1
|
Xu W, Cao L, Liu H. CAMK2D and Complement Factor I-Involved Calcium/Calmodulin Signaling Modulates Sodium Iodate-Induced Mouse Retinal Degeneration. Invest Ophthalmol Vis Sci 2025; 66:63. [PMID: 39873650 PMCID: PMC11781327 DOI: 10.1167/iovs.66.1.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/06/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose To investigate the effect of Ca2+/calmodulin-dependent protein kinase II (CAMKII) δ subtypes (CAMK2D) on sodium iodate (NaIO3)-induced retinal degeneration in mice. Methods Bioinformatics analysis and Western blot experiments were used to screen the significantly differentially expressed genes in age-related macular degeneration (AMD) disease. CAMK2D knockdown and overexpression models were constructed by lentivirus (LV) infection of adult retinal pigment epithelial cell line-19 (ARPE-19) cells in vitro. Flow cytometry was used to detect ARPE-19 cell apoptosis induced by NaIO3. In vivo, CAMK2D knockdown and overexpression mouse models were generated by infecting mouse retinal pigment epithelium (RPE) with adeno-associated virus (AAV). Retinography, optical coherence tomography (OCT), and histological analysis (hematoxylin and eosin staining) were used to detect NaIO3-induced retinal structural changes in mice. Electroretinography (ERG) was used to detect NaIO3-induced retinal function changes in mice. TdT-mediated dUTP nick-end labeling (TUNEL) staining was used to detect the apoptosis of retinal cells induced by NaIO3. RNA sequencing (RNA-Seq) and bioinformatics analysis were used to screen for target genes affected by CAMK2D in CAMK2D-overexpressing ARPE-19 cells. And flow cytometry, OCT, and ERG were used to evaluate the regulatory effect of CAMK2D on target genes. Results Bioinformatics analysis found the expression of genes related to Ca2+ signal was significantly reduced in AMD patients. Western blot showed that in a mouse model of dry AMD induced by NaIO3, CAMK2D expression in RPE-Choroid tissue significantly lower than normal mice. In vitro, our results showed that overexpression of CAMK2D in ARPE-19 cells decreased apoptosis induced by NaIO3 and knockdown increased apoptosis. In vivo, CAMK2D overexpression in RPE cells can attenuate the retina degeneration induced by NaIO3 and CAMK2D knockdown aggravated degeneration. The bioinformatics analysis indicated that CAMK2D might affect AMD pathology through complement factor I (CFI). In vitro, knockdown of CFI in ARPE-19 cells increased apoptosis induced by NaIO3. In knockdown CFI ARPE-19 cells, overexpression of CAMK2D reduced the above apoptosis. In mice retina, CFI knockdown can aggravate the retina degeneration induced by NaIO3. In knockdown CFI mice, overexpression of CAMK2D in RPE can attenuate the above retina degeneration. Western blot confirmed that CAMK2D regulated the expression of CFI in mice. Conclusions CAMK2D can attenuate the retinal degeneration induced by NaIO3, which was achieved by regulating the CFI.
