1
|
Yadav S, Prasannan A, Venkatachalam K, Binesh A. Exploring the mechanism and crosstalk between IL-6 and IL- 1β on M2 macrophages under metabolic stress conditions. Cytokine 2025; 186:156852. [PMID: 39765025 DOI: 10.1016/j.cyto.2024.156852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/14/2025]
Abstract
Macrophages are highly variable immune cells that are important in controlling inflammation and maintaining tissue balance. The ability to polarize into two major types-M1, promoting inflammation, and M2, resolving inflammation and contributing to tissue repair-determines their specific roles in health and disease. M2 macrophages are particularly important for reducing inflammation and promoting tissue regeneration, but their function is shaped mainly by surrounding cells. This is evident in obesity, diabetes, and chronic inflammation. Although many cytokines regulate macrophage polarization, interleukin-6 (IL-6) and interleukin-1β (IL-1β) are major players, but their effects on M2 macrophage behavior under metabolic stress remain unclear. This study describes the intricacies within M2 macrophages concerning IL-6 and IL-1β signaling when under metabolic stress. Though, more frequently than not, IL-6 is labelled as pro-inflammatory, it can also behave as an anti-inflammatory mediator. On the other hand, IL-1β is the main pro-inflammatory agent, particularly in metabolic disorders. The relationship between these cytokines and the macrophages is mediated through important pathways such as JAK/STAT and NFκB, which get perturbed by metabolic stress. Therefore, metabolic stress also alters the functional parameters of macrophages, including alterations in mitochondrial metabolism, glycolytic and oxidative metabolism. Phosphorylation alters the kinetics involved in energy consumption and affects their polarization and their function. However, it has been suggested that IL-6 and IL-1β may work in concert or competition when inducing M2 polarization and, importantly, implicate cytokine release, phagocytic activity, and tissue repair processes. In this review, we discuss the recent literature on the participation of IL-6 and IL-1β cytokines in macrophage polarization and how metabolic stress changes cytokine functions and synergistic relations. A better understanding of these cytokines would serve as an important step toward exploring alternative antiviral strategies directed against metabolic disturbance and, hence, approve further endeavors.
Collapse
Affiliation(s)
- Shawna Yadav
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Anusha Prasannan
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Ambika Binesh
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India.
| |
Collapse
|
2
|
Liang C, Liu X, Sun Z, Wen L, Wu J, Shi S, Liu X, Luo N, Li X. Lipid nanosystems for fatty liver therapy and targeted medication delivery: a comprehensive review. Int J Pharm 2025; 669:125048. [PMID: 39653287 DOI: 10.1016/j.ijpharm.2024.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Fatty liver is considered to be the most common chronic liver disease with a high global incidence, which can lead to cirrhosis and liver cancer in severe cases, and there is no specific drug for the treatment of fatty liver in the clinic. The use of lipid nanosystems has the potential to be an effective means of fatty liver treatment. The pathogenesis and intervening factors associated with the development of fatty liver are reviewed, and the advantages and the disadvantages of different lipid nanosystems for the treatment of fatty liver are comprehensively discussed, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, microemulsions, and phospholipid complexes. The composition and characterisation of these lipid nanosystems are highlighted and summarised with a view to improving the efficiency of lipid nanosystems for the treatment of fatty liver. In addition, active targeting and passive targeting strategies used for fatty liver therapy are discussed in detail.
Collapse
Affiliation(s)
- Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nini Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, 400021, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Tian Y, Xie Y, Hong X, Guo Z, Yu Q. 17β-Estradiol protects female rats from bilateral oophorectomy-induced nonalcoholic fatty liver disease induced by improving linoleic acid metabolism alteration and gut microbiota disturbance. Heliyon 2024; 10:e29013. [PMID: 38601573 PMCID: PMC11004821 DOI: 10.1016/j.heliyon.2024.e29013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
After surgical or natural menopause, women face a high risk of nonalcoholic fatty liver disease (NAFLD), which can be diminished by hormone replacement therapy (HRT). The gut microbiota is subject to modulation by various physiological changes and the progression of diseases. This microbial ecosystem coexists symbiotically with the host, playing pivotal roles in immune maturation, microbial defense mechanisms, and metabolic functions essential for nutritional and hormone homeostasis. E2 supplementation effectively prevented the development of NAFLD after bilateral oophorectomy (OVX) in female rats. The changes in the gut microbiota such as abnormal biosynthetic metabolism of fatty acids caused by OVX were partially restored by E2 supplementation. The combination of liver transcriptomics and metabolomics analysis revealed that linoleic acid (LA) metabolism, a pivotal pathway in fatty acids metabolism was mainly manipulated during the induction and treatment of NAFLD. Further correlation analysis indicated that the gut microbes were associated with abnormal serum indicators and different LA metabolites. These metabolites are also closely related to serum indicators of NAFLD. An in vitro study verified that LA is an inducer of hepatic steatosis. The changes in transcription in the LA metabolism pathway could be normalized by E2 treatment. The metabolic perturbations of LA may directly and secondhand impact the development of NAFLD in postmenopausal individuals. This research focused on the sex-specific pathophysiology and treatment of NAFLD, providing more evidence for HRT and calling for the multitiered management of NAFLD.
