1
|
Acharya B, Behera A, Moharana S, Prajapati BG, Behera S. Nanoparticle-Mediated Embryotoxicity: Mechanisms of Chemical Toxicity and Implications for Biological Development. Chem Res Toxicol 2025; 38:521-541. [PMID: 40105412 DOI: 10.1021/acs.chemrestox.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nanoparticles, defined by their nanoscale dimensions and unique physicochemical properties, are widely utilized in healthcare, electronics, environmental sciences, and consumer products. However, increasing evidence of their potential embryotoxic effects during pregnancy underscores the need for a molecular-level understanding of their interactions during embryonic development. Nanoparticles such as titanium dioxide, silver, cerium oxide, copper oxide, and quantum dots can cross the placental barrier and interfere with crucial developmental processes. At the molecular level, they disrupt signaling pathways like Wnt and Hedgehog, induce oxidative stress and inflammation, and cause genotoxic effects, all critical during sensitive phases, such as organogenesis. Furthermore, these nanoparticles interact directly with cellular components, including DNA, proteins, and lipids, impairing cellular function and viability. Innovative strategies to mitigate nanoparticle toxicity, such as surface modifications and incorporation of biocompatible coatings, are discussed as potential solutions to reduce adverse molecular interactions. Various laboratory animal models used to investigate nanoparticle-induced embryotoxicity are evaluated for their efficacy and limitations, providing insights into their applicability for understanding these effects. This Account examines the molecular mechanisms by which nanoparticles compromise embryonic development and emphasizes the importance of designing safer nanoparticles to minimize maternal-fetal exposure risks, particularly in biomedical applications.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha 761211, India
| | - Amulyaratna Behera
- School of Pharmacy, DRIEMS University, Tangi, Cuttack, Odisha 754022, India
| | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha 761211, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon, Pathom 73000, Thailand
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401 India
| | | |
Collapse
|
2
|
Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, Cejudo-Ruiz FR, Silva-Pereyra HG, Gorzalski A, Torres-Jardón R. Alzheimer's, Parkinson's, Frontotemporal Lobar Degeneration, and Amyotrophic Lateral Sclerosis Start in Pediatric Ages: Ultrafine Particulate Matter and Industrial Nanoparticles Are Key in the Early-Onset Neurodegeneration: Time to Invest in Preventive Medicine. TOXICS 2025; 13:178. [PMID: 40137505 PMCID: PMC11945920 DOI: 10.3390/toxics13030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Billions of people are exposed to fine particulate matter (PM2.5) levels above the USEPA's annual standard of 9 μg/m3. Common emission sources are anthropogenic, producing complex aerosolized toxins. Ultrafine particulate matter (UFPM) and industrial nanoparticles (NPs) have major detrimental effects on the brain, but the USA does not measure UFPM on a routine basis. This review focuses on the development and progression of common neurodegenerative diseases, as diagnosed through neuropathology, among young residents in Metropolitan Mexico City (MMC). MMC is one of the most polluted megacities in the world, with a population of 22 million residents, many of whom are unaware of the brain effects caused by their polluted atmosphere. Fatal neurodegenerative diseases (such as Alzheimer's and Parkinson's) that begin in childhood in populations living in air polluted environments are preventable. We conclude that UFPM/NPs are capable of disrupting neural homeostasis and give rise to relentless neurodegenerative processes throughout the entire life of the highly exposed population in MMC. The paradigm of reaching old age to have neurodegeneration is no longer supported. Neurodegenerative changes start early in pediatric ages and are irreversible. It is time to invest in preventive medicine.
Collapse
Affiliation(s)
| | | | | | | | - Héctor G. Silva-Pereyra
- Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosi 78216, Mexico;
| | - Andrew Gorzalski
- Nevada Genomics Center, University of Nevada at Reno, Reno, NV 89556, USA;
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
3
|
Kusters MSW, López-Vicente M, Muetzel RL, Binter AC, Petricola S, Tiemeier H, Guxens M. Residential ambient air pollution exposure and the development of white matter microstructure throughout adolescence. ENVIRONMENTAL RESEARCH 2024; 262:119828. [PMID: 39182751 DOI: 10.1016/j.envres.2024.119828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Recent evidence suggests an association of air pollution exposure with brain development, but evidence on white matter microstructure in children is scarce. We investigated how air pollution exposure during pregnancy and childhood impacts longitudinal development of white matter microstructure throughout adolescence. METHODS Our study population consisted of 4108 participants of Generation R, a large population-based birth cohort from Rotterdam, the Netherlands. Residential air pollution exposure to 14 air pollutants during pregnancy and childhood was estimated with land-use regression models. Diffusion tensor images were obtained around age 10 and 14, resulting in a total of 5422 useable scans (n = 3082 for wave 1 and n = 2340 for wave 2; n = 1314 for participants with data on both waves). We calculated whole-brain fractional anisotropy (FA) and mean diffusivity (MD) and performed single- and multi-pollutant analyses using mixed effects models adjusted for life-style and socioeconomic status variables. RESULTS Higher exposure to PM2.5 during pregnancy, and PM10, PM2.5, PM2.5-10, and NOX during childhood was associated with a consistently lower whole-brain FA throughout adolescence (e.g. - 0.07 × 10-2 FA [95%CI -0.12; -0.02] per 1 standard deviation higher PM2.5 exposure during pregnancy). Higher exposure to silicon (Si) in PM2.5 and oxidative potential of PM2.5 during pregnancy, and PM2.5 during childhood was associated with an initial higher MD followed by a faster decrease in MD throughout adolescence (e.g. - 0.02 × 10-5 mm2/s MD [95%CI -0.03; -0.00] per year of age per 1 standard deviation higher Si exposure during pregnancy). Results were comparable when performing the analysis in children with complete data on the outcome for both neuroimaging assessments. CONCLUSIONS Exposure to several pollutants was associated with a consistently lower whole-brain FA throughout adolescence. The association of few pollutants with whole-brain MD at baseline attenuated throughout adolescence. These findings suggest both persistent and age-limited associations of air pollution exposure with white matter microstructure.