Collapse
Affiliation(s)
- Weixing Xu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou City, China
- School of Graduate, Dalian Medical University, Dalian City, China
- Key Laboratory of Age-related Macular Degeneration of Liaoning Province, Jinzhou Medical University, Jinzhou City, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang City, China
| | - Hua Liu
- School of Graduate, Dalian Medical University, Dalian City, China
- Key Laboratory of Age-related Macular Degeneration of Liaoning Province, Jinzhou Medical University, Jinzhou City, China
| |
Collapse
|
2
|
Guo S, Zeng M, Zhang C, Fan Y, Ran M, Song Z. Genome-wide characterization and comparative expression profiling of dual-specificity phosphatase genes in yellow catfish ( Pelteobagrus fulvidraco) after infection with exogenous Aeromonas hydrophila. Front Immunol 2024; 15:1481696. [PMID: 39606227 PMCID: PMC11598348 DOI: 10.3389/fimmu.2024.1481696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Dual-specificity phosphatases (DUSPs) are crucial regulators in many mammals, managing dephosphorylation and inactivation of mitogen-activated protein kinases (MAPKs) and playing essential roles in immune responses. However, their presence and functions in teleosts, like the yellow catfish (Pelteobagrus fulvidraco), remain unexplored. Methods In this study, eight pfDusp genes (pfDusp1-7 and pfDusp10) were identified in yellow catfish. We characterized their molecular features, conserved protein sequences, and chromosomal localization through genome-wide analyses, and we examined their expression patterns in immune responses. Results Our findings reveal two conserved motifs, Leu-Phe-Leu-Gly and Ala-Tyr-Leu-Met, within the DSPc domain of DUSP proteins. The genes were mapped across seven chromosomes without evidence of duplication. Comparative analysis showed high conservation of Dusp genes across vertebrates, with evolutionary analysis suggesting Dusp3 as a potential intermediate form. Dusp transcripts were significantly upregulated in the kidney post-A. hydrophila infection. Discussion These results suggest the involvement of Dusp genes in the immune response of yellow catfish to bacterial pathogens, providing insights into their evolutionary significance and potential applications in aquaculture and molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College
of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Yang YC, Chien Y, Yarmishyn AA, Lim LY, Tsai HY, Kuo WC, Tsai PH, Yang SH, Hong SI, Chen SJ, Hwang DK, Yang YP, Chiou SH. Inhibition of oxidative stress-induced epithelial-mesenchymal transition in retinal pigment epithelial cells of age-related macular degeneration model by suppressing ERK activation. J Adv Res 2024; 60:141-157. [PMID: 37328058 PMCID: PMC11156608 DOI: 10.1016/j.jare.2023.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/05/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
INTRODUCTION Epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is related to the pathogenesis of various retinopathies including age-related macular degeneration (AMD). Oxidative stress is the major factor that induces degeneration of RPE cells associated with the etiology of AMD. OBJECTIVES Sodium iodate (NaIO3) generates intracellular reactive oxygen species (ROS) and is widely used to establish a model of AMD due to the selective induction of retinal degeneration. This study was performed to clarify the effects of multiple NaIO3-stimulated signaling pathways on EMT in RPE cells. METHODS The EMT characteristics in NaIO3-treated human ARPE-19 cells and RPE cells of the mouse eyes were analyzed. Multiple oxidative stress-induced modulators were investigated and the effects of pre-treatment with Ca2+ chelator, extracellular signal-related kinase (ERK) inhibitor, or epidermal growth factor receptor (EGFR) inhibitor on NaIO3-induced EMT were determined. The efficacy of post-treatment with ERK inhibitor on the regulation of NaIO3-induced signaling pathways was dissected and its role in retinal thickness and morphology was evaluated by using histological cross-sections and spectral domain optical coherence tomography. RESULTS We found that NaIO3 induced EMT in ARPE-19 cells and in RPE cells of the mouse eyes. The intracellular ROS, Ca2+, endoplasmic reticulum (ER) stress marker, phospho-ERK, and phospho-EGFR were increased in NaIO3-stimulated cells. Our results showed that pre-treatment with Ca2+ chelator, ERK inhibitor, or EGFR inhibitor decreased NaIO3-induced EMT, interestingly, the inhibition of ERK displayed the most prominent effect. Furthermore, post-treatment with FR180204, a specific ERK inhibitor, reduced intracellular ROS and Ca2+ levels, downregulated phospho-EGFR and ER stress marker, attenuated EMT of RPE cells, and prevented structural disorder of the retina induced by NaIO3. CONCLUSIONS ERK is a crucial regulator of multiple NaIO3-induced signaling pathways that coordinate EMT program in RPE cells. Inhibition of ERK may be a potential therapeutic strategy for the treatment of AMD.
Collapse
Affiliation(s)
- Ya-Chi Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Aliaksandr A Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Lee-Yieng Lim
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Hao-Yu Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wen-Chuan Kuo
- Institute of Biophotonics, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Sheng-Hsien Yang
- Institute of Biophotonics, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shao-I Hong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shih-Jen Chen
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - De-Kuang Hwang
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan; Genomic Research Center, Academia Sinica, Taipei 115024, Taiwan.