Collapse
Affiliation(s)
| | | | - Xinyu Hong
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zaixin Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| |
Collapse
|
4
|
Soto-Catalán M, Opazo-Ríos L, Quiceno H, Lázaro I, Moreno JA, Gómez-Guerrero C, Egido J, Mas-Fontao S. Semaglutide Improves Liver Steatosis and De Novo Lipogenesis Markers in Obese and Type-2-Diabetic Mice with Metabolic-Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:2961. [PMID: 38474208 DOI: 10.3390/ijms25052961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a prevalent clinical condition associated with elevated morbidity and mortality rates. Patients with MASLD treated with semaglutide, a glucagon-like peptide-1 receptor agonist, demonstrate improvement in terms of liver damage. However, the mechanisms underlaying this beneficial effect are not yet fully elucidated. We investigated the efficacy of semaglutide in halting MASLD progression using a genetic mouse model of diabesity. Leptin-receptor-deficient mice with obesity and diabetes (BKS db/db) were either untreated or administered with semaglutide for 11 weeks. Changes in food and water intake, body weight and glycemia were monitored throughout the study. Body fat composition was assessed by dual-energy X-ray absorptiometry. Upon sacrifice, serum biochemical parameters, liver morphology, lipidomic profile and liver-lipid-related pathways were evaluated. The semaglutide-treated mice exhibited lower levels of glycemia, body weight, serum markers of liver dysfunction and total and percentage of fat mass compared to untreated db/db mice without a significant reduction in food intake. Histologically, semaglutide reduced hepatic steatosis, hepatocellular ballooning and intrahepatic triglycerides. Furthermore, the treatment ameliorated the hepatic expression of de novo lipogenesis markers and modified lipid composition by increasing the amount of polyunsaturated fatty acids. The administration of semaglutide to leptin-receptor-deficient, hyperphagic and diabetic mice resulted in the amelioration of MASLD, likely independently of daily caloric intake, suggesting a direct effect of semaglutide on the liver through modulation of the lipid profile.
Collapse
Affiliation(s)
- Manuel Soto-Catalán
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad de Las Américas, Concepción-Talcahuano 4301099, Chile
| | - Hernán Quiceno
- Department of Pathology, Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Iolanda Lázaro
- Cardiovascular Risk and Nutrition Research Group, Epidemiology and Public Health Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 140471 Cordoba, Spain
- Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Sebastian Mas-Fontao
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X el Sabio (UAX), 28691 Madrid, Spain
| |
Collapse
|
5
|
Chokeshaiusaha K, Sananmuang T, Puthier D, Nguyen C. Cross-species analysis of differential transcript usage in humans and chickens with fatty liver disease. Vet World 2023; 16:1964-1973. [PMID: 37859957 PMCID: PMC10583885 DOI: 10.14202/vetworld.2023.1964-1973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Fatty liver disease is a common condition, characterized by excess fat accumulation in the liver. It can contribute to more severe liver-related health issues, making it a critical concern in avian and human medicine. Apart from modifying the gene expression of liver cells, the disease also alters the expression of specific transcript isoforms, which might serve as new biological markers for both species. This study aimed to identify cross-species genes displaying differential expressions in their transcript isoforms in humans and chickens with fatty liver disease. Materials and Methods We performed differential gene expression and differential transcript usage (DTU) analyses on messenger RNA datasets from the livers of both chickens and humans with fatty liver disease. Using appropriate cross-species gene identification methods, we reviewed the acquired candidate genes and their transcript isoforms to determine their potential role in fatty liver disease's pathogenesis. Results We identified seven genes - ALG5, BRD7, DIABLO, RSU1, SFXN5, STIMATE, TJP3, and VDAC2 - and their corresponding transcript isoforms as potential candidates (false discovery rate ≤0.05). Our findings showed that these genes most likely contribute to fatty disease development and progression. Conclusion This study successfully identified novel human-chicken DTU genes in fatty liver disease. Further research is encouraged to verify the functions and regulations of these transcript isoforms as potential diagnostic markers for fatty liver disease in humans and chickens.