Collapse
Affiliation(s)
- Michelle S W Kusters
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Mónica López-Vicente
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Sami Petricola
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Cao R, Guo Y, Liu J, Guo Y, Li X, Xie F, Wang Y, Qin J. Assessment of nanotoxicity in a human placenta-on-a-chip from trophoblast stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117051. [PMID: 39288735 DOI: 10.1016/j.ecoenv.2024.117051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Maternal exposure to nanoparticles during gestation poses potential risks to fetal development. The placenta, serving as a vital interface for maternal-fetal interaction, plays a pivotal role in shielding the fetus from direct nanoparticle exposure. However, the impact of nanoparticles on placental function is still poorly understood, primarily due to the absence of proper human placental models. In this study, we established a placenta-on-a-chip model capable of recapitulating nanoparticle exposure to assess potential nanotoxicity. The model was assembled by coculturing human trophoblast stem cells (hTSCs) and endothelial cells within a dynamic microsystem. hTSCs exhibited progressive differentiation into syncytiotrophoblasts under continuous fluid flow, forming a bilayered trophoblastic epithelium that mimicking both structural and functional aspects of human placental villi. Copper oxide nanoparticles (CuO NPs) were introduced into the trophoblastic side to simulate maternal blood exposure. Our findings revealed that CuO NPs hindered hTSCs differentiation, leading to diminished hormone secretion and impaired glucose transport. Subsequent analysis indicated that CuO NPs disrupted the autophagic flux in trophoblasts and induced apoptosis. Furthermore, the placenta-on-a-chip model exhibited inflammatory responses to CuO NP exposure, including maternal macrophage activation, inflammatory cytokine secretion, and endothelial barrier disruption. Dysfunction of the placental barrier and the ensuing inflammatory cascades may contribute to aberrant fetal development. Overall, our placenta-on-a-chip model offers a promising platform for assessing nanoparticle exposure-related risks and conducting toxicology studies.
Collapse
Affiliation(s)
- Rongkai Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Yaqiong Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yaqing Wang
- University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing, China; University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China; Beijing Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Meza-Figueroa D, Berrellez-Reyes F, Schiavo B, Morton-Bermea O, Gonzalez-Grijalva B, Inguaggiato C, Silva-Campa E. Tracking fine particles in urban and rural environments using honey bees as biosamplers in Mexico. CHEMOSPHERE 2024; 363:142881. [PMID: 39032733 DOI: 10.1016/j.chemosphere.2024.142881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
This work explores the efficiency of honey bees (Apis mellifera) as biosamplers of metal pollution. To understand this, we selected two cities with different urbanization (a medium-sized city and a megacity), and we collected urban dust and honey bees captured during flight. We sampled two villages and a university campus as control areas. The metal content in dust was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Atomic Force Microscopy (AFM) and Scanning electron microscopy (SEM) were used to investigate the shape and size distribution of the particles, and to characterize the semiquantitative chemical composition of particles adhered to honey bee's wings. Principal Component Analysis (PCA) shows a distinctive urban dust geochemical signature for each city, with component 1 defining V-Cr-Ni-Tl-Pt-Pb-Sb as characteristic of Mexico City and Ce-As-Zr for dust from Hermosillo. Particle count using SEM indicates that 69% and 63.4% of the resuspended dust from Hermosillo and Mexico City, respectively, corresponds to PM2.5. Instead, the particle count measured on the honey bee wings from Hermosillo and Mexico City is mainly PM2.5, 91.4% and 88.9%, respectively. The wings from honey bees collected in the villages and the university campus show much lower particle amounts. AFM-histograms confirmed that the particles identified in Mexico City have even smaller sizes (between 60 and 480 nm) than those in Hermosillo (between 400 and 1400 nm). Particles enriched in As, Zr, and Ce mixed with geogenic elements such as Si, Ca, Mg, K, and Na dominate honey bee' wings collected in Hermosillo. In contrast, those particles collected from Mexico City contain V, Cr, Ni, Tl, Pt, Pb, and Sb. Such results agree with the urban dust data. This work shows that honey bees are suitable biosamplers for the characterization of fine dust fractions by microscopy techniques and reflect the urban pollution of the sites.
Collapse
Affiliation(s)
- Diana Meza-Figueroa
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas, Centro, Hermosillo, 83000, Sonora, Mexico.
| | - Francisco Berrellez-Reyes
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas, Centro, Hermosillo, 83000, Sonora, Mexico
| | - Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Ofelia Morton-Bermea
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas, Centro, Hermosillo, 83000, Sonora, Mexico
| | - Claudio Inguaggiato
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana, 3918, Ensenada, Baja California, Mexico
| | - Erika Silva-Campa
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, Centro, Hermosillo, 83000, Sonora, Mexico
| |
Collapse
|
6
|
Calderón-Garcidueñas L, Cejudo-Ruiz FR, Stommel EW, González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Tehuacanero-Cuapa S, Rodríguez-Gómez A, Bautista F, Goguitchaichvili A, Pérez-Guille BE, Soriano-Rosales RE, Koseoglu E, Mukherjee PS. Single-domain magnetic particles with motion behavior under electromagnetic AC and DC fields are a fatal cargo in Metropolitan Mexico City pediatric and young adult early Alzheimer, Parkinson, frontotemporal lobar degeneration and amyotrophic lateral sclerosis and in ALS patients. Front Hum Neurosci 2024; 18:1411849. [PMID: 39246712 PMCID: PMC11377271 DOI: 10.3389/fnhum.2024.1411849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Metropolitan Mexico City (MMC) children and young adults exhibit overlapping Alzheimer and Parkinsons' diseases (AD, PD) and TAR DNA-binding protein 43 pathology with magnetic ultrafine particulate matter (UFPM) and industrial nanoparticles (NPs). We studied magnetophoresis, electron microscopy and energy-dispersive X-ray spectrometry in 203 brain samples from 14 children, 27 adults, and 27 ALS cases/controls. Saturation isothermal remanent magnetization (SIRM), capturing magnetically unstable FeNPs ~ 20nm, was higher in caudate, thalamus, hippocampus, putamen, and motor regions with subcortical vs. cortical higher SIRM in MMC ≤ 40y. Motion behavior was associated with magnetic exposures 25-100 mT and children exhibited IRM saturated curves at 50-300 mT associated to change in NPs position and/or orientation in situ. Targeted magnetic profiles moving under AC/AD magnetic fields could distinguish ALS vs. controls. Motor neuron magnetic NPs accumulation potentially interferes with action potentials, ion channels, nuclear pores and enhances the membrane insertion process when coated with lipopolysaccharides. TEM and EDX showed 7-20 nm NP Fe, Ti, Co, Ni, V, Hg, W, Al, Zn, Ag, Si, S, Br, Ce, La, and Pr in abnormal neural and vascular organelles. Brain accumulation of magnetic unstable particles start in childhood and cytotoxic, hyperthermia, free radical formation, and NPs motion associated to 30-50 μT (DC magnetic fields) are critical given ubiquitous electric and magnetic fields exposures could induce motion behavior and neural damage. Magnetic UFPM/NPs are a fatal brain cargo in children's brains, and a preventable AD, PD, FTLD, ALS environmental threat. Billions of people are at risk. We are clearly poisoning ourselves.