| |
Collapse
|
4
|
Tsou SC, Chuang CJ, Wang I, Chen TC, Yeh JH, Hsu CL, Hung YC, Lee MC, Chang YY, Lin HW. Lemon Peel Water Extract: A Novel Material for Retinal Health, Protecting Retinal Pigment Epithelial Cells against Dynamin-Related Protein 1-Mediated Mitochondrial Fission by Blocking ROS-Stimulated Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Pathway. Antioxidants (Basel) 2024; 13:538. [PMID: 38790643 PMCID: PMC11117509 DOI: 10.3390/antiox13050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Previous studies showed that NaIO3 can induce oxidative stress-mediated retinal pigment epithelium (RPE) damage to simulate age-related macular degeneration (AMD). Lemon peel is rich in antioxidants and components that can penetrate the blood-retinal barrier, but their role in retinal oxidative damage remains unexplored. Here, we explore the protection of lemon peel ultrasonic-assisted water extract (LUWE), containing large amounts of flavonoids and polyphenols, against NaIO3-induced retinal degeneration. We initially demonstrated that LUWE, orally administered, prevented retinal distortion and thinning on the inner and outer nuclei layers, downregulating cleaved caspase-3 protein expression in RPE cells in NaIO3-induced mice. The effect of LUWE was achieved through the suppression of apoptosis and the associated proteins, such as cleaved PARP and cleaved caspase-3, as suggested by NaIO3-induced ARPE-19 cell models. This is because LUWE reduced reactive oxygen species-mediated mitochondrial fission via regulating p-Drp-1 and Fis1 expression. We further confirmed that LUWE suppresses the expression of p-MEK-1/2 and p-ERK-1/2 in NaIO3-induced ARPE-19 cells, thereby providing the protection described above, which was confirmed using PD98059 and U0126. These results indicated that LUWE prevents mitochondrial oxidative stress-mediated RPE damage via the MEK/ERK pathway. Elucidation of the molecular mechanism may provide a new protective strategy against retinal degeneration.
Collapse
Affiliation(s)
- Shang-Chun Tsou
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-C.T.); (C.-L.H.)
| | - Chen-Ju Chuang
- Emergency Department, St. Martin De Porres Hospital, Chiayi 60069, Taiwan;
| | - Inga Wang
- Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
| | - Tzu-Chun Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (T.-C.C.); (J.-H.Y.)
| | - Jui-Hsuan Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (T.-C.C.); (J.-H.Y.)
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-C.T.); (C.-L.H.)
| | - Yu-Chien Hung
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Ming-Chung Lee
- Brion Research Institute of Taiwan, New Taipei City 23143, Taiwan;
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
5
|
Chen PC, Tsai TP, Liao YC, Liao YC, Cheng HW, Weng YH, Lin CM, Kao CY, Tai CC, Ruan JW. Intestinal dual-specificity phosphatase 6 regulates the cold-induced gut microbiota remodeling to promote white adipose browning. NPJ Biofilms Microbiomes 2024; 10:22. [PMID: 38480743 PMCID: PMC10937957 DOI: 10.1038/s41522-024-00495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Gut microbiota rearrangement induced by cold temperature is crucial for browning in murine white adipose tissue. This study provides evidence that DUSP6, a host factor, plays a critical role in regulating cold-induced gut microbiota rearrangement. When exposed to cold, the downregulation of intestinal DUSP6 increased the capacity of gut microbiota to produce ursodeoxycholic acid (UDCA). The DUSP6-UDCA axis is essential for driving Lachnospiraceae expansion in the cold microbiota. In mice experiencing cold-room temperature (CR) transitions, prolonged DUSP6 inhibition via the DUSP6 inhibitor (E/Z)-BCI maintained increased cecal UDCA levels and cold-like microbiota networks. By analyzing DUSP6-regulated microbiota dynamics in cold-exposed mice, we identified Marvinbryantia as a genus whose abundance increased in response to cold exposure. When inoculated with human-origin Marvinbryantia formatexigens, germ-free recipient mice exhibited significantly enhanced browning phenotypes in white adipose tissue. Moreover, M. formatexigens secreted the methylated amino acid Nε-methyl-L-lysine, an enriched cecal metabolite in Dusp6 knockout mice that reduces adiposity and ameliorates nonalcoholic steatohepatitis in mice. Our work revealed that host-microbiota coadaptation to cold environments is essential for regulating the browning-promoting gut microbiome.
