integrating the temporal and geographical scales in our research, we gained deeper insights into the dynamics of Prevotella, emphasizing the importance of considering the dynamics at the time and species level in gut microbiota studies and their implications on human health.
Collapse
Affiliation(s)
- Na Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xianhui Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tingting Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yujun Qiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuwen Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
7
|
Niu H, Zhou M, Zogona D, Xing Z, Wu T, Chen R, Cui D, Liang F, Xu X. Akkermansia muciniphila: a potential candidate for ameliorating metabolic diseases. Front Immunol 2024; 15:1370658. [PMID: 38571945 PMCID: PMC10987721 DOI: 10.3389/fimmu.2024.1370658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Metabolic diseases are comprehensive disease based on obesity. Numerous cumulative studies have shown a certain correlation between the fluctuating abundance of Akkermansia muciniphila and the occurrence of metabolic diseases. A. muciniphila, a potential probiotic candidate colonized in the human intestinal mucus layer, and its derivatives have various physiological functions, including treating metabolic disorders and maintaining human health. This review systematically explicates the abundance change rules of A. muciniphila in metabolic diseases. It also details the high efficacy and specific molecules mechanism of A. muciniphila and its derivatives in treating obesity, type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Huifang Niu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daniel Zogona
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zheng Xing
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dandan Cui
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengxia Liang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Lee HK, Kim NE, Shin CM, Oh TJ, Yoon H, Park YS, Kim N, Won S, Lee DH. Gut microbiome signature of metabolically healthy obese individuals according to anthropometric, metabolic and inflammatory parameters. Sci Rep 2024; 14:3449. [PMID: 38342934 PMCID: PMC10859373 DOI: 10.1038/s41598-024-53837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
In this study, we investigated the characteristics of gut microbiome in the metabolically healthy obese (MHO) patients, and how they correlate with metabolic and inflammatory profiles. A total of 120 obese people without metabolic comorbidities were recruited, and their clinical phenotypes, metabolic and inflammatory parameters were analysed. The faecal microbial markers originating from bacterial cell and extracellular vesicle (EV) were profiled using 16S rDNA sequencing. The total study population could be classified into two distinct enterotypes (enterotype I: Prevotellaceae-predominant, enterotype II: Akkermansia/Bacteroides-predominant), based on their stool EV-derived microbiome profile. When comparing the metabolic and inflammatory profiles, subjects in enterotype I had higher levels of serum IL-1β [false discovery rate (FDR) q = 0.050] and had a lower level of microbial diversity than enterotype II (Wilcoxon rank-sum test p < 0.01). Subjects in enterotype I had relatively higher abundance of Bacteroidetes, Prevotellaceae and Prevotella-derived EVs, and lower abundance of Actinobacteria, Firmicutes, Proteobacteria, Akkermansia and Bacteroides-derived EVs (FDR q < 0.05). In conclusion, HMO patients can be categorised into two distinct enterotypes by the faecal EV-derived microbiome profile. The enterotyping may be associated with different metabolic and inflammatory profiles. Further studies are warranted to elucidate the long-term prognostic impact of EV-derived microbiome in the obese population.
Collapse
Affiliation(s)
- Ho-Kyoung Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173, Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Nam-Eun Kim
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173, Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea.
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173, Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173, Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173, Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173, Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Sungho Won
- Department of Public Health Sciences, Seoul National University, Seoul, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173, Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea.
| |
Collapse
|
9
|
Dash NR, Al Bataineh MT, Alili R, Al Safar H, Alkhayyal N, Prifti E, Zucker JD, Belda E, Clément K. Functional alterations and predictive capacity of gut microbiome in type 2 diabetes. Sci Rep 2023; 13:22386. [PMID: 38104165 PMCID: PMC10725451 DOI: 10.1038/s41598-023-49679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
The gut microbiome plays a significant role in the development of Type 2 Diabetes Mellitus (T2DM), but the functional mechanisms behind this association merit deeper investigation. Here, we used the nanopore sequencing technology for metagenomic analyses to compare the gut microbiome of individuals with T2DM from the United Arab Emirates (n = 40) with that of control (n = 44). DMM enterotyping of the cohort resulted concordantly with previous results, in three dominant groups Bacteroides (K1), Firmicutes (K2), and Prevotella (K3) lineages. The diversity analysis revealed a high level of diversity in the Firmicutes group (K2) both in terms of species richness and evenness (Wilcoxon rank-sum test, p value < 0.05 vs. K1 and K3 groups), consistent with the Ruminococcus enterotype described in Western populations. Additionally, functional enrichment analyses of KEGG modules showed significant differences in abundance between individuals with T2DM and controls (FDR < 0.05). These differences include modules associated with the degradation of amino acids, such as arginine, the degradation of urea as well as those associated with homoacetogenesis. Prediction analysis with the Predomics approach suggested potential biomarkers for T2DM, including a balance between a depletion of Enterococcus faecium and Blautia lineages with an enrichment of Absiella spp or Eubacterium limosum in T2DM individuals, highlighting the potential of metagenomic analysis in predicting predisposition to diabetic cardiomyopathy in T2DM patients.