Collapse
Affiliation(s)
| | | | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | | | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Francisco Bautista
- Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Morelia, Michoacan, Mexico
| | - Avto Goguitchaichvili
- Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Morelia, Michoacan, Mexico
| | | | | | - Emel Koseoglu
- Department of Neurology, Erciyes Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
7
|
Ho SJ, Chaput D, Sinkey RG, Garces AH, New EP, Okuka M, Sang P, Arlier S, Semerci N, Steffensen TS, Rutherford TJ, Alsina AE, Cai J, Anderson ML, Magness RR, Uversky VN, Cummings DAT, Tsibris JCM. Proteomic studies of VEGFR2 in human placentas reveal protein associations with preeclampsia, diabetes, gravidity, and labor. Cell Commun Signal 2024; 22:221. [PMID: 38594674 PMCID: PMC11003095 DOI: 10.1186/s12964-024-01567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/09/2024] [Indexed: 04/11/2024] Open
Abstract
VEGFR2 (Vascular endothelial growth factor receptor 2) is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX (Double minute 4 protein) and PICALM (Phosphatidylinositol-binding clathrin assembly protein). Subsequently, the oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), tissue-resident macrophages of the placenta. MDMX, PICALM, and V1aR were located on EC plasma membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained by univariable and multivariable regression analyses associating preeclampsia with lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX, PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before the onset of labor. We found select associations between higher MDMX, PICALM, OT-R protein levels and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations only between PICALM-OT-R (p < 2.7 × 10-8), PICALM-V1aR (p < 0.006), and OT-R-V1aR (p < 0.001). These results offer for exploration new partnerships in metabolic networks, tissue-resident immunity, and labor, notably for HC that predominantly express MDMX.
Collapse
Grants
- Department of Obstetrics and Gynecology, University of South Florida
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida
- Lisa Muma Weitz Microscopy Laboratory, University of South Florida
- Department of Chemistry, University of South Florida
- Tampa General Hospital, Tampa, Florida
- Teasley Foundation
- Department of Molecular Medicine, University of South Florida
- Department of Biology, University of Florida
- Emerging Pathogens Institute, University of Florida
Collapse
Affiliation(s)
- Shannon J Ho
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Rachel G Sinkey
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Amanda H Garces
- Lisa Muma Weitz Microscopy Laboratory, University of South Florida, Tampa, FL, USA
| | - Erika P New
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Maja Okuka
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Peng Sang
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | | | - Thomas J Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
- Cancer Center, Tampa General Hospital, Tampa, FL, USA
| | - Angel E Alsina
- Transplant Surgery Center, Tampa General Hospital, Tampa, FL, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Matthew L Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
- Cancer Center, Tampa General Hospital, Tampa, FL, USA
| | - Ronald R Magness
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Derek A T Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - John C M Tsibris
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA.
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
8
|
Jäntti H, Jonk S, Gómez Budia M, Ohtonen S, Fagerlund I, Fazaludeen MF, Aakko-Saksa P, Pebay A, Lehtonen Š, Koistinaho J, Kanninen KM, Jalava PI, Malm T, Korhonen P. Particulate matter from car exhaust alters function of human iPSC-derived microglia. Part Fibre Toxicol 2024; 21:6. [PMID: 38360668 PMCID: PMC10870637 DOI: 10.1186/s12989-024-00564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Air pollution is recognized as an emerging environmental risk factor for neurological diseases. Large-scale epidemiological studies associate traffic-related particulate matter (PM) with impaired cognitive functions and increased incidence of neurodegenerative diseases such as Alzheimer's disease. Inhaled components of PM may directly invade the brain via the olfactory route, or act through peripheral system responses resulting in inflammation and oxidative stress in the brain. Microglia are the immune cells of the brain implicated in the progression of neurodegenerative diseases. However, it remains unknown how PM affects live human microglia. RESULTS Here we show that two different PMs derived from exhausts of cars running on EN590 diesel or compressed natural gas (CNG) alter the function of human microglia-like cells in vitro. We exposed human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGLs) to traffic related PMs and explored their functional responses. Lower concentrations of PMs ranging between 10 and 100 µg ml-1 increased microglial survival whereas higher concentrations became toxic over time. Both tested pollutants impaired microglial phagocytosis and increased secretion of a few proinflammatory cytokines with distinct patterns, compared to lipopolysaccharide induced responses. iMGLs showed pollutant dependent responses to production of reactive oxygen species (ROS) with CNG inducing and EN590 reducing ROS production. CONCLUSIONS Our study indicates that traffic-related air pollutants alter the function of human microglia and warrant further studies to determine whether these changes contribute to adverse effects in the brain and on cognition over time. This study demonstrates human iPSC-microglia as a valuable tool to study functional microglial responses to environmental agents.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steffi Jonk
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mireia Gómez Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilkka Fagerlund
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | - Alice Pebay
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
9
|
Iribarne-Durán LM, Castillero-Rosales I, Peinado FM, Artacho-Cordón F, Molina-Molina JM, Medianero E, Nicolás-Delgado SI, Sánchez-Pinzón L, Núñez-Samudio V, Vela-Soria F, Olea N, Alvarado-González NE. Placental concentrations of xenoestrogenic organochlorine pesticides and polychlorinated biphenyls and assessment of their xenoestrogenicity in the PA-MAMI mother-child cohort. ENVIRONMENTAL RESEARCH 2024; 241:117622. [PMID: 37977273 DOI: 10.1016/j.envres.2023.117622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCB), they have contributed to the exposure of women to persistent organic pollutants (POPs). These compounds can cross the placental barrier and interfere with the hormonal system of newborns. AIM To determine concentrations of OCPs and PCBs and their xenoestrogenic activity in placentas of women from the PA-MAMI cohort of Panama. METHODS Thirty-nine placenta samples from women in the Azuero peninsula (Panama) were analyzed. Five OCPs [p-p'-dichlorodiphenyldichloroethylene (p-p'-DDE), beta-hexachlorohexane (β-HCH), γ-hexachlorohexane (lindane), hexachlorobenzene (HCB) and mirex] and three PCB congeners (PCB-138, PCB-153 and PCB-180) were quantified in placenta extracts. The xenoestrogenic activity of extracts was assessed with the E-Screen bioassay to estimate the total effective xenoestrogen burden (TEXB). RESULTS All placental samples were positive for at least three POP residues and >70% for at least six. The frequencies of quantified OCPs ranged from 100% for p,p'-DDE and HCB to 30.8% for β-HCH. The highest median concentration was for lindane (380.0 pg/g placenta), followed by p,p'-DDE (280.0 pg/g placenta), and HCB (90.0 pg/g placenta). Exposure to p,p'-DDE was associated with greater meat consumption, suggesting that animal fat is a major source of exposure to DDT metabolites. The frequency of detected PCBs ranged between 70 and 90%; the highest median concentration was for PCB 138 (17.0 pg/g placenta), followed by PCB 153 (16.0 pg/g placenta). All placentas were positive in the estrogenicity bioassay with a median TEXB-α of 0.91 pM Eeq/g of placenta. Exposure to lindane was positively associated with the xenoestrogenicity of TEXB- α, whereas this association was negative in the case of exposure to PCB 153. CONCLUSIONS To our best knowledge, this study contributes the first evidence on the presence of POPs and xenoestrogenic burden in placentas from Latin-American women. Given concerns about the consequences of prenatal exposure to these compounds on children's health, preventive measures are highly recommended to eliminate or minimize the risk of OCP exposure during pregnancy.