Collapse
Affiliation(s)
- Pei-Chen Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzu-Pei Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Chu Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Hung-Wei Cheng
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Yi-Hsiu Weng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chiao-Mei Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Cheng-Yuan Kao
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | | | - Jhen-Wei Ruan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Research Center for Medical Laboratory Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
6
|
Wang R, Wang M, Fan YC, Wang WJ, Zhang DH, Andy Li P, Zhang JZ, Jing L. Hyperglycemia exacerbates cerebral ischemia/reperfusion injury by up-regulating autophagy through p53-Sesn2-AMPK pathway. Neurosci Lett 2024; 821:137629. [PMID: 38191089 DOI: 10.1016/j.neulet.2024.137629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Hyperglycemia exacerbates ischemic brain injury by up-regulating autophagy. However, the underlying mechanisms are unknown. This study aims to determine whether hyperglycemia activates autophagy through the p53-Sesn2-AMPK signaling pathway. Rats were subjected to 30-min middle cerebral artery occlusion (MCAO) with reperfusion for 1- and 3-day under normo- and hyperglycemic conditions; and HT22 cells were exposed to oxygen deprivation (OG) or oxygen-glucose deprivation and re-oxygenation (OGD/R) with high glucose. Autophagy inhibitors, 3-MA and ARI, were used both in vivo and in vitro. The results showed that, compared with the normoglycemia group (NG), hyperglycemia (HG) increased infarct volume and apoptosis in penumbra area, worsened neurological deficit, and augmented autophagy. after MCAO followed by 1-day reperfusion. Further, HG promoted the conversion of LC-3I to LC-3II, decreased p62, increased protein levels of aldose reductase, p53, P-p53ser15, Sesn2, AMPK and numbers of autophagosomes and autolysosomes, detected by transmission electron microscopy and mRFP-GFP-LC3 molecular probe, in the cerebral cortex after ischemia and reperfusion injury in animals or in cultured HT22 cells exposed to hypoxia with high glucose content. Finally, experiments with autophagy inhibitors 3-MA and aldose reductase inhibitor (ARI) revealed that while both inhibitors reduced the number of TUNEL positive neurons and reversed the effects of hyperglycemic ischemia on LC3 and p62, only ARI decreased the levels of p53, P-p53ser15. These results suggested that hyperglycemia might induce excessive autophagy to aggravate the brain injury resulted from I/R and that hyperglycemia might activate the p53-Sesn2-AMPK signaling pathway, in addition to the classical PI3K/AKT/mTOR autophagy pathway.
Collapse
Affiliation(s)
- Rui Wang
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Meng Wang
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yu-Cheng Fan
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wen-Jun Wang
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Deng-Hai Zhang
- The Shanghai Health Commission Key Lab of Al-Based Management of Inflammation and Chronic Diseases, the Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Jian-Zhong Zhang
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Li Jing
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
7
|
Sun RX, Zhu HJ, Zhang YR, Wang JN, Wang Y, Cao QC, Ji JD, Jiang C, Yuan ST, Chen X, Liu QH. ALKBH5 causes retinal pigment epithelium anomalies and choroidal neovascularization in age-related macular degeneration via the AKT/mTOR pathway. Cell Rep 2023; 42:112779. [PMID: 37436898 DOI: 10.1016/j.celrep.2023.112779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/24/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023] Open
Abstract
Retinal pigment epithelium (RPE) dysfunction and choroidal neovascularization (CNV) are predominant features of age-related macular degeneration (AMD), with an unclear mechanism. Herein, we show that RNA demethylase α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) is up-regulated in AMD. In RPE cells, ALKBH5 overexpression associates with depolarization, oxidative stress, disturbed autophagy, irregular lipid homeostasis, and elevated VEGF-A secretion, which subsequently promotes proliferation, migration, and tube formation of vascular endothelial cells. Consistently, ALKBH5 overexpression in mice RPE correlates with various pathological phenotypes, including visual impairments, RPE anomalies, choroidal neovascularization (CNV), and interrupted retinal homeostasis. Mechanistically, ALKBH5 regulates retinal features through its demethylation activity. It targets PIK3C2B and regulates the AKT/mTOR signaling pathway with YTHDF2 as the N6-methyladenosine reader. IOX1, an ALKBH5 inhibitor, suppresses hypoxia-induced RPE dysfunction and CNV progression. Collectively, we demonstrate that ALKBH5 induces RPE dysfunction and CNV progression in AMD via PIK3C2B-mediated activation of the AKT/mTOR pathway. Pharmacological inhibitors of ALKBH5, like IOX1, are promising therapeutic options for AMD.