Collapse
Affiliation(s)
- Kaj Chokeshaiusaha
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
| | - Thanida Sananmuang
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
| | - Denis Puthier
- Aix-Marseille Université, INSERM, UMR 1090, TAGC, Marseille, France
| | - Catherine Nguyen
- Aix-Marseille Université, INSERM, UMR 1090, TAGC, Marseille, France
| |
Collapse
|
6
|
Chen Y, Xiang L, Luo L, Qin H, Tong S. Correlation of Nonalcoholic Fatty Liver Disease with Dietary Folate and Serum Folate in U.S. Adults: Cross-Sectional Analyses from National Health and Nutrition Examination Survey 2009-2018. Metab Syndr Relat Disord 2023; 21:389-396. [PMID: 37733056 DOI: 10.1089/met.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Background and Aims: Nonalcoholic fatty liver disease (NAFLD) is a global health problem, and dietary intervention is still considered one of the primary interventions. This study aimed to examine cross-sectional associations between dietary and serum levels of folate and NAFLD. Methods: We conducted a study of 7543 adults who participated in the National Health and Nutrition Examination Survey, 2009-2018. NAFLD status was determined by a fatty liver index (FLI) value ≥60. Multivariable logistic regression models were used to estimate associations between folate and NAFLD. Results: Almost half (45%) of the patients were classified as having NAFLD based on the FLI. In the fully adjusted model, participants in the highest quartile of dietary total folate and food folate were found to have a lower prevalence of NAFLD than those in the lowest quartile [odds ratio (OR)quartile 4 versus 1 = 0.582; 95% confidence interval (CI) = 0.350-0.968; and ORquartile 4 versus 1 = 0.737; 95% CI = 0.611-0.888, respectively], and the fourth quartile values of serum total folate and 5-methyl-tetrahydrofolate were significantly negatively associated with NAFLD prevalence (ORquartile 4 versus 1 = 0.664; 95% CI = 0.495-0.891; and ORquartile 4 versus 1 = 0.712; 95% CI = 0.532-0.954, respectively). Subgroup analyses revealed that this beneficial association was more significant in women (ORquartile 4 versus 1 = 0.526; 95% CI = 0.329-0.843; pinteraction < 0.001) than in men (ORquartile 4 versus 1 = 0.805; 95% CI = 0.546-1.186). Conclusions: Higher dietary folate intake and serum folate levels are associated with a lower NAFLD prevalence among U.S. adults and the trend is more pronounced among women, indicating opportunities for dietary NAFLD interventions.
Collapse
Affiliation(s)
- Yushi Chen
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Xiang
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Luo
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haixia Qin
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiwen Tong
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Suárez M, Martínez R, Torres AM, Torres B, Mateo J. A Machine Learning Method to Identify the Risk Factors for Liver Fibrosis Progression in Nonalcoholic Steatohepatitis. Dig Dis Sci 2023; 68:3801-3809. [PMID: 37477764 DOI: 10.1007/s10620-023-08031-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
AIM Nonalcoholic fatty liver disease (NAFLD) is a silent epidemy that has become the most common chronic liver disease worldwide. Nonalcoholic steatohepatitis (NASH) is an advanced stage of NAFLD, which is linked to a high risk of cirrhosis and hepatocellular carcinoma. The aim of this study is to develop a predictive model to identify the main risk factors associated with the progression of hepatic fibrosis in patients with NASH. METHODS A database from a multicenter retrospective cross-sectional study was analyzed. A total of 215 patients with NASH biopsy-proven diagnosed were collected. NAFLD Activity Score and Kleiner scoring system were used to diagnose and staging these patients. Noninvasive tests (NITs) scores were added to identify which one were more reliable for follow-up and to avoid biopsy. For analysis, different Machine Learning methods were implemented, being the eXtreme Gradient Booster (XGB) system the proposed algorithm to develop the predictive model. RESULTS The most important variable in this predictive model was High-density lipoprotein (HDL) cholesterol, followed by systemic arterial hypertension and triglycerides (TG). NAFLD Fibrosis Score (NFS) was the most reliable NIT. As for the proposed method, XGB obtained higher results than the second method, K-Nearest Neighbors, in terms of accuracy (95.05 vs. 90.42) and Area Under the Curve (0.95 vs. 0.91). CONCLUSIONS HDL cholesterol, systemic arterial hypertension, and TG were the most important risk factors for liver fibrosis progression in NASH patients. NFS is recommended for monitoring and decision making.