Collapse
Affiliation(s)
- L M Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012, Granada, Spain.
| | | | - F M Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012, Granada, Spain
| | - F Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E- 28029, Madrid, Spain; Departamento de Radiología y Medicina Física, Universidad de Granada, E- 18016, Granada, Spain
| | - J M Molina-Molina
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012, Granada, Spain
| | - E Medianero
- Departamento de Ciencias Ambientales, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama; Secretaria Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panama
| | - S I Nicolás-Delgado
- Departamento de Ginecología y Obstetricia, Hospital Joaquín Pablo Franco Sayas, Ministerio de Salud, Los Santos, Panama
| | - L Sánchez-Pinzón
- Clínica de Cesación de Tabaco y Clínica del Empleado Local, Región de Salud de Azuero, Ministerio de Salud, Los Santos, Panama
| | - V Núñez-Samudio
- Departamento de Salud Pública, Sección de Epidemiología, Región de Salud de Herrera, Ministerio de Salud, Panama; Instituto de Ciencias Médicas, Las Tablas, Los Santos, Panama
| | - F Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012, Granada, Spain
| | - N Olea
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E- 28029, Madrid, Spain; Departamento de Radiología y Medicina Física, Universidad de Granada, E- 18016, Granada, Spain; Unidad de Medicina Nuclear, Hospital Universitario San Cecilio, E- 18016, Granada, Spain
| | - N E Alvarado-González
- Instituto Especializado de Análisis (IEA), Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Panama
| |
Collapse
|
10
|
Calderón-Garcidueñas L, Stommel EW, Torres-Jardón R, Hernández-Luna J, Aiello-Mora M, González-Maciel A, Reynoso-Robles R, Pérez-Guillé B, Silva-Pereyra HG, Tehuacanero-Cuapa S, Rodríguez-Gómez A, Lachmann I, Galaz-Montoya C, Doty RL, Roy A, Mukherjee PS. Alzheimer and Parkinson diseases, frontotemporal lobar degeneration and amyotrophic lateral sclerosis overlapping neuropathology start in the first two decades of life in pollution exposed urbanites and brain ultrafine particulate matter and industrial nanoparticles, including Fe, Ti, Al, V, Ni, Hg, Co, Cu, Zn, Ag, Pt, Ce, La, Pr and W are key players. Metropolitan Mexico City health crisis is in progress. Front Hum Neurosci 2024; 17:1297467. [PMID: 38283093 PMCID: PMC10811680 DOI: 10.3389/fnhum.2023.1297467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024] Open
Abstract
The neuropathological hallmarks of Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS) are present in urban children exposed to fine particulate matter (PM2.5), combustion and friction ultrafine PM (UFPM), and industrial nanoparticles (NPs). Metropolitan Mexico City (MMC) forensic autopsies strongly suggest that anthropogenic UFPM and industrial NPs reach the brain through the nasal/olfactory, lung, gastrointestinal tract, skin, and placental barriers. Diesel-heavy unregulated vehicles are a key UFPM source for 21.8 million MMC residents. We found that hyperphosphorylated tau, beta amyloid1-42, α-synuclein, and TAR DNA-binding protein-43 were associated with NPs in 186 forensic autopsies (mean age 27.45 ± 11.89 years). The neurovascular unit is an early NPs anatomical target, and the first two decades of life are critical: 100% of 57 children aged 14.8 ± 5.2 years had AD pathology; 25 (43.9%) AD+TDP-43; 11 (19.3%) AD + PD + TDP-43; and 2 (3.56%) AD +PD. Fe, Ti, Hg, Ni, Co, Cu, Zn, Cd, Al, Mg, Ag, Ce, La, Pr, W, Ca, Cl, K, Si, S, Na, and C NPs are seen in frontal and temporal lobes, olfactory bulb, caudate, substantia nigra, locus coeruleus, medulla, cerebellum, and/or motor cortical and spinal regions. Endothelial, neuronal, and glial damages are extensive, with NPs in mitochondria, rough endoplasmic reticulum, the Golgi apparatus, and lysosomes. Autophagy, cell and nuclear membrane damage, disruption of nuclear pores and heterochromatin, and cell death are present. Metals associated with abrasion and deterioration of automobile catalysts and electronic waste and rare earth elements, i.e., lanthanum, cerium, and praseodymium, are entering young brains. Exposure to environmental UFPM and industrial NPs in the first two decades of life are prime candidates for initiating the early stages of fatal neurodegenerative diseases. MMC children and young adults-surrogates for children in polluted areas around the world-exhibit early AD, PD, FTLD, and ALS neuropathological hallmarks forecasting serious health, social, economic, academic, and judicial societal detrimental impact. Neurodegeneration prevention should be a public health priority as the problem of human exposure to particle pollution is solvable. We are knowledgeable of the main emission sources and the technological options to control them. What are we waiting for?