Collapse
Affiliation(s)
- Nihar Ranjan Dash
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad T Al Bataineh
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Rohia Alili
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France
- Nutrition Department, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Habiba Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | | | - Edi Prifti
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, 93143, Bondy, France
| | - Jean-Daniel Zucker
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, 93143, Bondy, France
| | - Eugeni Belda
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, 93143, Bondy, France
| | - Karine Clément
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France.
- Nutrition Department, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
10
|
Shannon CE, Ní Chathail MB, Mullin SM, Meehan A, McGillicuddy FC, Roche HM. Precision nutrition for targeting pathophysiology of cardiometabolic phenotypes. Rev Endocr Metab Disord 2023; 24:921-936. [PMID: 37402955 PMCID: PMC10492734 DOI: 10.1007/s11154-023-09821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Obesity is a heterogenous disease accompanied by a broad spectrum of cardiometabolic risk profiles. Traditional paradigms for dietary weight management do not address biological heterogeneity between individuals and have catastrophically failed to combat the global pandemic of obesity-related diseases. Nutritional strategies that extend beyond basic weight management to instead target patient-specific pathophysiology are warranted. In this narrative review, we provide an overview of the tissue-level pathophysiological processes that drive patient heterogeneity to shape distinct cardiometabolic phenotypes in obesity. Specifically, we discuss how divergent physiology and postprandial phenotypes can reveal key metabolic defects within adipose, liver, or skeletal muscle, as well as the integrative involvement of the gut microbiome and the innate immune system. Finally, we highlight potential precision nutritional approaches to target these pathways and discuss recent translational evidence concerning the efficacy of such tailored dietary interventions for different obesity phenotypes, to optimise cardiometabolic benefits.
Collapse
Affiliation(s)
- Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland
- School of Medicine, University College Dublin, Dublin, Republic of Ireland
- Division of Diabetes, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Méabh B Ní Chathail
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland
| | - Sinéad M Mullin
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland
| | - Andrew Meehan
- School of Medicine, University College Dublin, Dublin, Republic of Ireland
| | | | - Helen M Roche
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland.
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
11
|
Pelczyńska M, Moszak M, Wesołek A, Bogdański P. The Preventive Mechanisms of Bioactive Food Compounds against Obesity-Induced Inflammation. Antioxidants (Basel) 2023; 12:1232. [PMID: 37371961 DOI: 10.3390/antiox12061232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary patterns are promising strategies for preventing and treating obesity and its coexisting inflammatory processes. Bioactive food compounds have received considerable attention due to their actions against obesity-induced inflammation, with limited harmful side effects. They are perceived as food ingredients or dietary supplements other than those necessary to meet basic human nutritional needs and are responsible for positive changes in the state of health. These include polyphenols, unsaturated fatty acids, and probiotics. Although the exact mechanisms of bioactive food compounds' action are still poorly understood, studies have indicated that they involve the modulation of the secretion of proinflammatory cytokines, adipokines, and hormones; regulate gene expression in adipose tissue; and modify the signaling pathways responsible for the inflammatory response. Targeting the consumption and/or supplementation of foods with anti-inflammatory potential may represent a new approach to obesity-induced inflammation treatment. Nevertheless, more studies are needed to evaluate strategies for bioactive food compound intake, especially times and doses. Moreover, worldwide education about the advantages of bioactive food compound consumption is warranted to limit the consequences of unhealthy dietary patterns. This work presents a review and synthesis of recent data on the preventive mechanisms of bioactive food compounds in the context of obesity-induced inflammation.
Collapse
Affiliation(s)
- Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Małgorzata Moszak
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Agnieszka Wesołek
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 10 Fredry Street, 61-701 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| |
Collapse
|
12
|
Impact of caloric restriction on the gut microbiota. Curr Opin Microbiol 2023; 73:102287. [PMID: 36868081 DOI: 10.1016/j.mib.2023.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
Caloric restriction (CR) and related time-restricted diets have been popularized as means of preventing metabolic disease while improving general well-being. However, evidence as to their long-term efficacy, adverse effects, and mechanisms of activity remains incompletely understood. The gut microbiota is modulated by such dietary approaches, yet causal evidence to its possible downstream impacts on host metabolism remains elusive. Herein, we discuss the positive and adverse influences of restrictive dietary interventions on gut microbiota composition and function, and their collective impacts on host health and disease risk. We highlight known mechanisms of microbiota influences on the host, such as modulation of bioactive metabolites, while discussing challenges in achieving mechanistic dietary-microbiota insights, including interindividual variability in dietary responses as well as other methodological and conceptual challenges. In all, causally understanding the impact of CR approaches on the gut microbiota may enable to better decode their overall influences on human physiology and disease.
Collapse
|