Collapse
Affiliation(s)
- Miguel Suárez
- Gastroenterology Department, Virgen de La Luz Hospital, Av. Hermandad de Donantes de Sangre, 1, 16002, Cuenca, Spain.
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain.
| | - Raquel Martínez
- Gastroenterology Department, Virgen de La Luz Hospital, Av. Hermandad de Donantes de Sangre, 1, 16002, Cuenca, Spain
| | - Ana María Torres
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
| | | | - Jorge Mateo
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
| |
Collapse
|
8
|
Alonso-Peña M, Del Barrio M, Peleteiro-Vigil A, Jimenez-Gonzalez C, Santos-Laso A, Arias-Loste MT, Iruzubieta P, Crespo J. Innovative Therapeutic Approaches in Non-Alcoholic Fatty Liver Disease: When Knowing Your Patient Is Key. Int J Mol Sci 2023; 24:10718. [PMID: 37445895 DOI: 10.3390/ijms241310718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disorders ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis may result from the dysfunction of multiple pathways and thus multiple molecular triggers involved in the disease have been described. The development of NASH entails the activation of inflammatory and fibrotic processes. Furthermore, NAFLD is also strongly associated with several extra-hepatic comorbidities, i.e., metabolic syndrome, type 2 diabetes mellitus, obesity, hypertension, cardiovascular disease and chronic kidney disease. Due to the heterogeneity of NAFLD presentations and the multifactorial etiology of the disease, clinical trials for NAFLD treatment are testing a wide range of interventions and drugs, with little success. Here, we propose a narrative review of the different phenotypic characteristics of NAFLD patients, whose disease may be triggered by different agents and driven along different pathophysiological pathways. Thus, correct phenotyping of NAFLD patients and personalized treatment is an innovative therapeutic approach that may lead to better therapeutic outcomes.
Collapse
Affiliation(s)
- Marta Alonso-Peña
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Maria Del Barrio
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Ana Peleteiro-Vigil
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Carolina Jimenez-Gonzalez
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Alvaro Santos-Laso
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Maria Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
9
|
Finelli C. Molecular Mechanisms and Mediators of Hepatotoxicity Resulting from an Excess of Lipids and Non-Alcoholic Fatty Liver Disease. GASTROINTESTINAL DISORDERS 2023; 5:243-260. [DOI: 10.3390/gidisord5020020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2024] Open
Abstract
The paper reviews some of the mechanisms implicated in hepatotoxicity, which is induced by an excess of lipids. The paper spans a wide variety of topics: from the molecular mechanisms of excess lipids, to the therapy of hyperlipidemia, to the hepatotoxicity of lipid-lowering drugs. NAFLD is currently the leading cause of chronic liver disease in Western countries; the molecular mechanisms leading to NAFLD are only partially understood and there are no effective therapeutic interventions. The prevalence of liver disease is constantly increasing in industrialized countries due to a number of lifestyle variables, including excessive caloric intake, unbalanced diet, lack of physical activity, and abuse of hepatotoxic medicines. Considering the important functions of cell death and inflammation in the etiology of the majority, if not all, liver diseases, one efficient therapeutic treatment may include the administration of hepatoprotective and anti-inflammatory drugs, either alone or in combination. Clinical trials are currently being conducted in cohorts of patients with different liver diseases in order to explore this theory.