Collapse
Affiliation(s)
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Mario Aiello-Mora
- Otorrinolaryngology Department, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | - Richard L. Doty
- Perelman School of Medicine, Smell and Taste Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Anik Roy
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| | - Partha S. Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
11
|
Calderón-Garcidueñas L, Ayala A, Mukherjee PS. 2024 United States Elections: Air Pollution, Neurodegeneration, Neuropsychiatric, and Neurodevelopmental Disorders. Who Cares? J Alzheimers Dis 2024; 98:1277-1282. [PMID: 38517792 DOI: 10.3233/jad-231373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Air pollution exposures ought to be of significant interest for the United States (US) public as health issues will play a role in the 2024 elections. Citizens are not aware of the harmful brain impact of exposures to ubiquitous anthropogenic combustion emissions and friction-derived nanoparticles, industrial nanoplastics, the growing risk of wildfires, and the smoke plumes of soot. Ample consideration of pediatric and early adulthood hallmarks of Alzheimer's disease, Parkinson's disease, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis and associations with neuropsychiatric and neurodevelopmental disorders in the process of setting, reviewing, and implementing standards for particulate matter (PM)2.5, ultrafine PM, and industrial nanoparticles must be of interest to US citizens.
Collapse
Affiliation(s)
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA, USA
- West Virginia University, Morgantown, WV, USA
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
12
|
Jagtap A, Jagtap B, Jagtap R, Lamture Y, Gomase K. Effects of Prenatal Stress on Behavior, Cognition, and Psychopathology: A Comprehensive Review. Cureus 2023; 15:e47044. [PMID: 38022302 PMCID: PMC10643752 DOI: 10.7759/cureus.47044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Prenatal stress is increasingly recognized as a significant factor impacting an individual's life from the beginning. This comprehensive review explores the intricate relationship between prenatal stress and its effects on behaviour, cognition, and psychopathology. Key findings reveal that prenatal stress can lead to a wide range of adverse outcomes in offspring, including neurodevelopmental disorders, emotional dysregulation, cognitive deficits, mood disorders, and an increased risk of psychopathological conditions. These effects' mechanisms involve epigenetic modifications, hypothalamic-pituitary-adrenal (HPA) axis dysregulation, neurodevelopmental alterations, inflammatory processes, and changes in brain structure and function. Moreover, moderating factors such as maternal stress levels, maternal mental health, socioeconomic status, social support, and early-life adversity can significantly influence the impact of prenatal stress. The review also discusses intervention and prevention strategies, emphasizing the importance of prenatal stress reduction programs, maternal mental health support, nutritional interventions, and targeted early interventions for at-risk populations. These findings have substantial implications for public health and clinical practice, highlighting the need for a holistic approach to prenatal care that prioritizes maternal well-being and mitigates the lasting effects of prenatal stress. Addressing this critical issue promises healthier generations and stronger communities in the future.
Collapse
Affiliation(s)
- Aniket Jagtap
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Balasaheb Jagtap
- Medical Intern, Annasaheb Chaudaman Patil Memorial Medical College, Dhule, IND
| | - Rajlaxmi Jagtap
- Medical Student, Bharti Vidyapeeth Deemed University, Sangali, IND
| | - Yashwant Lamture
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, wardha, IND
| | - Kavita Gomase
- Obstetric and Gynecological Nursing, Srimati Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
13
|
Carter SA, Rahman MM, Lin JC, Chow T, Yu X, Martinez MP, Levitt P, Chen Z, Chen JC, Eckel SP, Schwartz J, Lurmann FW, Kleeman MJ, McConnell R, Xiang AH. Maternal exposure to aircraft emitted ultrafine particles during pregnancy and likelihood of ASD in children. ENVIRONMENT INTERNATIONAL 2023; 178:108061. [PMID: 37454628 PMCID: PMC10472925 DOI: 10.1016/j.envint.2023.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND There is increasing evidence for adverse health effects associated with aircraft-emitted particulate matter (PM) exposures, which are largely in the ultrafine (PM0.1) size fraction, but no previous study has examined neurodevelopmental outcomes. OBJECTIVE To assess associations between maternal exposure to aircraft ultrafine particles (UFP) during pregnancy and offspring autism spectrum disorder (ASD) diagnosis. METHODS This large, representative cohort study included 370,723 singletons born in a single healthcare system. Demographic data, maternal health information, and child's ASD diagnosis by age 5 were extracted from electronic medical records. Aircraft exposure estimates for PM0.1 were generated by the University of California Davis/California Institute of Technology Source Oriented Chemical Transport model. Cox proportional hazard models were used to assess associations between maternal exposure to aircraft PM0·1 in pregnancy and ASD diagnosis, controlling for covariates. RESULTS Over the course of follow-up, 4,554 children (1.4 %) were diagnosed with ASD. Increased risk of ASD was associated with maternal exposure to aircraft PM0.1 [hazard ratio, HR: 1.02, (95 % confidence interval (CI): 1.01-1.03) per IQR = 0.02 µg/m3 increase during pregnancy. Associations were robust to adjustment for total PM0.1 and fine particulate matter (PM2.5), near-roadway air pollution, and other covariates. Noise adjustment modestly attenuated estimates of UFP effects, which remained statistically significant. DISCUSSION The results strengthen the emerging evidence that maternal particulate matter exposure during pregnancy is associated with offspring ASD diagnosis and identify aircraft-derived PM0.1 as novel targets for further study and potential regulation.