Collapse
Affiliation(s)
- Ru-Xu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Hong-Jing Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Ye-Ran Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jia-Nan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Ying Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qiu-Chen Cao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jiang-Dong Ji
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Chao Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Song-Tao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
8
|
Yang Z, Liu R, Qiu M, Mei H, Hao J, Song T, Zhao K, Zou D, Wang H, Gao M. The roles of ERIANIN in tumor and innate immunity and its' perspectives in immunotherapy. Front Immunol 2023; 14:1170754. [PMID: 37187758 PMCID: PMC10175588 DOI: 10.3389/fimmu.2023.1170754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Traditional Chinese medicine has been used in China for thousands of years. In 2022, the 14th Five-Year Plan for the Development of Traditional Chinese Medicine was released, aiming to enhance traditional Chinese medicine health services and improve policies and systems for high-quality traditional Chinese medicinal development by 2025. ERIANIN, the main component of the traditional Chinese medicine Dendrobium, plays an important role in anti-inflammatory, antiviral, antitumor, antiangiogenic, and other pharmacological effects. ERIANIN has broad-spectrum antitumor effects, and its tumor-suppressive effects have been confirmed in the study of various diseases, such as precancerous lesions of the stomach, gastric cancer, liver cancer, lung cancer, prostate cancer, bladder cancer, breast cancer, cervical cancer, osteosarcoma, colorectal cancer, leukaemia, nasopharyngeal cancer and melanoma through the multiple signaling pathways. Thus, the aim of this review was to systematically summarise the research on ERIANIN with the aim of serving as a reference for future research on this compound and briefly discuss some future perspectives development of ERIANIN in combined immunotherapy.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Ruxue Liu
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minghan Qiu
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Hanwei Mei
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Hao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Teng Song
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Ke Zhao
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Dandan Zou
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Huaqing Wang, ; Ming Gao,
| | - Ming Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Huaqing Wang, ; Ming Gao,
| |
Collapse
|
9
|
Li M, Gao ZL, Zhang QP, Luo AX, Xu WY, Duan TQ, Wen XP, Zhang RQ, Zeng R, Huang JF. Autophagy in glaucoma pathogenesis: Therapeutic potential and future perspectives. Front Cell Dev Biol 2022; 10:1068213. [PMID: 36589756 PMCID: PMC9795220 DOI: 10.3389/fcell.2022.1068213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a common blinding eye disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons, progressive loss of visual field, and optic nerve atrophy. Autophagy plays a pivotal role in the pathophysiology of glaucoma and is closely related to its pathogenesis. Targeting autophagy and blocking the apoptosis of RGCs provides emerging guidance for the treatment of glaucoma. Here, we provide a systematic review of the mechanisms and targets of interventions related to autophagy in glaucoma and discuss the outlook of emerging ideas, techniques, and multidisciplinary combinations to provide a new basis for further research and the prevention of glaucomatous visual impairment.
Collapse
Affiliation(s)
- Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhao-Lin Gao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Quan-Peng Zhang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China,Anatomy Laboratory, Hainan Medical University, Haikou, China
| | - Ai-Xiang Luo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-Ye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Tian-Qi Duan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xu-Peng Wen
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ru-Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China,*Correspondence: Ju-Fang Huang,
| |
Collapse
|
10
|
Liu L, Li C, Yu H, Yang X. A critical review on air pollutant exposure and age-related macular degeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156717. [PMID: 35709989 DOI: 10.1016/j.scitotenv.2022.156717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairments and blindness worldwide in the elderly and its incidence strongly increases with ages. The etiology of AMD is complex and attributed to the genetic modifiers, environmental factors and gene-environment interactions. Recently, the impacts of air pollution on the development of eye diseases have become the new area of focus, and disordered air exposure combined with inadequate health management has caused problems for the eye health, such as dry eye, glaucoma, and retinopathy, while its specific role in the occurrence of AMD is still not well understood. In order to summarize the progress of this research field, we performed a critical review to summarize the epidemiological and mechanism evidence on the association between air pollutants exposure and AMD. This review documented that exposure to air pollutants will accelerate or worsen the morbidity and prevalence of AMD. Air pollutants exposure may change the homeostasis, interfere with the inflammatory response, and take direct action on the lipid metabolism and oxidative stress in the macula. More attention should be given to understanding the impact of ambient air pollution on AMD worldwide.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Cong Li
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|