Collapse
Affiliation(s)
- Carmine Finelli
- Department of Internal Medicine, ASL Napoli 3 Sud, Via Marconi, 66, Torre del Greco, 80100 Napoli, Italy
| |
Collapse
|
10
|
Lopez-Escalera S, Lund ML, Hermes GDA, Choi BSY, Sakamoto K, Wellejus A. In Vitro Screening for Probiotic Properties of Lactobacillus and Bifidobacterium Strains in Assays Relevant for Non-Alcoholic Fatty Liver Disease Prevention. Nutrients 2023; 15:nu15102361. [PMID: 37242245 DOI: 10.3390/nu15102361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial metabolic disorder that poses health challenges worldwide and is expected to continue to rise dramatically. NAFLD is associated with metabolic syndrome, type 2 diabetes mellitus, and impaired gut health. Increased gut permeability, caused by disturbance of tight junction proteins, allows passage of damaging microbial components that, upon reaching the liver, have been proposed to trigger the release of inflammatory cytokines and generate cellular stress. A growing body of research has suggested the utilization of targeted probiotic supplements as a preventive therapy to improve gut barrier function and tight junctions. Furthermore, specific microbial interactions and metabolites induce the secretion of hormones such as GLP-1, resulting in beneficial effects on liver health. To increase the likelihood of finding beneficial probiotic strains, we set up a novel screening platform consisting of multiple in vitro and ex vivo assays for the screening of 42 bacterial strains. Analysis of transepithelial electrical resistance response via co-incubation of the 42 bacterial strains with human colonic cells (Caco-2) revealed improved barrier integrity. Then, strain-individual metabolome profiling was performed revealing species-specific clusters. GLP-1 secretion assay with intestinal secretin tumor cell line (STC-1) found at least seven of the strains tested capable of enhancing GLP-1 secretion in vitro. Gene expression profiling in human biopsy-derived intestinal organoids was performed using next generation sequencing transcriptomics post bacterial co-incubation. Here, different degrees of immunomodulation by the increase in certain cytokine and chemokine transcripts were found. Treatment of mouse primary hepatocytes with selected highly produced bacterial metabolites revealed that indole metabolites robustly inhibited de novo lipogenesis. Collectively, through our comprehensive bacterial screening pipeline, not previously ascribed strains from both Lactobacillus and Bifidobacterium genera were proposed as potential probiotics based on their ability to increase epithelial barrier integrity and immunity, promote GLP-1 secretion, and produce metabolites relevant to liver health.
Collapse
Affiliation(s)
- Silvia Lopez-Escalera
- Human Health Research, Scientific Affairs, Chr. Hansen A/S, Bøge Alle 10-12, 2970 Hørsholm, Denmark
- Fakultät für Biowissenschaften, Friedrich-Schiller Universität Jena, Bachstraβe 18K, 07743 Jena, Germany
| | - Mari L Lund
- Human Health Research, Scientific Affairs, Chr. Hansen A/S, Bøge Alle 10-12, 2970 Hørsholm, Denmark
| | - Gerben D A Hermes
- Human Health Research, Scientific Affairs, Chr. Hansen A/S, Bøge Alle 10-12, 2970 Hørsholm, Denmark
| | - Béatrice S-Y Choi
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anja Wellejus
- Human Health Research, Scientific Affairs, Chr. Hansen A/S, Bøge Alle 10-12, 2970 Hørsholm, Denmark
| |
Collapse
|
11
|
Del Barrio M, Lavín L, Santos-Laso Á, Arias-Loste MT, Odriozola A, Rodriguez-Duque JC, Rivas C, Iruzubieta P, Crespo J. Faecal Microbiota Transplantation, Paving the Way to Treat Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24076123. [PMID: 37047094 PMCID: PMC10094628 DOI: 10.3390/ijms24076123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent cause of chronic liver disease (CLD). Currently, the only therapeutic recommendation available is a lifestyle change. However, adherence to this approach is often difficult to guarantee. Alteration of the microbiota and an increase in intestinal permeability seem to be key in the development and progression of NAFLD. Therefore, the manipulation of microbiota seems to provide a promising therapeutic strategy. One way to do so is through faecal microbiota transplantation (FMT). Here, we summarize the key aspects of FMT, detail its current indications and highlight the most recent advances in NAFLD.