Collapse
Affiliation(s)
- Sarah A Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Md Mostafijur Rahman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jane C Lin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Xin Yu
- Spatial Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, Keck School of Medicine, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA, USA
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Calderón-Garcidueñas L, Hernández-Luna J, Aiello-Mora M, Brito-Aguilar R, Evelson PA, Villarreal-Ríos R, Torres-Jardón R, Ayala A, Mukherjee PS. APOE Peripheral and Brain Impact: APOE4 Carriers Accelerate Their Alzheimer Continuum and Have a High Risk of Suicide in PM 2.5 Polluted Cities. Biomolecules 2023; 13:927. [PMID: 37371506 DOI: 10.3390/biom13060927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This Review emphasizes the impact of APOE4-the most significant genetic risk factor for Alzheimer's disease (AD)-on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles' effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden-as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs-in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aβ42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer's Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aβ42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer's Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Universidad del Valle de México, Mexico City 14370, Mexico
| | | | - Mario Aiello-Mora
- Otorrinolaryngology Department, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | | | - Pablo A Evelson
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina
| | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA 95814, USA
- West Virginia University, Morgantown, WV 26506, USA
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
15
|
Calderón-Garcidueñas L, Ayala A. Fine particle air pollution and lung cancer risk: Extending the long list of health risks. Cell 2023; 186:2285-2287. [PMID: 37236154 DOI: 10.1016/j.cell.2023.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Exposures to fine particulate matter (PM2.5) concentrations above the WHO guidelines affect 99% of the world population. In a recent issue of Nature, Hill et al. dissect the tumor promotion paradigm orchestrated by PM2.5 inhalation exposures in lung carcinogenesis, supporting the hypothesis that PM2.5 can increase your risk of lung carcinoma without ever smoking.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA; Universidad del Valle de México, Mexico City 14370, Mexico.
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA 95814, USA; West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
16
|
Calderón-Garcidueñas L, Kulesza R, Greenough GP, García-Rojas E, Revueltas-Ficachi P, Rico-Villanueva A, Flores-Vázquez JO, Brito-Aguilar R, Ramírez-Sánchez S, Vacaseydel-Aceves N, Cortes-Flores AP, Mansour Y, Torres-Jardón R, Villarreal-Ríos R, Koseoglu E, Stommel EW, Mukherjee PS. Fall Risk, Sleep Behavior, and Sleep-Related Movement Disorders in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2023; 91:847-862. [PMID: 36502327 DOI: 10.3233/jad-220850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Quadruple aberrant hyperphosphorylated tau, amyloid-β, α-synuclein, and TDP-43 pathology had been documented in 202/203 forensic autopsies in Metropolitan Mexico City ≤40-year-olds with high exposures to ultrafine particulate matter and engineered nanoparticles. Cognition deficits, gait, equilibrium abnormalities, and MRI frontal, temporal, caudate, and cerebellar atrophy are documented in young adults. OBJECTIVE This study aimed to identify an association between falls, probable Rapid Eye Movement Sleep Behavior Disorder (pRBD), restless leg syndrome (RLS), and insomnia in 2,466 Mexican, college-educated volunteers (32.5±12.4 years). METHODS The anonymous, online study applied the pRBD and RLS Single-Questions and self-reported night-time sleep duration, excessive daytime sleepiness, insomnia, and falls. RESULTS Fall risk was strongly associated with pRBD and RLS. Subjects who fell at least once in the last year have an OR = 1.8137 [1.5352, 2.1426] of answering yes to pRBD and/or RLS questions, documented in 29% and 24% of volunteers, respectively. Subjects fell mostly outdoors (12:01 pm to 6:00 pm), 43% complained of early wake up hours, and 35% complained of sleep onset insomnia (EOI). EOI individuals have an OR of 2.5971 [2.1408, 3.1506] of answering yes to the RLS question. CONCLUSION There is a robust association between falls, pRBD, and RLS, strongly suggesting misfolded proteinopathies involving critical brainstem arousal and motor hubs might play a crucial role. Nanoparticles are likely a significant risk for falls, sleep disorders, insomnia, and neurodegenerative lethal diseases, thus characterizing air particulate pollutants' chemical composition, emission sources, and cumulative exposure concentrations are strongly recommended.
Collapse
Affiliation(s)
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Glen P Greenough
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | | | | | | | | | | | | | | | | | - Yusra Mansour
- Department of Otolaryngology -Head and Neck Surgery, Henry Ford Macomb Hospital, Clinton Township, MI, USA
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional, Autónoma de México, México
| | | | - Emel Koseoglu
- Neurology Department, Erciyes University, Kayseri, Turkey
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
17
|
Calderón-Garcidueñas L, Torres-Jardón R, Greenough GP, Kulesza R, González-Maciel A, Reynoso-Robles R, García-Alonso G, Chávez-Franco DA, García-Rojas E, Brito-Aguilar R, Silva-Pereyra HG, Ayala A, Stommel EW, Mukherjee PS. Sleep matters: Neurodegeneration spectrum heterogeneity, combustion and friction ultrafine particles, industrial nanoparticle pollution, and sleep disorders-Denial is not an option. Front Neurol 2023; 14:1117695. [PMID: 36923490 PMCID: PMC10010440 DOI: 10.3389/fneur.2023.1117695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
Sustained exposures to ubiquitous outdoor/indoor fine particulate matter (PM2.5), including combustion and friction ultrafine PM (UFPM) and industrial nanoparticles (NPs) starting in utero, are linked to early pediatric and young adulthood aberrant neural protein accumulation, including hyperphosphorylated tau (p-tau), beta-amyloid (Aβ1 - 42), α-synuclein (α syn) and TAR DNA-binding protein 43 (TDP-43), hallmarks of Alzheimer's (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). UFPM from anthropogenic and natural sources and NPs enter the brain through the nasal/olfactory pathway, lung, gastrointestinal (GI) tract, skin, and placental barriers. On a global scale, the most important sources of outdoor UFPM are motor traffic emissions. This study focuses on the neuropathology heterogeneity and overlap of AD, PD, FTLD, and ALS in older adults, their similarities with the neuropathology of young, highly exposed urbanites, and their strong link with sleep disorders. Critical information includes how this UFPM and NPs cross all biological barriers, interact with brain soluble proteins and key organelles, and result in the oxidative, endoplasmic reticulum, and mitochondrial stress, neuroinflammation, DNA damage, protein aggregation and misfolding, and faulty complex protein quality control. The brain toxicity of UFPM and NPs makes them powerful candidates for early development and progression of fatal common neurodegenerative diseases, all having sleep disturbances. A detailed residential history, proximity to high-traffic roads, occupational histories, exposures to high-emission sources (i.e., factories, burning pits, forest fires, and airports), indoor PM sources (tobacco, wood burning in winter, cooking fumes, and microplastics in house dust), and consumption of industrial NPs, along with neurocognitive and neuropsychiatric histories, are critical. Environmental pollution is a ubiquitous, early, and cumulative risk factor for neurodegeneration and sleep disorders. Prevention of deadly neurological diseases associated with air pollution should be a public health priority.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT, United States.,Universidad del Valle de México, Mexico City, Mexico
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Glen P Greenough
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Randy Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | | | | | | | | | | | | | - Héctor G Silva-Pereyra
- Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosi, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA, United States.,Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
18
|
Armas FV, D’Angiulli A. Neuroinflammation and Neurodegeneration of the Central Nervous System from Air Pollutants: A Scoping Review. TOXICS 2022; 10:666. [PMID: 36355957 PMCID: PMC9698785 DOI: 10.3390/toxics10110666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In this scoping review, we provide a selective mapping of the global literature on the effects of air pollution on the life-span development of the central nervous system. Our synthesis first defines developmental neurotoxicants and the model effects of particulate matter. We then discuss air pollution as a test bench for neurotoxicants, including animal models, the framework of systemic inflammation in all affected organs of the body, and the cascade effects on the developing brain, with the most prevalent neurological structural and functional outcomes. Specifically, we focus on evidence on magnetic resonance imaging and neurodegenerative diseases, and the links between neuronal apoptosis and inflammation. There is evidence of a developmental continuity of outcomes and effects that can be observed from utero to aging due to severe or significant exposure to neurotoxicants. These substances alter the normal trajectory of neurological aging in a propulsive way towards a significantly higher rate of acceleration than what is expected if our atmosphere were less polluted. The major aggravating role of this neurodegenerative process is linked with the complex action of neuroinflammation. However, most recent evidence learned from research on the effects of COVID-19 lockdowns around the world suggests that a short-term drastic improvement in the air we breathe is still possible. Moreover, the study of mitohormesis and vitagenes is an emerging area of research interest in anti-inflammatory and antidegenerative therapeutics, which may have enormous promise in combatting the deleterious effects of air pollution through pharmacological and dietary interventions.