Collapse
Affiliation(s)
- María Del Barrio
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Lucía Lavín
- Clinical Trial Agency Valdecilla-IDIVAL, Marqués de Valdecilla University Hospital, Av. Valdecilla, 25, 39008 Santander, Cantabria, Spain
| | - Álvaro Santos-Laso
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Maria Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Aitor Odriozola
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Juan Carlos Rodriguez-Duque
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Coral Rivas
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| |
Collapse
|
12
|
He W, Huang C, Wang L, Su W, Wang S, Huang P, Zhang X, Huang Y, Zhao Y, Lin M, Shi X, Li X. The correlation between triiodothyronine and the severity of liver fibrosis. BMC Endocr Disord 2022; 22:313. [PMID: 36503486 PMCID: PMC9743744 DOI: 10.1186/s12902-022-01228-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The severity of liver fibrosis is an important predictor of death in patients with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). However, there is still no definite conclusion on the relationship between triiodothyronine (T3) and the severity of liver fibrosis. Thus, the aim of this study was to analyze the correlation between T3 level and the severity of liver fibrosis. METHODS We performed a cross-sectional study of 2072 T2DM patients with normal thyroid function from January 2017 to January 2020. NAFLD fibrosis score (NFS), Fibrosis index based on the 4 factors (FIB-4) and BARD score (BARD) were used to assess the severity of fibrosis in T2DM patients, and linear regression analyses were used to determine the factors independently associated with liver fibrosis. Further experiments were performed to assess the impact of low T3 on fibrosis progression in mice model and explore possible mechanisms. RESULTS Free triiodothyronine (fT3) levels had significantly inverse correlations with NFS and FIB-4, and BARD in T2DM patients (P < 0.05). In multiple linear regression analyses, decreased fT3 level was an independent risk factor for the severity of liver fibrosis of T2DM patients (P < 0.01). Findings from in-vivo experiment using mice model proved that hypothyroidism mice had more severe of liver fibrosis than those mice with normal thyroid function. We also found that T3 could inhibit the profibrotic TREM2+CD9+ macrophage, which had been identified an important player in the progression of liver fibrosis. CONCLUSION The findings from this study proved an inverse correlation between T3 level and the severity of liver fibrosis, and lower fT3 level within the normal range was an independent risk factor for severe liver fibrosis.
Collapse
Affiliation(s)
- Weiwei He
- School of Medicine, Xiamen University, Xiamen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, Fujian, China
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, Fujian, China
| | - Liying Wang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, Fujian, China
| | - Weijuan Su
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, Fujian, China
| | - Shunhua Wang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, Fujian, China
| | - Peiying Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, Fujian, China
| | - Xiaofang Zhang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, Fujian, China
| | - Yinxiang Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, Fujian, China
| | - Yan Zhao
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, Fujian, China
| | - Mingzhu Lin
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, Fujian, China
| | - Xiulin Shi
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, Fujian, China.
- Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, No.55 Zhenhai Road, 361003, Xaimen, China.
| | - Xuejun Li
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, Fujian, China.
- Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, No.55 Zhenhai Road, 361003, Xaimen, China.
| |
Collapse
|
13
|
Interactions between Tryptophan Metabolism, the Gut Microbiome and the Immune System as Potential Drivers of Non-Alcoholic Fatty Liver Disease (NAFLD) and Metabolic Diseases. Metabolites 2022; 12:metabo12060514. [PMID: 35736447 PMCID: PMC9227929 DOI: 10.3390/metabo12060514] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and therefore is its burden of disease as NALFD is a risk factor for cirrhosis and is associated with other metabolic conditions such as type II diabetes, obesity, dyslipidaemia and atherosclerosis. Linking these cardiometabolic diseases is a state of low-grade inflammation, with higher cytokines and c-reactive protein levels found in individuals with NAFLD, obesity and type II diabetes. A possible therapeutic target to decrease this state of low-grade inflammation is the metabolism of the essential amino-acid tryptophan. Its three main metabolic pathways (kynurenine pathway, indole pathway and serotonin/melatonin pathway) result in metabolites such as kynurenic acid, xanturenic acid, indole-3-propionic acid and serotonin/melatonin. The kynurenine pathway is regulated by indoleamine 2,3-dioxygenase (IDO), an enzyme that is upregulated by pro-inflammatory molecules such as INF, IL-6 and LPS. Higher activity of IDO is associated with increased inflammation and fibrosis in NAFLD, as well with increased glucose levels, obesity and atherosclerosis. On the other hand, increased concentrations of the indole pathway metabolites, regulated by the gut microbiome, seem to result in more favorable outcomes. This narrative review summarizes the interactions between tryptophan metabolism, the gut microbiome and the immune system as potential drivers of cardiometabolic diseases in NAFLD.
Collapse
|