Collapse
Affiliation(s)
| | - Amedeo D’Angiulli
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
19
|
Bongaerts E, Lecante LL, Bové H, Roeffaers MBJ, Ameloot M, Fowler PA, Nawrot TS. Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies. Lancet Planet Health 2022; 6:e804-e811. [PMID: 36208643 PMCID: PMC9553674 DOI: 10.1016/s2542-5196(22)00200-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Maternal exposure to particulate air pollution during pregnancy has been linked to multiple adverse birth outcomes causing burden of disease later in the child's life. To date, there is a paucity of data on whether or not ambient particles can both reach and cross the human placenta to exert direct effects on fetal organ systems during gestation. METHODS In this analysis, we used maternal-perinatal and fetal samples collected within the framework of two independent studies: the ENVIRONAGE (Environmental Influences on Ageing in Early Life) birth cohort of mothers giving birth at the East-Limburg Hospital in Genk, Belgium, and the SAFeR (Scottish Advanced Fetal Research) cohort of terminated, normally progressing pregnancies among women aged 16 years and older in Aberdeen and the Grampian region, UK. From the ENVIRONAGE study, we included 60 randomly selected mother-neonate pairs, excluding all mothers who reported that they ever smoked. From the SAFeR study, we included 36 fetuses of gestational age 7-20 weeks with cotinine concentrations indicative of non-smoking status. We used white light generation under femtosecond pulsed illumination to detect black carbon particles in samples collected at the maternal-fetal interface. We did appropriate validation experiments of all samples to confirm the carbonaceous nature of the identified particles. FINDINGS We found evidence of the presence of black carbon particles in cord blood, confirming the ability of these particles to cross the placenta and enter the fetal circulation system. We also found a strong correlation (r ≥0·50; p<0·0001) between the maternal-perinatal particle load (in maternal blood [n=60], term placenta [n=60], and cord blood [n=60]) and residential ambient black carbon exposure during pregnancy. Additionally, we found the presence of black carbon particles in first and second trimester tissues (fetal liver [n=36], lung [n=36], and brain [n=14]) of electively terminated and normally progressing pregnancies from an independent study. INTERPRETATION We found that maternally inhaled carbonaceous air pollution particles can cross the placenta and then translocate into human fetal organs during gestation. These findings are especially concerning because this window of exposure is key to organ development. Further studies are needed to elucidate the mechanisms of particle translocation. FUNDING European Research Council, Flemish Scientific Research Foundation, Kom op Tegen Kanker, UK Medical Research Council, and EU Horizon 2020.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Paul A Fowler
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Calderón-Garcidueñas L, Stommel EW, Lachmann I, Waniek K, Chao CK, González-Maciel A, García-Rojas E, Torres-Jardón R, Delgado-Chávez R, Mukherjee PS. TDP-43 CSF Concentrations Increase Exponentially with Age in Metropolitan Mexico City Young Urbanites Highly Exposed to PM 2.5 and Ultrafine Particles and Historically Showing Alzheimer and Parkinson's Hallmarks. Brain TDP-43 Pathology in MMC Residents Is Associated with High Cisternal CSF TDP-43 Concentrations. TOXICS 2022; 10:559. [PMID: 36287840 PMCID: PMC9611594 DOI: 10.3390/toxics10100559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Environmental exposures to fine particulate matter (PM2.5) and ultrafine particle matter (UFPM) are associated with overlapping Alzheimer’s, Parkinson’s and TAR DNA-binding protein 43 (TDP-43) hallmark protein pathologies in young Metropolitan Mexico City (MMC) urbanites. We measured CSF concentrations of TDP-43 in 194 urban residents, including 92 MMC children aged 10.2 ± 4.7 y exposed to PM2.5 levels above the USEPA annual standard and to high UFPM and 26 low pollution controls (11.5 ± 4.4 y); 43 MMC adults (42.3 ± 15.9 y) and 14 low pollution adult controls (33.1 ± 12.0 y); and 19 amyotrophic lateral sclerosis (ALS) patients (52.4 ± 14.1 y). TDP-43 neuropathology and cisternal CSF data from 20 subjects—15 MMC (41.1 ± 18.9 y) and 5 low pollution controls (46 ± 16.01 y)—were included. CSF TDP-43 exponentially increased with age (p < 0.0001) and it was higher for MMC residents. TDP-43 cisternal CSF levels of 572 ± 208 pg/mL in 6/15 MMC autopsy cases forecasted TDP-43 in the olfactory bulb, medulla and pons, reticular formation and motor nuclei neurons. A 16 y old with TDP-43 cisternal levels of 1030 pg/mL exhibited TDP-43 pathology and all 15 MMC autopsy cases exhibited AD and PD hallmarks. Overlapping TDP-43, AD and PD pathologies start in childhood in urbanites with high exposures to PM2.5 and UFPM. Early, sustained exposures to PM air pollution represent a high risk for developing brains and MMC UFPM emissions sources ought to be clearly identified, regulated, monitored and controlled. Prevention of deadly neurologic diseases associated with air pollution ought to be a public health priority and preventive medicine is key.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Universidad del Valle de México, Mexico City 14370, Mexico
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | - Chih-Kai Chao
- College of Health, The University of Montana, Missoula, MT 59812, USA
| | | | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Partha S. Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
21
|
Nanosafety: An Evolving Concept to Bring the Safest Possible Nanomaterials to Society and Environment. NANOMATERIALS 2022; 12:nano12111810. [PMID: 35683670 PMCID: PMC9181910 DOI: 10.3390/nano12111810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
The use of nanomaterials has been increasing in recent times, and they are widely used in industries such as cosmetics, drugs, food, water treatment, and agriculture. The rapid development of new nanomaterials demands a set of approaches to evaluate the potential toxicity and risks related to them. In this regard, nanosafety has been using and adapting already existing methods (toxicological approach), but the unique characteristics of nanomaterials demand new approaches (nanotoxicology) to fully understand the potential toxicity, immunotoxicity, and (epi)genotoxicity. In addition, new technologies, such as organs-on-chips and sophisticated sensors, are under development and/or adaptation. All the information generated is used to develop new in silico approaches trying to predict the potential effects of newly developed materials. The overall evaluation of nanomaterials from their production to their final disposal chain is completed using the life cycle assessment (LCA), which is becoming an important element of nanosafety considering sustainability and environmental impact. In this review, we give an overview of all these elements of nanosafety.
Collapse
|
22
|
Calderón-Garcidueñas L. Common Fatal Neurodegenerative Diseases Revisited: Beyond Age, Comorbidities, and Devastating Terminal Neuropathology There Is Hope With Prevention. Front Neurol 2022; 13:901447. [PMID: 35645968 PMCID: PMC9130656 DOI: 10.3389/fneur.2022.901447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT, United States
- Universidad del Valle de México, Ciudad de México, Mexico
- *Correspondence: Lilian Calderón-Garcidueñas
| |
Collapse
|
23
|
Environmentally Toxic Solid Nanoparticles in Noradrenergic and Dopaminergic Nuclei and Cerebellum of Metropolitan Mexico City Children and Young Adults with Neural Quadruple Misfolded Protein Pathologies and High Exposures to Nano Particulate Matter. TOXICS 2022; 10:toxics10040164. [PMID: 35448425 PMCID: PMC9028025 DOI: 10.3390/toxics10040164] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Quadruple aberrant hyperphosphorylated tau, beta-amyloid, α-synuclein and TDP-43 neuropathology and metal solid nanoparticles (NPs) are documented in the brains of children and young adults exposed to Metropolitan Mexico City (MMC) pollution. We investigated environmental NPs reaching noradrenergic and dopaminergic nuclei and the cerebellum and their associated ultrastructural alterations. Here, we identify NPs in the locus coeruleus (LC), substantia nigrae (SN) and cerebellum by transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX) in 197 samples from 179 MMC residents, aged 25.9 ± 9.2 years and seven older adults aged 63 ± 14.5 years. Fe, Ti, Hg, W, Al and Zn spherical and acicular NPs were identified in the SN, LC and cerebellar neural and vascular mitochondria, endoplasmic reticulum, Golgi, neuromelanin, heterochromatin and nuclear pore complexes (NPCs) along with early and progressive neurovascular damage and cerebellar endothelial erythrophagocytosis. Strikingly, FeNPs 4 ± 1 nm and Hg NPs 8 ± 2 nm were seen predominantly in the LC and SN. Nanoparticles could serve as a common denominator for misfolded proteins and could play a role in altering and obstructing NPCs. The NPs/carbon monoxide correlation is potentially useful for evaluating early neurodegeneration risk in urbanites. Early life NP exposures pose high risk to brains for development of lethal neurologic outcomes. NP emissions sources ought to be clearly recognized, regulated, and monitored; future generations are at stake.
Collapse
|
24
|
Calderón-Garcidueñas L, Hernández-Luna J, Mukherjee PS, Styner M, Chávez-Franco DA, Luévano-Castro SC, Crespo-Cortés CN, Stommel EW, Torres-Jardón R. Hemispheric Cortical, Cerebellar and Caudate Atrophy Associated to Cognitive Impairment in Metropolitan Mexico City Young Adults Exposed to Fine Particulate Matter Air Pollution. TOXICS 2022; 10:toxics10040156. [PMID: 35448417 PMCID: PMC9028857 DOI: 10.3390/toxics10040156] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
Exposures to fine particulate matter PM2.5 are associated with Alzheimer's, Parkinson's (AD, PD) and TDP-43 pathology in young Metropolitan Mexico City (MMC) residents. High-resolution structural T1-weighted brain MRI and/or Montreal Cognitive Assessment (MoCA) data were examined in 302 volunteers age 32.7 ± 6.0 years old. We used multivariate linear regressions to examine cortical surface area and thickness, subcortical and cerebellar volumes and MoCA in ≤30 vs. ≥31 years old. MMC residents were exposed to PM2.5 ~ 30.9 µg/m3. Robust hemispheric differences in frontal and temporal lobes, caudate and cerebellar gray and white matter and strong associations between MoCA total and index scores and caudate bilateral volumes, frontotemporal and cerebellar volumetric changes were documented. MoCA LIS scores are affected early and low pollution controls ≥ 31 years old have higher MoCA vs. MMC counterparts (p ≤ 0.0001). Residency in MMC is associated with cognitive impairment and overlapping targeted patterns of brain atrophy described for AD, PD and Fronto-Temporal Dementia (FTD). MMC children and young adult longitudinal studies are urgently needed to define brain development impact, cognitive impairment and brain atrophy related to air pollution. Identification of early AD, PD and FTD biomarkers and reductions on PM2.5 emissions, including poorly regulated heavy-duty diesel vehicles, should be prioritized to protect 21.8 million highly exposed MMC urbanites.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
- Correspondence: ; Tel.: +1-406-243-4785
| | | | - Partha S. Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India;
| | - Martin Styner
- Neuro Image Research and Analysis Lab, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Diana A. Chávez-Franco
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
| | - Samuel C. Luévano-Castro
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
| | - Celia Nohemí Crespo-Cortés
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|